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Nonlinear response of electric fields at a neutral point
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The complex dynamics of electric 6elds at a neutral point in a plasma is studied via a model
of noninteracting "quasiparticles. " The simplicity of the model allows the reduction of the many-
body problem to an effective single-particle analysis —all properties of interest can be reduced to
quadratures. Still, the 6nal calculations to extract a quantitative or even qualitative understanding
of the 6eld dynamics can be difBcult. Attention here is focused on the dynamics of the conditional
electric 6eld: the field value at time t for a given initial value of the field. In addition to the
relevant linear response function (electric field time correlation function), this property provides
the complete nonlinear response of the electric 6eld to arbitrary initial field perturbations. The
static properties (distribution of electric fields and field time derivatives) and the electric Beld time
correlation function have been known for some time for this model. We compare these results and
the present result for the conditional electric field with molecular dynamics simulations including
interactions. The comparisons suggest that the model provides a quantitative representation of
electric field dynamics in real plasmas, except at strong coupling. The exact theoretical results are
compared also with those obtained by modeling the electric field as a stochastic variable obeying
a kangaroo process. The latter can be constructed to yield both the exact stationary distribution
and the exact electric field time correlation function. However, we find that the conditional 6eld
is never well approximated by this process. An alternative representation of the joint distribution
for electric fields, consistent with the exact stationary distribution, 6eld correlation function, and
conditional electric field, is suggested.

PACS number(s): 51 70 +f, .51..90.+r

I. INTRODUCTION

The structural and dynamical properties of a plasma
can be studied using a test charge to measure the total
electric Geld at an arbitrary point. Two cases are of in-
terest: (i) the field at a finite test charge and (ii) the
Geld at a vanishingly small test charge. In the former
case, the test charge in8uences the plasma charge conGg-
uration near it in an important way; in the second case,
the test charge has negligible e8'ect and acts as a passive
probe of the plasma. In the following, attention will be
limited to this second case, the electric field at a "neu-
tral" point. A related analysis of the charged point case
will be discussed elsewhere.

There is an intrinsic value to the detailed study of elec-
tric Geld distributions and dynamics as a representation
of the complex collective dynamics in charged systexns.
For example, the electric Geld autocorrelation function
provides a rich description of the linear response of the
plasma to a single external charge. The objective here
is to explore the more general nonlinear response char-
acteristics associated with higher-order correlation func-
tions. There are also very practical reasons to have an
understanding of the nonlinear electric Geld response at
a neutral point. The spectral lines emitted by neutral

atoms or molecules in a plasma are sensitive to their
environment and. couple to it primarily via a dipole in-
teraction. The electric Geld history over the radiation
times, for each possible initial value in the ensemble con-
sidered, provides the only relevant property of the sur-
rounding plasma. Indeed, the most successful method
for calculating line shapes at present is based on solu-
tion to the Schrodinger equation for dipole radiation,
using an electric Geld history determined &om molecu-
lar dynamics simulation [1]. A theoretical alternative,
also successful, replaces the molecular dynamics simula-
tion by a presumed stochastic process to determine the
electric field dynamics [2]. Our objective is a theoretical
study of electric Geld dynamics at the more fundamen-
tal level of statistical mechanics. Determination. of the
electric field requires knowledge of the trajectories of all
plasma particles and consequently a detailed con&onta-
tion of the many-body problem. Progress can be made at
this fundamental level either by restricting attention to
simple properties (e.g. , field correlations) or by idealizing
the plasma to allow the study of more complex proper-
ties. Here we choose the latter approach and consider an
ideal gas of charges that generate electric fields, but are
unaffected by the Gelds of other particles. The trajecto-
ries are then straight lines and all dynamical aspects of
the many-body problem are obviated. The collective ef-
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fects obtained therefore are associated with the statistical
properties of the ensemble of initial states considered.

Historically, this idealized model has provided impor-
tant insight for understanding the static properties of
fields. It was used by Holtsmark [3] 75 years ago for the
probability distribution of electric Geld values in plasmas
and by Chandresekhar [4] 35 years ago for the distri-
bution of gravitational Gelds in astrophysical structures.
Surprisingly, there have been few studies of field dynam-
ics for this model [5,6]. The fields due to these inde-
pendent particles can be chosen as Coulomb fields, to
represent rapidly moving electrons, or screexied Coulomb
Gelds for more slowly moving ions. In the Coulomb case,
the predictions of this model are only qualitative, but for
screened Coulomb interactions they provide a quantita-
tive description as well {except at strong coupling). We
verify this claim for several static and dynamic properties
by comparing with results &om molecular dynamics sim-
ulations that include interactions among particles. Thus,
for screened Gelds both the qualitative and the quanti-
tative features of electric Gelds determined here can be
considered as representative of those in real plasmas.

As might be expected, the absence of interactions
among particles allows the reduction of any property of
interest to quadratures. This is demonstrated in Ap-
pendix A, where the generating functional for multitime
electric Geld correlation functions of arbitrary degree is
calculated. This generating functional also determines
the relative probability for any chosen function t (t) to
represent the electric Geld history over a selected time
interval. However, such generality does not give much
physical insight into the Geld dynamics and underlying
mechanisms. Consequently, we focus on the properties of
fields at only two times. These are determined &om the
joint probability distribution Q(Z, t~Z', t') for the proba-
bility density to find the Geld value E' at time t and the
value E' at time t'. A more transparent derived prop-
erty is the conditional electric field E(t~Fp), giving the
average Geld at time t after an observed value of E'0. As
indicated in Sec. III, this describes the nonlinear response
of the electric Geld to arbitrary initial d.istributions of the
Beld. The conditional electric Geld is the primary prop-
erty studied in detail here.

In Sec. II the distributions for fields at one and two
times are given and some known results for the ideal-
ized model are recalled (the Holtsmark distribution, the
distribution of Beld derivatives, and the Geld autocorre-
lation function). These results are compared with those
from molecular dynamics simulation (including interac-
tions) for screened Coulomb fields at several values of
the plasma coupling, illustrating the accuracy and the
relevance of the model. In Sec. III the conditional elec-
tric field is calculated. The results are illustrated over a
range of plasma coupling as a function of time, screened
length, and initial Geld value. The theoretical conditional
electric Geld is compared with molecular dynamics simu-
lation results, again showing good agreement.

All theoretical calculations for the model here are ex-
act and therefore provide a critical test for approximate
stochastic representations of the electric field. The most

complete representation currently available considers the
electric field. as a stochastic variable governed by a kan-
garoo process [7]. An important feature of this process is
the possibility to imbed in it the known exact stationary
Geld distribution and electric field autocorrelation func-
tion. The conditional electric Geld then can be calculated
and compared to the exact value obtained here, as a test
of this parametrization of the kangaroo process. This is
done in Sec. IV, where it is shown that the kangaroo pro-
cess gives a poor approximation on all time scales, and
the reasons for this failure are discussed. A possible al-
ternative approximation for the joint probability density
is proposed and criticized. The primary results presented
here are summarized and discussed in Sec. V.

II. DEFINITIONS AND RELATIONSHIPS

A. General de8nitions

Before introducing our model, the properties of interest
are defined for a one-component plasma (OCP) of N ions
with mass m and charge Ze, interacting via Coulomb or
screened Coulomb forces in a uniform neutralizing back-
ground. Most of the deGnitions below apply as well for
more complex plasmas, with obvious changes. The elec-
tric field at a neutral point (chosen to be the origin) due
to the OCP is given by

N
E—:) e(q;), e(r)—:Zer(1+ ar)e r + eg, (1)

where N is the number of ions, o. is the inverse screen-
ing length, r" = r/r, and e(j) is the electric field due
to the ith particle plus a contribution &om the uniform
background E~ ——Nep. The probability density for Geld
values Q(e) is

The second equality defines the associated generating
function G(A),

In all of the following it is understood that the angu-
lar brackets represent a Gibbs ensemble average, so that
only equilibrium states are considered. Then &om time
translational invariance of the Gibbs ensemble it follows
that (2) is a time-independent stationary distribution.

Dynamic properties at two times, the smaller of which
is chosen to be zero by time translational invariance, are
determined &om the joint distribution for a field value e
at time t [8],
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Q(E, 0; e ) 0)= b(e —e )Q(e ), Q(e) oo; e ) 0) = Q(e)Q(e ),

G(A, A';0) = G(iA+ A'i), G(A, A', oo) = G(A) + G(A').

The generating functions have been introduced because
they are the more convenient objects for analysis by
both simulation and analytic methods. Several impor-
tant properties are directly derived &om G(A, A'; t). The
time independent distribution of electric field derivatives

fd-P(g):— b(xl —E), E=
~

—E(t)
~(dt ) ~=p

(8)

The generating function in this case is given by

G(X, X', () = (e ((e'" d(e)e*"' d))
The initial and the final values for Q(e, t; e ', 0) and

G(A, A') are easily deterxnined to be

B. Noninteracting plasma model

The charged particles of the OCP generate not only
the electric field (1) at the neutral point, but also sixnilar
fields at each of the other charges. The latter couples
the dynamics of all particles. We consider now a model
in which all fields are neglected except those at the neu-
tral point —only the test particle detects the charge on
the plasma constituents. The justificatio for this model
lies in the fact that each particle experiences a superpo-
sition of fields &om all other particles (due to the long
range nature of the interaction), whose collective eff'ect
yields small velocity changes relative to the thermal ve-
locity. The resulting trajectories are then approximately
straight lines, as for a noninteracting system. This is
observed in molecular dynamics simulations, with occa-
sional larger velocity changes due to very close encoun-
ters. This qualitative picture is supported by direct ob-
servation of trajectories in the molecular dynamics sim-
ulations described below.

The generating functions G(A) and G(A, A'; t) at a neu-
tral point for noninteracting particles can be calculated
exactly (see Appendix A)

can be calculated &om G(A, A'; t) according to [9] G(A) = e, f de (e'"'(e) —1), (13)

P(e() = (2e) e f dXe '"'"e ( ),

(A A&
J(A) = lim G —,——;t

tmp (t t (9)
G(X X ~ () —ee/deded(e) (e'I&' ("+ e)+e'' ( )l

y)

(14)

The statistical properties of field dynamics at short times
is determined by the time independent distributions Q(e)
and P(g) for the first two coefficients in a Taylor series
expansion of any function of E(t). The simplest measure
of longer time properties is given by the electric field
autocorrelation function C(t),

a2
C(t) —= (E(t) E) = —i,G(A, A', t)

~

. (10)
&~A'~A' ) i=i =p

A considerably more detailed description of the field dy-
namics at all times is given by the conditional average of
the electric Geld

~'(&
l 0 =—(E'(&)~( —E))/(~( —E))

q —1( )(2 )
—e jdX

—*'e +le(e)

x
~
i, G(A—', A;t)

~) X=p

where P(v) is the Maxwell-Boltzmann distribution and n
is the number density. For the specia)t case of Coulomb
fields exact scaling relations are obtained directly &om
(13) axld (14),

G(A) = a G(a A), G(A, A'; t) = a G(a A, a A'; at).

The generating functions G(A), J(A), and the correlation
function C(t) can be calculated analytically for this case
with the results

G(A) = --(2~)x~2(Ae. )'~',
5

J(A) = 1+ (2~3) 'sinh '(~3) (ep/tp)A, (17)

All of the above expressions are formally exact. There
are practical and accurate methods to calculate the gen-
erating function G(A) for the static field distribution
[10]. The generating function G(A, A', t) has been stud-
ied recently in a number of lixnits [8,11] and by semi-
phenomenological xnodels [9], but much less is known
about these dynamical properties. Indeed, one motiva-
tion for our detailed study of the idealized plasma below
is to expose more completely some of these properties.

C(t) = e'(6/~~)(tp/t)

where ep = Ze/rp2 is the single-particle field at the av-
erage particle distance rp, defined by 4mnxps/3 = 1, and
tp = pp/u is the time to cross this distance at the ther-
mal velocity u = (2kxxT/m)x) 2. The short and the long
time behavior of G(A, A', t) for Coulomb fields can also
be obtained,
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model is compared to results &om the simulation for the
two cases of ND ——8 and 27 particles per Debye sphere.
In both cases, relatively good agreement is observed. A
similar quantitative agreement is found in Fig. 2 for the
comparison of the Geld derivatives. The field autocorre-
lation function C(t) obtained for the model is shown in
Fig. 3(a) for the three cases of ND = 8, 27, and 64. At
short times all behave as 1/t, while the effects of screening
are evident for times greater than 0.5. The comparison
with simulation results are shown in Fig. 3(b) for ND = 8.
For t ( 0.5 the efI'ects of interactions are negligible and
the model should agree well with the simulation results.
The significant differences observed at short times is due
to errors in simulation data at large values for C(t). For
later times this is not a problem and the simulation pre-
dicts a slightly faster decorrelation than the model, due
to interactions. This interpretation has been confirmed
by performing simulations without interactions among
the particles as well. The primary conclusion &om these
illustrations is that the idealized model is in quantitative
agreement with the simulatio~ results for real plasmas,
justifying the following more complete picture of the field
dynamics.

III. CONDITIONAL ELECTRIC FIELD
DYNAMICS

The conditional electric field is defined by Eq. (11). To
interpret this expression, note first that the initial value
is Z(0

~
e) = e so that Z(t [sQ is the subsequent value of

the average Geld following a specified initial value. It can
be understood also as the nonlinear response function for
the electric 6eld. To see this, consider a perturbation of
the Hamiltonian to H' = H + A E. Then the average
electric 6eld at time t for an initial Gibbs ensemble with
Hamiltonian H' is

Z(t
~

sQ
= C(t

~
e) e (24)

with the initial condition C(0
~
e) = 1. The following re-

sults are based on direct numerical evaluation of the in-
tegral representation Eq. (B14). All fields are measured
relative to eo and the time is relative to ro/u. Consider
6rst the case of Coulomb Gelds. There is no intrinsic de-
pendence on coupling strength for this case, so only the
dependence of C(t

~
e) on t and e is relevant. Figure 4

shows the time dependence for e = 0.2, 1.0, and 5.0. The
interesting qualitative features are (i) a monotone decay
in time on a time scale that decreases with increasing
e, (ii) a long time decay that behaves asyxnptotically as

i, and (iii) a short time domain of very slow decay.
The inverse dependence of the time scale on e can be un-
derstood by assuming that the entire Geld at the neutral
point is due to a single particle, initially at a distance
R(e) = (Ze/e) ~ . The time scale for decay of the ini-
tial field can be estimated by the average time to cross
a sphere of this radius T(e) = R(e)/u, which decreases
with increasing e. It also gives an estimate for the ini-
tial short time persistence of the initial 6eld value. The
conditional electric field for this single-particle model is
calculated in Appendix C. However, this single-particle
picture does not apply for small initial Gelds where com-
parable contributions &om many particles occur.

The case of screened fields is qualitatively similar with
some notable difFerences. Figure 5 shows C(t

~
e) as a

function of the screening paraxneter n [see Eq. (1)j, for
e = 0.2, 1, and 5. For screening lengths of the order of
ro (i.e. , n 1) there is a significant enhancement over
the initial field value for short times. This qualitative
behavior is present for all screening lengths, although it
decreases with increasing screening length and increasing
6eld values. A second qualitative difFerence is the faster
decay in time for increased screening lengths. These fea-
tures also can be interpreted via the single-particle Geld
model. The distance R(e) of the single particle is now
determined &om

(22)

&(e ~) —= &(e) ~"'/(e ~" ). (23) 0.8—

Q(Z, A) is the normalized initial distribution of field val-
ues for the Gibbs ensemble with Hamiltionian H'. An
expansion of (22) in powers of A gives a series whose
time dependent coefFicients are the response functions.
The coeKcient of first order in A is the linear response
function C(t) of Eq. (10). The higher-order coeffxcients
define the nonlinear response functions as the moments
of E(t [eQ with respect to e. Since E(t

~
eQ determines all

of these functions it will be referred to as the nonlinear
response function.

The calculation of 8 (t
~

eQ from Eqs. (12) and (14) is
outlined in Appendix B.It follows &om rotational invari-
ance of the ensemble that E(t

~
sQ is proportional to s and

it is sufficient to study the scalar function C(t [ e) defined
by

0.6—

0.4—

0.2—

FIG. 4. Conditional electric field C(t
~
s) as a function of

time t for Coulomb fields at s = 0.2 (curve 1), s = 1 (curve
2), and s = 5 (curve 3).
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1,2

0.8—

0.6—

(."(t
~

~) o.4—
FIG. 7. Same as Fig. 6, but

for N~ ——8.

0.2—

p+
+

is good enough to provide a basis of comparisons with
the theoretical model. Again in this case the simulations
performed without interactions among charged particles
are in good agreement with the model, con6rming that
molecular dynamics with interactions predicts a faster
decorrelations for the conditional electric 6eld.

+ v(e)
~

Q(e, t, e', t')( (9

E c)t

= E (E)q(E) f dE P(E )Q(E, t;E', t). (27)'
Here v(e) is a function of the field magnitude to be de-
termined and v(e) is defined by

IV. STOCHASTIC FIELD MODELS
P(E) = E'(E) f EtE EE(E )Q(E ). (28)

The microscopic dynamics of the electric field is de-
termined &om the detailed dynamics of all particles in
the plasma. The large number of particles then leads to
a rapidly varying and highly irregular time dependence
for the 6elds. This suggests the possibility of modeling
the field dynamics as some smooth regular behavior (re-
flected in the average dynainics) with random noise su-
perimposed on it. There are methods of nonequilibrium
statistical mechanics that allow formulation of the prob-
lem in this way, with the field treated as a stochastic
variable. The problem then is to determine the regu-
lar behavior and to characterize the noise &om the un-
derlying microscopic dynamics. Alternatively, a purely
phenomenological approach can be taken whereby a par-
ticular stochastic process is assumed for convenience and
practicality. The most widely used process in the present
context is the kangaroo process [2]. It is a Markovian pro-
cess so that all multitime properties are determined &om
the joint distribution function Q(e, t; e ', t'), which obeys
the equation

It is easily verified that Q(e)Q(e') is the long time, sta-
tionary solution to (27). An integral equation represen-
tation is obtained directly by integration (for t ) t')

Q(e t e' t') = e ""' ' 'b( — ')Q( ')
t

+ dTe v(e) Q(hade
tl

xv(e")Q(e", ~; e', t'), (29)

where the initial condition (6) has been used.
The correlation function | (t) can be calculated from

(29) as a function of v(e),

Q(t) = f d'~''' ''q(' ' '' o) = f ~'"q(q' "'
(30)

[the second term of (29) does not contribute due to spher-
ical symmetry]. The right-hand side is a positive function



BERKOVSKY, DUFTY, CALISTI, STAMM, AND TAI.IN

E(t~eg = f de'e'Q(e', t, Z 0)/Q(eg = e (31)

Again, the secoiid term of (29) does not contribute.
Equivalently, C(t~e) is a simple exponential function for
all time. This is clearly in contradiction to the exact re-
sult of Sec. III for Coulomb Gelds, where a crossover &om
almost constant behavior at short times to t behavior
at long times is found. The kangaroo process is never a
good approximation in this case. For screened fields, the
short time enhancement of Figs. 6 and 7 cannot be repro-
duced by the kangaroo process, which leads to monotonic
decay. This is illustrated in Fig. 8 for o. = e = 1.

It appears &om these results that the successful appli-
cations of the kangaroo process to calculate spectral line
profiles must be due to its primary dependence on electric
fields only through Q(e) and C(t). The former provides
a description of the initial fields before radiation, while
the latter gives the correlation time. Evidently this is
suKcient in many cases. For properties sensitive to other
field characteristics, the results of this section indicate
that the kangaroo process should not be used.

A primary advantage of the kangaroo process is its sim-
plicity. It would be useful to have an alternative stochas-
tic process that allows modeling of Q(e), C(t), and C(t

~
e)

with the same relative simplicity of the kangaroo process.

of t. It is possible to show [2] that v(e) can be chosen to
yield aiiy given positive function C(t). In Appendix D
we sketch a procedure of finding v(e) [2,7]. Thus the kan-
garoo process is characterized by two arbitrary functions
Q(eg and v(e), which can be chosen to yield the exact
stationary distribution and the field correlation function
known &om statistical mechanics. Of course, this does
not ensure that other properties are given correctly.

To explore this last point, the conditional electric field
can be calculated &om (29) and compared to the exact
result of Sec. III. The conditional electric 6eld for the
kangaroo process is found to be

In this spirit we consider a suggestion of Ref. [6] for an
approximation to the joint distribution

Q(~, &, e', 0) = o. '(t)e')Q([e —&(&)e')]/o(&)e'))Q(e').

(32)

n(o~e') =0, a(ooze') = l.

Otherwise it can be chosen arbitrarily. This parameter
electively gives the time scale for the transition to the
equilibrium state. A physically reasonable and simple
choice ls

A(t ~e) = (I —exp[ —2v(e)t]) (34)

where v(e) is determined from the definition (30).
With this form, (32), (34), and (30) become exact for

the special case v(e) =const and the process is assuined
to be Gaussian-Markovian. The present results are a
plausible extrapolation of this functional form to the case
of field dependent v(e).

With the quantities Q(eQ, C(t), and C(t
~

eg known ex-
actly &om the statistical mechanics for the system of non-
interacting particles, they can be used to determine (32)
and (34) with no free parameters. The result provides a
practical means to study any two time property involv-
ing electric field dynamics at a neutral point. We intend
to compare the predictions of this model with computer
siinulations of Q (e, t, e ', 0) in a future investigation. An
important shortcoming, however, is that (32) does not
appear to be associated with any Markovian process so
it provides no insight into multitime field dynamics.

V. DISCU SSION

This gives the exact conditional electric field F(t [e ') and
consequently C(t) as well. To obtain the correct long
time stationary solution and the correct initial values of
(6), the function u(t

~

e') must have the properties

1.2

0.8

C(& ( c) 0.6

0,4

0.2

0—
0

FIG. &. Conditional electric field C(t
~

e) at e = 1 and
screening length o. = 1: exact (curve 1) and from Eq. (31)
(curve 2).

The idealized model for electric field dynamics pre-
sented here is sufFiciently simple that any desired prop-
erty can be reduced to quadratures. This has been illus-
trated. for the conditional electric 6eld that characterizes
the nonlinear response of the Geld to an arbitrary initial
value. The results for this model constitute the only in-
formation presently available about electric 6eld dynam-
ics beyond linear response, Grmly based in statistical me-
chanics. Furthermore, it has been demonstrated that the
idealization of independent particles does not prohibit ex-
trapolation of the properties for this model to those for
real plasmas with interactions. The limited comparisons
with computer simulation presented here indicate quan-
titative agreement in all cases considered, over a range of
plasma coupling strengths.

An important application of electric 6eld dynamics is
to atomic radiation problems, where the variation of the
Geld over the time for emission or absorption of a pho-
ton determines the spectral line shape. The conditional
electric field provides the relevant information for this
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variation and indicates diferent characteristic correla-
tion times for each initial Geld. In principle, the line
profile can be calculated for each chosen initial Geld fol-
lowed by an average of the profiles over the ensemble for
initial fields. This is an example of a highly nonlinear
dependence on the Geld dynamics that is not captured
by the Geld autocorrelation function. Furthermore, the
results of Sec. III show the decay of the initial Geld can
be quite complicated, with very slow decay at short times
and algebraic decay at longer times; it is never well ap-
proximated by simple exponential decay with a single
characteristic time.

The model admits an exact analysis and therefore pro-
vides a benchmark for comparison of more realistic, but
approximate, many-body methods. It is also important
for testing stochastic models for electric field dynamics.
As an example of this, we have shown in Sec. IV that the
kangaroo process does not lead to a realistic conditional
electric Geld even though it uses the exact stationary dis-
tribution and field covariance. Stochastic models are very
useful for complex applications and as a way of extracting
only the relevant physics. It is an interesting question as
to whether a sufBciently simple Markovian process can be
constructed that represents well the statistical mechanics
of the independent particle model. The discussion here
has been limited. to electric Gelds at neutral points. Its
relative success suggests consideration of the same model
for fields at a charged point. The only difference is that
the trajectories become hyperbolas rather than straight
lines. This poses no serious complication in the analy-
sis and we plan to present the corresponding results in a
future paper.

&om the generating functional G[A] defined by

exp(G[A]) = exp i dtA(t) E(t)

where A(t) is a test function and E(t) is the microsopic
electric field defined in (1). The angular brackets denote
an ensemble average

(Y) = f dxr d xpx( —x,rx, )px( —.x, rx,).x(A2)

Here x; = (r, , v;) denotes both the position and the ve-
locity of the ith particle at t = 0 and p(xi, ..., x~) is the
probability density for the microscopic state (xi, ..., x~).
For the system of noninteracting particles considered here
it is taken to be of a product forin (no initial correlations)

p(*i, ",xiv) = p(x') dx, p(x;) = 1.i i (A3)

= (bE, (t, ) .bE (t )) .
bG[A]

(A4)

All multitime correlation functions can be calculated
from (Al) by suitable functional difFerentiation
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More generally, the average of any functional of the elec-
tric field (E[E])can be determined by functional Fourier
transformation of exp(G[A) ). In this appendix it is shown
that the calculation of G[A] for any state of the form (A3)
can be reduced to a one-particle average.

The electric field in (Al) has the form

APPENDIX A: STATISTICAL MECHANICS E(t) = ) e(r;(t)) = ) e(r;+i);t), (A5)

Any property depending on the electric field E(t) his-
tory for the time interval 0 ( t & T can be calculated so that (Al) reduces to

exp(G[A]) =
N ( 2

dx; exp i dtA(t) . e;(r;(t)) p(x;)
)

N (.1+ dx, exp
~

i dtA(t) e;(p;(t)) —1 p(x;))
i=1 ( ~

~

(1+N N dx exp i dtAt . e r t
~

—1 px
0

T
~exp N dz expli dtAt -e r t

~

—1 px
)

(A6)
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The last equality holds for large %, leading to the identification

T
G[A] = ttt f dx exp i dtA(t) . e(v) ~

—A p(x).
0

This derivation is sensible only if (A7) becomes independent of N in the limit of large N. For the example considered
in the text, the equilibrium state is

p(x) = V (Pm/2vr) ~ exp( —Pmv /2)—:V P(v) (AS)

and (A7) becomes

G[A] = n drdvrtt(U) exp i dtA(t) . e(r + vt)
~

—1
0

(A9)

where n—:K/V is the number density. Clearly, G[A] is intensive for large N, V. In summary, (A9) illustrates that
any property of the electric field dynamics can be reduced to quadratures for the simple model considered here. The
many-body problem has been treated exactly, as expected for noninteracting particles. The anal analysis for a given
property still may be complex, but the results are numerically accessible.

The one- and the two-time generating functions considered in Sec. II are obtained &om (A9) by the choices A(t) -+
A8(t —ti) and A(t) -+ Aib(t —ti) + A2h(t —t2), respectively,

G[A] t G(A) = vf dvdvd(v) {exp[iA. e(e+ t ) —v1]v)

= n drdv v expiA. e r —1 (A10)

G[A] +G(A&, Ae, te —-tv) = vf dvdvd(v) (exp[vAt
. e(v+ Vte) + tAv

. e(p+ et, )] —t)
= n drdv v exp iA2 e r+ v t2 —ti +i%i e r —1 (A11)

The secoiid equalities of (Alo) and (All) follow from
the change of variables r —+ r+vt (expressing time trans-
lational invariance for the equilibrium state). These are
the results used in Sec. II.

to the result

q(E) = (2e /7r) dAA j (Ae)e
0

APPENDIX B:DETAILED RESULTS G(A) = aAete d»e (tv[a(eve)gee] —t), (itt)
0

In this appendix the general expressions for the distri-
bution of field values Q(eg, the distribution of field deriva-
tive values P(rI), the autocorrelation function C(t), and
the conditional electric field F(t ] e) are reduced to simple
integral forms suitable for numerical evaluation.

jp(x) = sin(2:)/x.

2. Distribution of field derivative values P(vy)

1. Distribution of Beld vahies Q(s)

According Eq. (21) it is sufficient to consider the dis-
tribution of field magnitudes, given by q(e) = 4m' Q(e).
The corresponding dimensionless distribution is q'(c*) =
epq(e), with e* = e/ep. In the following it will be under-
stood that only the dimensionless quantities are consid-
ered and the asterisk @rill be deleted. The angular inte-
grals of (2) and (13) can be performed directly leading

Again, &om spherical symmetry, it is sufBcient to con-
sider the distribution of magnitudes of the field deriva-
tives p(g) = 4nrj P(g) The corre.sponding dimensionless
quantity is li'(rl*):—rIpp(rl), with rip = ep/tp. The angu-
lar integrals of (9) are performed, giving (again dropping
the asterisks)

p(tt) = (2tt*/v) f d j [ AA)e' eiAttt
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J(A) is calculated &om the second equation of (9) and
(14),

J(A) = lim G —,——;t
&~0 ~t t

= tive(q/qx) f drdvd[v)(exp(i A
. [e(r + vt)

t —+0

$. Field autocorrelation function C(t)

The field auto correlation function is defined by
Eq. (10) and the dimensionless form is C'(t') = C(t)/eo,
with t = t/to and to = ro/u. Then, using (14) in this
definition leads to

-e(™)]/t) 1) t (t) = (q/qx) f dr dvd [v)e(r + vt) . e(r). (B9)

= (q/qx) f drdvd(v)[exp[iv . g(&, r) —t]), (B5)
To evaluate the integral, express the single-particle fields
in a Fourier representation

where j(A, r) is defined by

e(r) = (qx) f dke * '"qxk(k + ee ) (B10)

g(A, r) =/(r)r '(5+i(r i) 3+ re're/(t+eer) ).
(B6)

The velocity integral can be performed in (B5) to give
the final result (iii units ro ——eo ——1)

This allows the velocity and the angular coordinate inte-
grals to be performed, with the result

C(t) = (12/vrt) dxx (x + n t /4) e (Bll.)
0

J(~) = 3q' 6 A'A(q) l ( 4~
2 q 4 p gA'E3 q

(~pa(q) &

)
where

(B7)
C(t) = (6/v/art)F(nt/2),

Il (x) = 1+x' —ver(-', + x')xe* erfc(x). (B12)

Here erfc(x) denotes the complementary error function.

It may be verified that this is equivalent to the result in
Ref. [5] (using an integration by parts),

A(q) = q e ~(1+nq),
H(q) = q e ~(3+ 3nq+ n q )(1+nq+ n q ). (BS)

In the Coulomb case (n = 0) the integration in (87) is
performed analytically to yield (17).

4. Conditional electric field 8'(t
] e)

From (24), (12), and (14) the dimensionless scalar
function determining Z(t

~
eQ is given by

C(t le) = e. (&(t)~(e —&))/Q(e)"
= [q/q(e)](qx) f dAe ' +t"t f drdvdp'(v)e . e(rJ)e'"'t"+e t

= [q/q(e)](qv) f dAe i t f drdvqi(v)e. e(r —vt)e'" Pt"t' (B13)

The field e(r —vt) can be given a Fourier representation
and all angle integrals performed by spherical harmonics
expansions. The resulting final expression is

C(t~a) = 3[4vr Q(e)] dAA ~ e ~ lji(Ae)y(A),
0

(B14)

where

V (&) = dA' '~((&/&)'~' t)ji[]!f(n(&/]!)")]
0

0(r, t) = f(nr) dxe
—7/t

+f(— ) d* '* * —(2/t)
7/t

(B15)

where f(x) is defined in (83) and ji(x) = x 2[sin(x)—
x cos(x)] is the spherical Bessel function of order 1.
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APPENDIX C: SINCLE-PARTICLE FIELDS

In this appendix dynamics of Gelds due to a single
particle are considered. In the limit of large Gelds and
short times the corresponding properties agree with those
of Appendix B for the total field [8]. Otherwise, these
single-particle Geld properties only provide some qualita-
tive guidance for interpreting the results of Appendix B.

qa(e) = 4Fe QI(eg—:4Fe N(h(e e—(rl)))
= 3R'(&) ( ] ~. [f'(&)I&'] ] =R(.

& ) '
(C1)

where R(e) is the solution to e = f (R)/R F.or distribu-
tion of field derivative values PI(eg,

The calculations are straightforward, so only the results
are quoted. For the distribution of field values Qi(e},

pl(rl) = 47rrI PI(II)—:4FrI'N(b(r7 e(I"'I))—)
OO / R2= 6F'~'&' dR erf ZR

(&(R)) A'(R) [A(R) + B(R)]QZ(R)
(C2)

where

A(R) = f (R)/Rs, B(R) = R f(R)/R

B(R)Il'[2A(R) + B(R)]
Az(R) [A(R) + B(R)]2 '

With the assumed boundary conditions v(0) = 0 and
v(oo) = oo. This shows that C(t) is the Laplace trans-
form of the function of v defined by the square brackets
on the right-hand side of (Dl). The Laplace transform
can be inverted to obtain an equation that determines
v(e) in terms of the inverse transform of C(t) [2,7],

For the field autocorrelation function CI(t),

Ci(t) = N(e(ri(&)) e(rl)). (C3)

vt—4Fe Q(e) = e"'C(t.)

clap

--+'9 2~i

Integrating this equation gives

(D2)

This is the same as (B9},so CI(t) = C(t) given by (Bl1)
or (B12). For the conditional electric field tl(t

~
e),

~I(t1 e3 —= N(e(r(t))S(e —e3)/Q(e3 = CI(t ]e)e (C4)
CI(&] e) = Ne . (e(r(&))b(e —e})/Q(e)e', (C5)

R/t
Ci (t ] e} = (4F/crt) dvvQ(v) slnh(cltv)

+(47r/cl'teR ) [slnh'(cIR) —CIR cosh(crR)]

x dvvg(v)e
R/t

OG+gf7

d 4elFeQ(ei) = t' (e"' —1. ) C(t).
0 ~+~g 2x'z

8t ~t2 ~~~ B2 ~
~

F
e ' e dt = .e' ~ erfc(s/2). (D4)

After some algebra we And

The right-hand side is now evaluated using the explicit
form (B12) for C(t). This is facilitated by using the iden-
tity

APPENDIX D: EVALUATION OF THE
KANGAROO EXPONENT

The exponent v(e) for the kangaroo process is defined
by Eq. (30). To determine v[e) &om this equation it is
convenient to perform the angular integrals and change
the integration variable e to v(e),

de14Fe, Q(el) = 61 (e) 3n (I (e) )

E~)
+ exp]—3~(e) f ~ (e) l

vr ( n2 (D5)

c[t) = f du[~~'4ma4Q[e)]e

Since Q(e) is known, the left-hand side can be calculated
as a function of e and the right-hand side inverted to Gnd
v(e).
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