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The longitudinal dynamics of a stored proton beam bunch, under the in8uence of a nonlinear
damping force produced by electron cooling, was studied experimentally. The effect of the nonlinear
damping force was explored by varying the relative velocity between the cooling electrons and the
stored protons. Maintained longitudinal oscillations developed, which grew rapidly once a critical
threshold in the relative velocity was exceeded. The bifurcation of a fixed point into a limit cycle
is also known as a Hopf bifurcation. Comparisons of experimental data with numerical simulations
and analytical calculations are made. Implications for cooled beam acceleration will be discussed.

PACS number(s): 29.27.Bd, 41.75.—i, 03.20.+i, 05.45.+b

I. INTRODUCTION

The Indiana University Cyclotron facility (IUCF)
Cooler Ring was the first of many similar accelerator stor-
age rings designed specifjcally to employ electron cooling
to produce high quality medium energy ion beams for
use in nuclear research [1]. The electron cooling mech-
anism has been used extensively in multiturn kick in-
jection where the newly injected particles are cooled to
the stack tail, in counteracting the phase space growth
during the internal target experiments, and in increasing
the lifetime of the stored beam by balancing difFusion
processes. For a beam of 45-MeV protons, the equilib-
rium 95/&'& transverse emittance, or phase space area, is
about 0.3' mm mrad with a relative momentum spread
full width at half maximum (FWHM) of about 1 x 10
The motion of a beam bunch with this small an emittance
can closely simulate single-particle motion. Several ex-
periments studying transverse motion near betatron res-
onances [3] have demonstrated this advantage.

Recently, we have applied many of the same techniques
for studying transverse motion on a turn-by-turn basis
to investigate longitudinal motion, particularly the para-
metric resonances that occur when the rf phase or voltage
is modulated [4]. In the course of making these measure-
ments we have also observed driven, or maintained, some-
times dipolelike longitudinal oscillations. These main-
tained driven oscillations were generated by the damp-
ing force of the electron cooling when the energy of the
rf synchronous particle difFered Rom the electron beam
energy. A similar efFect has been previously observed and
identified as rigid dipole oscillations in Ref. [5]; however,
there has been no detailed study of this phenomenon.

A possible efFect of this instability is to heat a stored
proton beam; consequently it has important implications
for injection schemes in which the electron cooling is used
to cool newly injected beam into a previously stored pro-
ton beam. It may also be relevant for determining how

the energy of cooling electrons is changed as the proton
beam is accelerated. Since the electron cooling is efFec-
tive only when the relative velocity between the proton
and the electron beams is small compared with the ve-
locity spread of the electron beam, beam dynamics stud-
ies on the efFects of a nonlinear damping force are im-
portant for improving beam manipulation performance.
More broadly this efFect is of interest in understanding
any pendulumlike system with nonlinear damping.

In this paper we report experimental results from
studying beam motion when the energy of the syn-
chronous proton is varied while holding the electron en-
ergy constant. These experimental results are compared
with results &om numerical simulations, where the onset
of the limit cycle instability is related to the temperature
of the electron beam. Near the threshold of the instabil-
ity, analytic solutions can be obtained by using harmonic
linearization and perturbative expansion methods. We
also report the results obtained &om harmonically mod-
ulating the electron beam energy. This process, equiva-
lent to another parametric resonance created by rf phase
modulation, can be used to measure the cooling rate for
particles with small amplitude phase oscillations. We
organize this paper as follows. In Sec. II, synchrotron
motion in the presence of electron cooling will be briefIy
reviewed. In Sec. III, experimental methods in study-
ing the synchrotron motion with nonlinear damping will
be discussed and experimental results will be compared
with numerical simulations. The conclusion is given in
Sec. IV.

II. REVIEW OF SYNCHROTRON MOTION
WITH ELECTRON COOLING

Since its discovery in 1945 by McMillan and Veksler
[2], synchrotron motion has come to be relatively well
understood. However, synchrotron motion in a system
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where 1l is the phase slip factor, P, is the phase of the syn-
chronous particle, which for a stored beam is 0', 6 is the
harmonic number, f (b) is the damping force, provided in
our case by electron cooling, v, is the small amplitude
synchrotron tune at a zero synchronous phase, and the
subscripts n refer to the revolution number. The syn-
chrotron tune v, is related to the rf cavity voltage V,~ by
v, = gh]g~eVr/2~EP2, where e, Pc, and E are, respec-
tively, the charge, the speed, and the total energy of the
proton. The angular synchrotron &equency is given by
~, = coov„where uo is the angular revolution &equency.
Also, the stable region of the longitudinal phase space
provided by the rf cavity voltage is called the rf bucket.

with electron cooling has received relatively little atten-
tion. Ideally, electron cooling adds a damping force to the
system and thus synchrotron motion is similar to that of
a damping pendulum.

Longitudinal motion in a synchrotron is characterized
by the phase P, which is the phase of a particle relative
to the rf cavity voltage, and its conjugate momentum
variable b, which is the &actional momentum deviation
of the particle &om that of the synchronous particle, i.e.,
the particle that arrives at the same time each revolu-
tion relative to the rf voltage. The difference equations
describing the longitudinal motion are

tions and sustain the difFusion process of a fixed internal
target having a thickness of about 10 charges/cm [6].
In our experiments, the cooling electron beam current
was normally 0.75 A.

Generally, the damping force is a nonlinear function of
the relative velocity v, ~ between protons and the elec-
tron beam. Let b be the &actional momentum deviation
of a proton &om the synchronous particle and b the &ac-
tional momentum deviation of a proton traveling at the
same velocity as the electrons &om the synchronous par-
ticle. The relative velocity v„~ between a proton and the
cooling electrons in the laboratory frame is given by

,'.,' = (b —b.)Pc/&', (3)
where P and p are the usual relativistic factors for the
synchronous particle and c is the speed of light. In the
rest &arne of the electrons, the relative velocity is

2 1b/(1 2p 1b/

where p, and P, are relativistic factors for the electron
beam. Normally, for ~v„& ~

(( c and p, p, we have

v,",1" = (b —b, )Pc. (5)

Hereafter we will drop the superscript specifying the ref-
erence kame with v,"& —+ v„~ and for all future references
the relative velocity will be understood to be in the elec-
tron rest frame.

Assuming an electron beam with an isotropic phase
space Maxwellian velocity distribution, the damping
force in the nonmagnetized binary collision theory is
given by [7]

2

A. Damping force

The damping force f (b)produced 'by the electron cool-
ing is the result of a statistical exchange of energy in
Coulombic collisions between the protons and relatively
cold electrons as they travel together at the same veloc-
ity in the accelerator. In practice, electron cooling in
synchrotrons is normally done in relatively short straight
sections due to cost and space limitations. At IUCF the
electron beam is mixed with the proton beam for a dis-
tance of orily 2.2 m or about 2.5% of the circumference of
the ring. The electron beam radius is about 1.27 cm and
the cathode temperature is about 1300 or kT, th

——0.11
eV [5], where k is the Boitzmann constant. The maxi-
mum electron beain current is 4 A.

Heuristically, the longitudinal damping force can be
viewed as follows. In the rest frame of electrons, pro-
tons with higher or lower velocities than that of nearly
equal-speed electrons have to travel forward or backward
through the cold electron cloud in the electron cooling
section. Since the charged ions lose energy in passing
through the electron cloud, the protons will be slowed
down relative to the rest &arne of the electron beam. For
an electron beam current of 1 A, the effective electron
cloud target thickness is about 3.0 x 10~o electrons/cm2,
i.e., the density of the electron is about n = 1.4 x 10
electrons/m . Because the velocities of the electrons and
protons are nearly equal, this very thin target of cold
electrons can eKciently damp the proton beam oscilla-

2 t'v 1b f'v 1)1
exp — -:') (6)

where o is the rms velocity spread of the electron beam,
which is presumed to have a Gaussian distribution, and
K is a constant that is approximately independent of the
relative velocity. Expressed in terms of the fractional
momentum, the equation for the damping force becomes

f(b) = g(C),

B. EfFective electron temperature

The effective temperature of the electron beam is re-
lated to the rms electron velocity spread by

where A, = o, /Pc, g = (b —b, )/E„n is the 1/e damp-
ing rate for small relative velocities with units s, and
g(g) is a kinematic factor given by

g(() =, erf(g) — e
3~sr 2g

This kinematic factor has the following properties:

g( —&) = —g(0 g(&)l~ ~ ~ &

g'(+0.97) = 0, g(+0.97) = +0.57.

Asymptotically, g(() ~q~
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Theoretically, the electron temperature is related to the
cathode temperature of the electron gun by (see p. 185
of Ref. [7])

1t' 0U k&. t l PQ
/gT~~ ff ——

~

+
~

Eo+ 2m c (10)
4 (U..t~ &o ) &av

where U, t,g is the voltage of the acceleration column,
Eo ——eUc~qg is the nominal electron energy, oU is the
voltage ripple of the acceleration column, r, is the clas-
sical electron radius, and r is the average radius of
the sphere occupied by an electron. Typically, we have
O.U ( 3 V, and r —1.2 x 10 m at 1 A of electron beam
current, and thus the resulting longitudinal effective tem-
perature can be as small as 0.0003 eV, dominated by the
voltage ripple and the static Coulomb potential term in
Eq. (10). Because of the adiabatic acceleration, the lon-
gitudinal effective electron temperature is much smaller
than that of the cathode temperature, which is of the
order of kT, tg ——0.11 eV. However, there is no adiabatic
damping in the transverse phase space, so the efFective
transverse temperature remains 0.11 eV.

In machines where the electron beam is magnetically
con6ned by a solenoidal field, as it is in the IUCF Cooler
Ring, the damping force can be enhanced by an effect
called magnetized cooling. Magnetized cooling can be
substantial for small relative velocities, where electrons
are trapped in magnetic field lines, the efFective longitudi-
nal and transverse cooling rates can be greatly enhanced.
However, for this effect to become important, there must
be a rather precise alignment of the electron and the pro-
ton beams, which under normal operating conditions is
unlikely (see p. 117 of Ref. [5]). During our experiments,
the electron cooling system was adjusted to optimize the
cooling rate and the lifetime of the proton beam without
making a painstaking effort to precisely align the pro-
ton and the electron beams. Therefore, we assume that
the damping force is given by the nonmagnetized the-
ory of Eq. (7), where parameters n and A, are used to
represent the efFective damping rate and electron beam
temperature.

In Fig. 1, sketches of the damping force for tmo dif-
ferent cases are shown. In Fig. 1(a) the damping force
f(b)is shown 'for the case where the electron velocity is
the same as the velocity of the synchronous particle, i.e.,
b = 0. In this case the damping force is zero for a parti-
cle at the center of the rf bucket, where the rf force is zero.
In Fig. 1(b) the damping force f (b') is shown for the case
where the electron velocity is much different &om the ve-
locity of the synchronous particle, i.e., b, g 0. In this
case the damping force is nonzero for a particle at the
center of the rf bucket, where the rf force is zero. More
importantly, the slope of the damping force at the center
of the bucket has changed sign. As we shall discuss later,
this leads to an instability when the synchronous particle
is slightly displaced &om the center of the rf bucket.

FIG. 1. (a) Damping force f(b) plotted as a function of
the momentum deviation b of the proton beam from the syn-
chronous particle. (b) f(b) plotted for the case where the
electron beam has a velocity diferent from the velocity of the
synchronous particle.

III. EXPERIMENTAL METHODS AND RESULTS

The IUCF Cooler Ring is a hexagonal shaped stor-
age ring with a circumference of 86.8 m. The exper-
iment was done with a 45-MeV proton beam injected
and then stored in a 10-s cycle time. After 5 s &om the
start of the cycle, the six-dimensional phase space coordi-
nates mere digitized at ten-revolution intervals for 16 384
points. The nominal rf cavity &equency was 1.03168
MHz with the harmonic number h = 1, i.e., the rf cavity
&equency was equal to the beam revolution frequency.
At this energy, the phase slip factor g of the Cooler Ring
was about —0.86. The beam was a single bunch of about
3 x 10s protons with a typical length of about 60 ns (or
5.4 m) FWHM for a rf peak voltage of about 41 V. Since
measurements of longitudinal motion were being made,
the phase lock feedback loop for the rf, which is normally
on, was switched ofF. Damping of a synchrotron oscil-
lation while operating under these conditions occurred
entirely due to the electron cooling.

The phase of the beam mas determined using a phase
detector having a range of 720 to measure the relative
phase between the signal &om a pickup coil in the rf
cavity and a sum signal &om a beam position monitor
(BPM) after it had been passed through a 1.4-MHz low
pass filter. The momentum deviation of the beam was
found &om changes in the position of the beam closed
orbit Lxg~, which was measured with a BPM in a re-
gion of high dispersion. The &actional momentum de-
viation b could then be determined using the relation
b = A+co jD~, where the dispersion D was measured
to be 3.9 m. The position signal was passed through a 3-
kHz low pass 61ter to remove efFects of coherent betatron
oscillations. Both the b and the phase signals were digi-
tized using our data acquisition system, mhich has been
described elsewhere [3].

Driven longitudinal oscillations were produced and
studied for two very different circumstances. In one case,
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electron energy. However, at IUCF the electron energy is
changed by changing the HVPS setting digitally in steps
of about 4.5 V. This would result in &actional changes
in the electron velocity AP/P in steps of about 9 x 10
which proved to be too coarse a means of changing the
relative energy. The other method, the method used for
this experiment, is to change the energy of the proton
beam. This was done by changing the rf cavity &equency,
where a step of 1 Hz resulted in changing the &actional
proton velocity by about 1 x 10 . If the electron ve-
locity is equal to the proton velocity when the rf cavity
frequency is fo, then the &actional momentum deviation
of the electron beam &om the proton beam b at the new
rf frequency f is given by

g p
(2o)

FIG. 3. Plot of the peak phase &P of the steady-state motion
for difFerent values of the modulation frequency. The solid
lines are the analytical results with the best-6t value for o; of
40 Hz.

interest, and then performed an inverse transform. The
full width of the digital filter was 70 Hz wide, centered
at the nominal synchrotron &equency of 260 Hz. This
filter removed all multiples of 60 Hz. The phase oscilla-
tions before and after digital filtering for a modulation
&equency of 248 Hz are shown at the top and the bottom
of Fig. 2. After the filtering was completed, the response

P was obtained from the filtered time series.

Deter mining the damping par ameter n

The measured phase amplitudes P for two difFerent
HVPS modulation amplitudes V are shown in Fig. 3. The
diamonds correspond to V = 1.2 V and the circles corre-
spond to V = 2.5 V. Using n as an adjustable parameter,
the best agreement between the data and Eq. (18) was
obtained for o. = 40 Hz, shown as solid lines in Fig. 3. It
is interesting to compare this to a previously determined
efFective damping rate of n = 3 + 1 Hz [4], which was
determined &om the damping rate of phase oscillations
with initial amplitudes of about 1 rad. The fact that o.
varies by over an order of magnitude with amplitude is
another manifestation of the nonlinearity of the cooling
force. The harmonic modulation of the electron beam
energy is an efFective probe for measuring the damping
parameter o. for small phase oscillations.

B. Bifurcation with a nonlinear damping force

To investigate the eKect of the nonlinear damping force
on synchrotron motion, the electron velocity was dis-
placed &om the proton velocity to produce a nonzero
relative velocity. This can be achieved in two ways. The
most straightforward way would have been to change the

When the rf &equency is shifted, the beam, which is
originally at the center of the rf bucket (i.e.,

6' = 0 and
P = 0), will be dragged away &om the origin and begin to
undergo a synchrotron oscillation. If the damping force
were linear over the entire range of v, ~, the proton beam
would damp to a new fixed point attractor PFp, i.e. , the
synchronous phase angle, where

2o. hq8,
FP ~

(dp V~ Va

This would correspond to the situation where the proton
beam was continually losing energy due to the damping
force, but with it continually being made back by the rf
cavity, or vice versa. Because o. (( 4dpv„ the resulting
QFp, which is equivalent to the synchronous phase angle
P, of the beam, is very small. This is analogous to a
pendulum in a stifF breeze, where the air resistance plays
the role of the electron cooling.

In reality, the damping force is a nonlinear function of
the relative velocity between the proton and the cooling
electrons. The first implication, discussed in Sec. III A 2,
is a smaller efFective damping rate. More importantly,
when the relative velocity is larger than the rms velocity
spread of the cooling electrons, the nonlinear damping
force can induce large synchrotron oscillations. This sec-
tion discusses the coherent synchrotron oscillations due
to the nonlinear damping force.

Experimental v esults

In order to measure the steady-state response of the
beam particles, the maximum synchrotron phase ampli-
tude P and the maximum &actional momentum devia-
tion b are measured at 5 s after the start of an injection
cycle to allow the initial transient oscillations to damp
out. A typical result of this measurement is shown in
Fig. 4, where two sets of measurements of P are shown,
one using the phase detector previously described and
the other using an oscilloscope to measure the separa-
tion in time between the extremes in phase oscillations.
The small amplitude of phase oscillations shown in Fig. 4
within the rf &equency range of J' —fo p [

—260, 120] Hz
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of motion is

P+ f(h) + v, sing = 0,
27r

(22)

0.8

0.6
0.4

where f (h) is the damping force given by Eq. (6). Since
the amplitude of the steady-state motion is small near
the transition &om a fixed point to the limit cycle bi-
furcation, we make the small amplitude approximation
with sin P = P. Let x = z &

—be the new phase variable.
e

From Eq. (2) the differential equation relating b and P
is P = hgh; thus x = b/4, . The equation of motion
becomes

1 O.a

0.0

0 4
0 0.5 1 1.5 8

V
i

a.5 4 (B)
20,' . . 2x+ g(x —x,)+ v, z = 0,
(dp

(23)
8.0

Av 1.5

where x, = b, /E, and g(() is the kinematic function of
Eq. (8).

Equation (23) is still a relatively complicated nonlin-
ear difFerential equation, but as long as 2n/upv, is small,
the location of the attractor can be determined by us-
ing a method called harmonic linearization [8]. This is
done by assuming that the solution, after damping to the
attractor, is given by

x = A sin(v0).

Substituting the ansatz of Eq. (24) into Eq. (23), the
resulting damping force is harmonic in time. We can
expand the time-dependent damping kinematic factor in
a Fourier series

1.0

0.5
0.0 I I I I I I I I I I I I

0 1 2

FIG. 6. (a) Plot of the function ai versus Av for
0.2, 0.4, . . . in intervals of 0.2. (b) Locations of the&e

zeros for the curves in (a) versus ~& plotted as solid lines.

The tracking result for A = 3 x 10 of Fig. 4 is shown as
dashed lines and the Av obtained from Eq. (32) is shown as
dash-dotted lines.

g(x —x, ) = ap + ) a cos(nv0) + ) b sin(nv0),
n=l n=1

(25)

where

1
ap —— g(x —z, )d0,

27t p

1
a = — g(x —x, ) cos(nv0)d0,

p

1b„= — g(x —z, ) sin(nv0) d0.
7i p

(26)

(27)

(28)

20! 2g(z, z) = 2o!iz + 2viv8z + v zi,
Cdp

(29)

where ni ——aim/(cupvA) vi = b/io(ct) pAv) aild zi
2nap/(wpv ), and likewise Eq. (23) becomes

x+2niz+ v'(x —xi) = 0,

where v = v, + vq, with v~ ——0 for the linearized syn-
chrotron motion. Note that o.q corresponds to the aver-

Note that ap, a, and b are all functions of Av and
8,/A, . Now, the approximation of the harmonic lin-
earization is to keep only the dominant terms in this
expansion, which would be the dc term and the erst har-
monic term. In terms of x and x, the damping force
becomes

age damping force over one complete synchrotron oscil-
lation. If ni ——0 for a given amplitude A g 0, then the
limit cycle exists. Therefore, the amplitude A of the limit
cycle attractor can be found by finding the location of the
zeros in the function ni(& & ), or equivalently &om the

e
zeros in the function aq. While closed form expressions
for the functions in Eqs. (26)—(28) have not been ob-
tained, these functions, and their zeros, were determined
numerically.

A plot of a~ as a function of Av for various values of
b, /b„ is shown in Fig. 6(a). The locations of the ze-
ros of ai as a function of the momentum offset 8,/4, is
shown as solid lines in Fig. 6(b). For comparison, the
location of the attractor as found &om computer track-
ing of the difference equations is shown as a dashed line.
This 6gure provides a qualitative explanation for the re-
sults obtained. As the fractional momentum offset of
the electron beam is increased, the value of o.~ for small
amplitude oscillations begins to decrease and eventually
changes sign. The value of b, for which o.q changes sign is
where a driven, or maintained, oscillation erst appears.
This point happens to be at the b, where f(b, ) is an
extremum, where the slope of the damping force changes
sign. Once this occurs, the origin of the phase space be-
comes unstable. Thus once this condition is reached, the
dynamics of this system resembles a system with neg-
ative resistance [9]. A bifurcation &om a stable fixed
point to a limit cycle, as in this case, is known as a Hopf
bifurcation.
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8. Heuristic explanation of the Hopf bifurcation I I I

I

I

To further clarify the dynamics of the Hopf bifurcation,
we can expand the nonlinear damping kinematic function
of Eq. (23) in a Taylor series as

g(x —x,) = ) g„x",

0.05

0.00
p(t)

—0.05

0000

where g = —, &&„& . . Substituting the ansatz ofa &"g(C)

Eq. (24) into Eq. (31), the conditions, up to the first
harmonic, for the sustained limit cycle are v = v, and

3 3gIAv+ —gs(Av) + . . = 0.

—0.10

I I I I I I

0 200
I I I I I I I I I I I I I

400 600 800
I

1000

Neglecting all higher-order terms, we observe that
Eq. (32) possesses a real solution when gIgs ( 0. Thus
the bifurcation occurs when the gi changes sign, i.e. , at
b, = 0.974, . The dash-dotted lines in Fig. 6(b) show the
response amplitude Av obtained from Eq. (32). They
agree qualitatively with that of numerical simulations
and that obtained &om the harmonic linearization. It
is interesting to note that the mechanism for the Hopf
bifurcation arises from the cancellation between the neg-
ative resistance gi term and the higher-order dissipative
term. The rf focusing potential provides the confinement
for the sustained oscillations. The amplitude P of the
limit cycle is inversely proportional to the synchrotron
tune, which agrees with numerical simulations shown in
Fig. 5.

FIG. 7. Single trace of the longitudinal beam profile mea-
sured from a fast digital oscilloscope shows the uneven beam
distribution on the limit cycle. Because of the nonuniform
longitudinal distribution, our digitizing system can measure
the phase oscillations of the dipolelike oscillations.

chrotron oscillation can be obtained &om the super-
position of the nonlinear damping force and a driven
phase modulation, which may arise &om power supply
ripple, synchrobetatron coupling, or wake fields of the
impedance. In the presence of phase modulation, the
equations of synchrotron motion become

C. Gbservation and simulation of sustained
dip olelike oscillat ions

2' V
b +q ——b — ' (sin P —sin P, ) —f (b ),

hg

p„+I ——ItI„+ 2rrhgb„+I + 2rrv~a cos v~0,

(33)

With a Hopf bifurcation, particles would uniformly and
incoherently populate a ring in the phase space. How-
ever, we often observed sustained dipolelike oscillations
or a locally enhanced attractor instead of a uniformly dis-
tributed single limit cycle. Figure 7 shows the BPM sum
signal observed from a fast sampling digital scope, which
shows the longitudinal beam profile in a single path, for
the rf frequency f = 1.03103 MHz. A double peaked
feature with a slightly filled center region indicated that
the beam was distributed in a ring. The peak phase am-
plitude of the ring is about 102 . The asymmetry in the
peak current showed that a fixed point attractor might
have appeared on the limit cycle.

Figure 8 shows the corresponding phase oscillations of
the beam, recorded with our digitizing system [3], and the
corresponding Poincare map, which plots P vs b. We note
that the maximum phase amplitude is about 80, which
is less than that measured &om the BPM sum signal on
the fast sampling scope discussed above. To observe the
phase oscillation with the phase detector of our digitiz-
ing system, the beam must be largely a single bunch per-
forming a dipolelike oscillation in the synchrotron phase
space. Measuring the oscillation &equency, we found that
the synchrotron &equency was 316 Hz.

A possible explanation for a sustained dipolelike syn-

10
X10

I I I I I I I I I I I I I I I

0 0
«5

tt
'O

—5—

—10—2
I I I I I I I I I

0
g (radian)

I I I I I I

50

—50
I I I I I I I I I I I I I I I I

25000 30000 35000 40000 45000
Revolution

FIG. 8. Observed Poincare map of the synchrotron oscilla-
tion for the sustained dipolelike oscillations shown in Fig. 7.
The frequency of the dipolelike oscillation was 316 Hz.
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where a and. v are, respectively, the modulation am-
plitude and the modulation tune. It is well known that
the effect of the phase modulation will create a resonance
island at the action J, given by [4]

shown in Fig. 9. We feel that this is a plausible explana-
tion for the dipole character of the sustained oscillations;
however, we cannot identify the source of 316 Hz.

D. The drag force of the electron cooling

I ! I I I I I I I I I I I I I I I I I I I I

v, =0.000373

I I I I I I I I I I I I

0 1

n=40. /s
a=0. 125 deg
v =0.000344

I I I I I I

FIG. 9. Poincare surfaces of section are plotted for the nor-
malized phase space coordinates 8 = — " —s vs P in radians.

VS P
They are obtained from numerical simulations of Eqs. (33)
and (34) with parameters u, = 3.73x10, u = 3.448x10
a = 0.125', and o. = 40 s . The nonlinear damping force
produces a limiting cycle. In the presence of a phase modula-
tion at a modulation tune near the synchrotron tune, a 6xed
point attractor is also created at the synchrotron amplitude
given by Eq. (35).

where the longitudinal action J is related to the phase
amplitude by J 2P . A characteristic feature of the
harmonic phase modulation is that the maximum phase
amplitude of the resonance island depends only on the
modulation tune. Therefore, it will not change when the
rf cavity frequency is altered. The fixed point attractor
can be obtained &om the Poincare surfaces of section,
where one phase space point is plotted every 1/v rev-
olutions. Figure 9 shows an example of the Poincare
surfaces of section obtained &om numerical simulations
of Eqs. (33) and (34) with a = 0.125, v = 3.448 x 10
and v, = 3.73 x 10 . Here the normalized &actional mo-
rnentum deviation b' = —""~ is plotted against P in

Vs P
radian. We observe that the Hopf bifurcation is swamped.
by the fixed point attractor generated by a very weak
phase modulation.

It is worth noting that the measured phase amplitudes
shown in Fig. 5 become nearly constant when the phase
amplitudes reach a certain value. Before the onset of
the Hopf bifurcation, the fixed point attractor originated
&om a small phase modulation could. be washed away by
the damping force of the electron cooling [4]. However,
when the Hopf bifurcation occurs, the fixed. point attrac-
tor of a small phase modulation is greatly enhanced, as

Although our analysis assumed. a specific kinematic
form factor g(g) for the electron damping force, the
threshold of Hopf bifurcation or limit cycle is generally in-
dependent of the small amplitude damping rate n and the
specific form for the kinematic function for the damping
force (see Sec. IIIB3). To determine the damping rate
o., we measured the small amplitude phase oscillations
arising &om voltage modulation of the electron acceler-
ation column. On the other hand, the threshold of the
Hopf bifurcation can be employed to determine the ef-
fective electron longitudinal temperature L . Prom our
data, we obtained A, = (3.1+0.9) x 10 and therefore
the effective temperature was kT~~,~ (2.2+ 1.0) x 10
eV.

It is instructive to compare the damping force deter-
mined &om our experiments with the drag force mea-
sured through different means [5]. In storage rings with
electron cooling, the cooling rate is measured by the drag
force, which is defined. as the energy loss or gain per unit
length. Thus the drag force is related to the damping
force by P Ef(h)/L, ~, where I, ~ is the length of the
electron cooling section. The drag force is generally pro-
portional to the beam current of cooling electrons.

The drag force, with parameters o. = 40 Hz and
= 3.1 x 10 shown as the solid. line, is compared

with data taken from p. 105 of Ref. [5] shown as vari-
ous symbols in Fig. 10. These data were normalized to
0.75 A of electron current. The data, having the greatest
slope in the asterisks, corresponded to the "magnetized
cooling" condition, which was achieved by painstakingly
aligning the electron beam with the proton beam at a
very small electron current (e.g. , 0.098 A) in order to
minimize space charge d.epression. The drag force ob-
tained from our experimental measurements is smaller
than the magnetized cooling data of Ref. [5].

Our measured. drag force also agrees well with Fig. 56
of Ref. [7]. Figure ll compares our measured drag force
(solid line) with those compiled in Fig. 56 of Ref. [7]
shown as asterisks for the low energy antiproton ring
(LEAR) data, circles for other machines (see Ref. [7]
for detail), and squares for data taken &om Ref. [5] at
the IUCF Cooler Ring. Although the drag force data of
these machines were measured at different energies, they
behaved quite similarly. The drag force peaked at about
1.5 x 10 m/s for the optimized LEAR data, 2.8 x 10 m/s
&om our data, and about 4.5 x 10 m/s &om the combi-
nation of all other data. The corresponding temperatures
of the cooling electrons were about 0.0006 eV, 0.0022 eV,
and 0.005 eV, respectively. Since all drag forces exhibit
the characteristics of negative resistance, proton beams
should. experience Hopf bifurcation instability in all syn-
chrotrons with electron cooling.

Although the damping force of Eq. (7) has a correct
asymptotic form given by
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I

I I I I kom the oversimplified damping force used in our numer-
ical simulations for the data analysis. A slower decrease
in the electron cooling rate may also explain the smaller
than expected response amplitude observed for large am-
plitude oscillations as in Figs. 4 and 5.
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FIG. 10. The drag force (eV jm) obtained from our experi-
ments is compared with that obtained previously by diferent
methods [5] normalized to the electron current at 0.75 A. Dif-
ferent symbols corresponded to difFerent machine conditions.
The data, having the greatest slope in the asterisks, corre-
sponded to the "magnetized cooling" condition, which was
achieved by painstakingly aligning the electron beam with the
proton beam at a very small electron current (e.g. , 0.098 A)
in order to minimize space charge depression. Note here that
our result falls between the previously obtained magnetized
and nonmagnetized cooling rate.
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FIG. 11. The drag force (eV/m) obtained from our experi-
ments (solid line) is compared with those compiled in Ref. [7].
The asterisks correspond to the optimized LEAR data, the
squares are data taken from Ref. [5], and the circles are data
of other machines compiled in Ref. [7].

the drag force, with the measured parameters n 40
s and 4, = 3.1 x 10, underestimates asymptotically
the damping force of the empirical formula of Eq. (169)
in Ref. [7] by a factor of 1.5. This discrepancy may arise

E. Comments on transverse Hopf bifurcation

Although we have studied only the nonlinear damping
force in the longitudinal phase space, the result can be
readily applied to the transverse electron cooling. Since
the transverse damping force is also a nonlinear function
of the relative transverse velocity [7], the Hopf bifurcation
can occur when the relative transverse velocity is larger
than that associated with the transverse temperature. A
Hopf bifurcated beam may result in a more uniformly dis-
tributed beam in the coordinate space, which may benefit
low energy storage rings in reducing the incoherent space
charge tune shift.

IV. CONCLUSION

The longitudinal dynamics of a bunched beam with
damping was explored when the damping force is har-
monically modulated. The response of the beam to this
modulation may prove useful as a diagnostic for de-
termining the damping rate, as it was for this experi-
rnent. The harmonic modulation of the damping force
was shown to produce driven motion, which has charac-
teristics similar to rf phase modulation. Thus noise in
a damping system may produce longitudinal emittance
growth in the same way that phase noise in a rf system
can.

'We have made detailed studies of instabilities created
by the nonlinear cooling force when the electron veloc-
ity differs from the proton velocity. We have shown that
this instability can be explained as a maintained oscil-
lation generated when operating with a relative veloc-
ity at which the damping force decreases with increasing
momentum error, i.e., negative resistance. Because the
maintained oscillation rises sharply and depends strongly
on 4„this e8'ect may be used for determining the effec-
tive electron temperature A, .

This phenomenon should also be an important con-
sideration in injection schemes in which electron cool-
ing is used to cool a proton beam at an energy difI'er-
ent II'rom the injected beam, since quite clearly it can
have the unintended efFect of heating the injected beam.
More importantly, it may have an impact on the way in
which the cooling electron and. the proton beam ener-
gies are ramped. Cool-ramp-cool schemes have recently
been developed for proton beam acceleration, in which
protons are first injected, accumulated, and cooled to
achieve small beam emittances, then the proton energy is
ramped, and Anally, the electron beam energy is brought
to the speed. of proton beam in order to achieving proper
cooling at high energy. This process may encounter the
negative resistance instability during the ramp manip-
ulation. The question is how fast the Hopf bifurcation
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develops. If the instability growth rate, which unfortu-
nately seems to be proportional to o, , is faster than the
ramping rate, the beam particles will be unstable. On
the other hand, if the ramping rate is larger than the in-
stability growth rate, then the efFect of nonlinear cooling
force plays little role in diluting the phase space dur-
ing the acceleration. It is therefore worth studying the
Hopf bifurcation growth time. The degree to which this
phenomenon may aQ'ect these operations requires further
studies and awaits a more sophisticated treatment of the

motion that can predict the amplitude of the transient
and its growth time.
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