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Generally covariant relativistic anisotropic magnetohydrodynamics
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We derive generally covariant hydrodynamical equations for a plasma with an anisotropic pressure
in the external electromagnetic field. The equations are formulated in terms of the variables de6ned
in the local plasma rest frame, in which the electric Geld vanishes. Generally covariant generalization
for the equation of state is derived, which reduces to the Chew-Goldberger-Low [Proc. R. Soc.
London, Ser. A 236, 112 (1956)] form when the plasma temperature is nonrelativistic in the plasma
rest frame. Various ultrarelativistic limits are analyzed. The obtained equations are applied to the
simplest monopole geometry of the relativistic stellar wind and to the analysis of the linear waves
in the limit of geometrical optics.

PACS number(s): 52.60.+h, 52.30.—q, 47.75.+f

I. INTR.ODUCTION

It is widely accepted that the study of collisionless
relativistic plasmas in strong magnetic fields is essen-
tial for the understanding of the physics of various as-
trophysical objects, such as pulsar winds, relativistic
jets, active galactic nuclei, etc. Relativistic hydrody-
namics is probably the most convenient way to describe
the slow and large scale motion of such a plasma. In
most models of plasma hydrodynamics the simplifying
assumption of pressure tensor isotropy is used (see e.g. ,

[1]). Although this approximation is quite reasonable in
collision-dominated situations, it may be violated in a
collisionless plasma with an imposed strong magnetic
field, where there is no mechanism that could effectively
ensure the energy redistribution among the parallel (with
respect to the magnetic field) and perpendicular degrees
of freedom. One can expect that in such systems the
plasma pressure will not be isotropic.

The nonrelativistic limit of the anisotropic plasma the-
ory is well known [2]. This Chew-Goldberger-Low (CGL)
theory predicts different equations of state for parallel
and perpendicular pressure. Earlier generalizations of
CGL theory onto the case of relativistic velocities and
temperatures were obtained by the direct application of
the covariance principle [3,4] with some guess of the state
equation, or by consideration of the tvarm plasma [5,6],
which in fact corresponds to the nonrelativistic limit in
the plasma rest kame.

Recently, relativistic generalization of CGL has been
developed for Minkowski space [7] by taking the momenta
of the Vlasov equation and applying the gyrokinetic ex-
pansion in the lowest order. The state equations were
obtained, which can be reduced to the ordinary CGL
state equations in the nonrelativistic limit.

Relativistic collisionless plasma is expected to be
present in the vicinity of compact massive objects, such
as black holes, and also at early stages of the universe
evolution. Although there is no direct evidence that
these plasmas are embedded in a strong external mag-
netic field, it is reasonable to think that such magnetic

fields play a significant role in the plasma confinement
in the equilibrium and also determine many of the wave
properties and stability features. It is, therefore, nec-
essary to generalize the anisotropic plasma theory onto
generally relativistic cases also.

In [8] the results of [7] were reproduced for a plasma
in a Kerr metric. That was achieved by an explicit
3+1 splitting of the space time and a definite choice of
orthonormal tetrads for the so-called general comoving
frames (GCMF). The derivation is based on the assump-
tion that the three-electric-Geld vanishes in the chosen
GCMF. On the other hand, the anisotropic plasma hy-
drodynamical theories, both nonrelativistic [2] and rel-
ativistic [7], are essentially local in the sense that the
state equations are written in variables defined in the lo-
cal plasma rest frame, so that the state of plasma "here
and now" should not depend on what happens at global
scales. Therefore, the very possibility of the splitting or
global definition of GCMF should not be essential for
the formulation of the generally relativistic (anisotropic)
magnetohydrodynamics, which can be cast in a com-
pletely covariant form. This underlying idea that the
local magnetic field determines the plasma anisotropy re-
quires development of a local generally covariant theory
of hydrodynamics of plasma with anisotropic pressure.

In the present paper we develop a generally relativis-
tic generalization of the anisotropic hydrodynamics for a
plasma in a strong magnetic field, based on the "locality
principle. " We show that the generally covariant equa-
tions can be formulated in a frame-independent form,
without any assumptions about the metric. We also de-
lve the distribution function in the axially symmetric
form instead of postulating it (cf. [8]).

The paper is organized as follows. In Sec. II we make
an invariant kame-independent splitting of the electro-
magnetic field tensor. The energy-momentum tensor of
the electromagnetic field is further expressed in terms of
the invariant magnetic field. In Sec. III we derive the
distribution function from the Vlasov equation for the
plasma in a strong magnetic field in the curved geome-
try, and obtain the basic hydrodynamical equations. In
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Sec. IV the state equations for anisotropic plasma are
obtained in a most general form. Various limits are dis-
cussed. In Sec. V we apply the obtained results to the
simplest case of the monopole relativistic stellar wind and
consider ultrarelativistic limits. In Sec. VI we present
the dispersion relations for the magnetohydrodynamic
(MHD) waves obtained in the short wavelength limit of
the geometrical optics.

write the electromagnetic tensor in the following form:

F""= 2e~"P~(UpB~ —U~Bp)
= 2e""P~B(Upn~ —U~np).

In any other kame that is determined by the four-
velocity U" the corresponding electric and magnetic
Gelds are

II. INVARIANT ELECTROMAGNETIC FIELD
SPLITTING

We assume that the description of the plasma can be
reduced to one-Quid magnetohydrodynamics (problems
that arise in these reduction procedures from the multi-
8uid description to the one-Huid one are described in [9]).
In this case the plasma motion is described by the set of
MHD and. Maxwell equations,

E„=F„„U"= (e„p~U~U")BP, (9)
B„=2e„„pF" UP = (UPUp)B„—(UPBp)U„. (10)

Equations (9) and (10) are the field transformation
rules represented in the invariant form for the special
case of the electromagnetic tensor in the form (8). Sub-
stituting the electromagnetic tensor in the form (8) into
(2) we obtain the equation of motion in the form (see
also [10,7])

JIJ". 0

Tpl&' /pl/
7

I.& =4~j&,
+p,v; e + +va; p + +up, * v = 0

y

(1)
(2)
(3)
(4)

where

T"=(Tg. + T,","), = 0,

T" = (2U"U" —g"" —2n"n ),
B2

el (12)

where J~ is the mass Bow density, j" is the current den-
sity, E„ is the electromagnetic tensor, T~" is the plasma
energy-momentum tensor, and a semicolon denotes the
usual covariant derivative. In what follows we adopt a
positive metric signature, i.e. , (+, —,—,—). We also use
the natural units in which c = G = 1.

The electromagnetic field tensor E" can be decom-
posed in the usual way [10]. Namely, let U" (x~) be a
four-velocity field, U"U„= 1. Then E~ = E„U and.
B„= (1/2)e„„pF UP are the electric and magnetic
6elds, respectively, in the frame moving with the four-
velocity U~. Here e„p is the completely antisymmetric
four-tensor, o ei=2s~lgl w"ere lgl = det

I lgl I.
Both E~ and B~ are spacelike: E"E„=—E & 0,

B~B~ = —B & 0, and orthogonal to U": U"E„
U"B„=0.

The electromagnetic tensor can be expressed in terms
of E& and B~ as follows:

(@PU F UP) + eP W'(UpB U Bp) (5)

The electromagnetic invariants take the following form:

(U"B"—U B"), =B(U"n".—U"n").„
+(U"n" —U n")B,

=0

We shall use also the relations

n n".„=U U." =0,P;u P U„n". = —n„U.", (i4)

which follow from the conditions U~U" = 1, n~n" = —1,
and U„n" = 0.

III. GENERALLY COVARIANT
HYDRODYNAMICS

is the electromagnetic energy-momentum tensor, T& is
the Quid energy-momentum tensor, and T" is now the
total energy-momentum tensor. The spatial part of the
electromagnetic energy-momentum tensor reduces to the
usual MHD magnetic stress tensor in the nonrelativistic
limit U" m (1,0, 0, 0), g„„m (1, —1, —1, —1).

The Maxwell equation (4) takes the following form:

—E""E„=B„B"—E„E"= E —B,

Bearing in mind magnetohydrodynamical applications
we shall consider the magnetically dominated case B )
E when there is no electric field. along the magnetic field
E'~B'~ = 0. The last condition means EB = 0 in the
three-dimensional form.

In this case one can find a frame where E„=0. With-
out loss of generality we may assume that the chosen U~
corresponds to the frame, where electric Beld is absent.
Introducing the unity vector in the direction of the mag-
netic field n„= B„/B, n„n" = —1, n„U& = 0, one can

We assume that the plasma is collisionless. In this
case the distribution function f (for each plasma species)
satisfies the relativistic Vlasov equation, which we write
in the following form:

Of e „ „ Ofu~ + —I"~ u„ - r" u u' =0,
Bx& m "~ gu&

where u& is the particle four-velocity, u~u~ = 1, I'
& is

the ChristoÃel symbol and

f = 2fob(u"u„—1)0(u ).
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Here the Dirac b function makes the distribution function
f nonzero only on the mass shell ui'u„= 1, while the 0
function picks up future directed velocity.

The corresponding hydrodynamical series is obtained
by multiplying (15) by u", u"u", u"u"u, . . . , with sub-

sequent integration over the invariant volume g[g~d u in
the four-velocity space [11]. The equations for the first
three momenta read (cf. [7])

J.~ =0,iP

T." = —J F"
m v )

g~pv ~
& (p»Tps + @pity ~r

)

(17)
(»)
(19)

The procedure of reduction of these multifluid equa-
tions to the one-fluid set and the conditions when it is
possible are described in [9]. Here we simply assume that
this reduction is already done. In this case, Eq. (18)
transforms into Eq. (2) while two others remain un-
changed. The only difference is that now J~, T~, S ~"
are the total fiuid mass flow density, energy-momentum
tensor, and heat flux four-tensor, respectively.

These momenta themselves are defined as distribution
averages

J"= m(u"), T""= m(u"u"), 8 P" = m(u upu"),

ing invariant decomposition is used:

u~u~~
ug

PCi C2~

U + ulln + u&, u~U„= u~n„= 0,p P P P

2—ug)
BJ ('ei cos P + e2 sin P),

= 0.

(24)
P P

Cg Ci~ = 82 62~ = —1,
(25)

Of course, since ut'u„= u~ —
uII

—u& ——1, uq is not an
independent variable.

The invariant volume in the velocity space now can be
written as

s p~gduoduidu2dus = s p~gU n eie2dugdu~~uzduzdgn P g 8 a p 7 b

=
dBgdB~~ "(JgdBgdp, (26)

Now the mass flow density can be written as

J~ = m(U~(u, )+ n (u~~)), (28)

and is not parallel to the four-velocity U" unless (u~~) = 0.
The Quid velocity U" = J"/gJ& J„now is

and

2~~g~d'~b(u"u„— 1)~(u') ~ u& '~J du[[dnJ d4~(n~).

(27)

with the following averaging prescription

(»(~")) = f v'Ia~l &'~f»

(20)
U" = (U" (uq) + n" (ull))/V (u~) (ull) (29)

The transformation rules (9), (10) immediately give
the fields in the Buid rest kame E~ = 0 and

This averaging requires knowledge of the distribution
function f We shal. l specify the distribution function
in the MHD approximation, in which the inhomogene-
ity scale is assumed to be much larger than the particle
gyroradius, while the time variation scale is assumed to
be much larger than the gyroperiod. For the relativistic
particles this approximation can be written qualitatively
as follows:

8„=a((u, )n„+ (uii)U„)/ (u, ) —(~ii)'. (30)

Since E~ = 0 we inay assume (without loss of general-
ity) that (u~~) = 0 and U" = U". More specifically, we

assume that f = (1/27r) f()(u~~, u2&). Then all the cross
correlated terms oc (u~~uq), oc (u~~u~), oc (u"uq), and

Let us de6ne a projection operator

OL &&u, B~ && 1 I'/0 && 1, (22) Pgv = ggv —U„Uv + n„nv

where 0 = qB/m (we work in natural units c:—1) is
the charged particle gyro&equency, L and w are typical
spatial and temporal scales of the plasma motion, u = 1
is the typical particle velocity, and I' is the typical value
of the Christoffel symbol.

The last condition imposes constraints on the grav-
itational field strength. It can be violated in strong
gravitational Gelds, e.g. , near the horizon r rg in
Schwarzschild metrics, where I' oc r~/r(r —rs). A more
exact general condition cannot be obtained and in each
specific case the validity of the approximation should be
verified separately.

In the MHD approximation the Vlasov equation (15)
takes the following form:

s"" P(n Up —U np)u„- = 0,
Ou&

with the features

Ppv P = Pp~) Ppv U = Ppv n . (32)

T" = m(u"u") = (e+ p~)U"U" —p~g"
+(p(( —p~) n"n",

where

pg = m-,'(u~), p(( = m(u((), e = m(u,'), p = m(u, ),

Since u„u U" = u&u n = 0, the symmetry proper-
ties require that (u„u„) oc P„„, and the Quid energy-
momentum tensor takes the following form:

and the solution is fo ——f()(uq, u((& u~), where the follow- and the averaging takes the form
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(X) = f duiiu~d1lJ Uj Xfo(1Iii It ~)
where internal energy density e = pe(p, B), and pressure
is related to the internal energy as follows:

Similarly, for the heat Hux tensor one has

S" = (p+ qII + q )U"U"U + qIISy (U" "
)

qi —Sym(U"P ), (36)

where

qll ™('

Substituting the obtained expression for the energy-
momentum tensor into (11) one has eventually

TPV
B'i „„ I' B'

e + p~ + U"U" — p~ + g""
47r ) ( 8' )

Pll
—P~ — n"n

4~)
)V

= 0, (39)

where T" is the total energy-momentum tensor for
plasma and magnetic fields.

One can see that the derived equation can be obtained
&om its analog in special relativity [7] by direct substi-
tution of the ordinary derivative to covariant derivative,
when the proper ensemble averaging procedure (21), (35)
is applied.

IV. STATE EQU'ATION

The obtained set of Eqs. (1), (13), and (39) requires a
closure in the form of a state equation. In the simplest
isotropic nonrelativistic case this state equation is found
in the form p = p(p) from the energy conservation equa-
tion. In our case the corresponding equation is obtained
by taking a projection of the energy-momentum balance
equation (39) onto the How velocity direction U)'. Let
D = U"0~ be the usual convective derivative. Then the
continuity equation (1) gives

and Sym denotes symmetrization over indices as follows:

Sym(A~B" C~) = A"B C~ + B"C"A~ + C"A B~

(38)

2 Oc
pll Bp

Be
p~ =

pll + pB~B

The state equation can be written in an another useful
form as follows:

d(~/p)

p d ln(p/B)
'

p~ d(c/p)
p d lnB

(44)

(45)

p~/pB = const, pIIB /p = const, (46)

generalize the isotropic state equation p = p(n) onto the
nonrelativistic anisotropic case. It is worthwhile to note
that the CGL form of state equations (46) is recovered
as a special case of (42) when

p2
~ = p 1+kg +k2B

)
(47)

where the coeFicients ki and k2 are constants.
Multiplying Eq. (19) by n np, after some simple alge-

bra one obtains (cf. [7]; in [8] this relation is lost)

D = 0, ~ = const.
p3 p3 (48)

Multiplying Eq. (19) by U Up and taking into account
(48) one has

In agreement with the "locality" and covariance princi-
ples the generally covariant state equation has the same
form as its analog in special relativity [7].

One can easily see that in the isotropic case pal
——p~ ——

p the internal energy becomes a function of p solely and
the state equation p = p(p) is recovered.

The state equation (42) determines actually a class of
state equations that are compatible with the relativistic
hydrodynamical equations for the anisotropic plasma. It
is a generalization of the relativistic isotropic state equa-
tion onto the generally relativistic anisotropic case in the
same sense as the nonrelativistie Chew-Goldberger-Low
[2] state equations

U." = —Dlnp.)P
q~qll = const,

p5
= const.

pB
(49)

Another useful relation is obtained by projecting (13)
ento n„direction and using (40),

n"n„U"„=D ln(p/B). .

Ep
(42)

Projecting (39) onto U„and using (14), (40), and (41)
after very easy algebra one arrives at the following state
equation:

Equations (48) and (49) look exactly as the CGL state
equations (46) with the only substitution p ~ q. How-
ever, they cannot be considered as a generalization of the
state equation because of the substantial difFerence be-
tween p and q. Indeed, let us consider an isotropic case
pal

——p& ——p. In this case also qll
——q~ ——q. Equa-

tion (48) implies q oc p /B, while (43) shows that the
pressure and internal energy do not depend on B at all.

On the other hand (49) gives q oc p ) s in the isotropic
case both in the nonrelativistic and ultrarelativistic lim-
its. At the same time it is easy to see that p oc p / in the
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nonrelativistic case, but p oc p / in the ultrarelativistic
case. We, therefore (in contrast with [8]), consider (42)
and (43) as a most general form of the state equation for
an anisotropic plasma. On the other hand (48) and (49)
are useful in the determination of the state equations in
various limits.

As an example of the application of the obtained ex-
pressions we consider a two-parametric distribution func-
tion of the form

(50)

[I2]).
In the opposite case A~ && All )& 1 and one obtains

3 P
pll ~ AllA B5 2

p~ ~ AllA' ~ ~B'/',
oc AllA~ ~ PJ

3

(62)

(63)

(64)

This case may be relevant if the plasma is strongly
heated in the perpendicular direction due to a rapid mag-
netic compression.

The momenta take the following form:

P —AllA~ 2d yd 2 y)

II

pl~
——AllA~ 1+ All ~ + A~ 2 2d qd 2

(52)

V. CENERALLY RELATIVISTIC
STELLAR WIND

As an example of an application of the obtained hy-
drodynamical equations we shall derive a set of How con-
stants (see e.g. , [13,14]) for a generally relativistic stellar
wind with anisotropic pressure. We assume a spherically
symmetric metric of the form

= gtt(r)dt —g„„(r)dr2 —ggg(r)dg2 —g~~(r, g)dy2

PL II 3- +
ll 1 + J 2 2d 1~ 2 i) 2 )

(54)

]

qJ —All A~

where we switched to the integration over the dimension-
less variables $i ——u~~/A~~, (2 ——ui/A~. One can see that

this case p ~ AllA&' qll ~ AllA&' and q& ~ AllA

Substituting this into (48) and (49) one immediately has

Ai oc v B, Aii oc p/B.

in the spherical coordinates (note the notation where the
sign of g„ is now given explicitly). We also assume time
stationarity. We shall analyze only the equatorial plane
where a monopole magnetic 6eld geometry can be as-
sumed [13]

B"= (B',B', 0, B~), v~ = (v', v, o, v~), (65)

and all variables do not depend on 0. The condition
B„U"= 0 requires

g„B'U' —g„„B"U" —g«B~U~ = 0.

let us consider the simplest case B@ = U~ = 0. In
this case (66) immediately gives

pii oc AiiA~ oc p /B, p~ oc AiiA~ oc pB) (58)

The energy and pressure do not have such a simple form
in the general case. However, it is easy to verify that
Eqs. (44) and (45) are satisfied automatically when sub-
stituting d/din(p/B) = d/dlnA~~, d/dlnB = 2d/dink~.

Great simplification can be made in several limits.
In the nonrelativistic case (in the plasma rest frame)

All, A~ (( 1 one has

(67')

lj2
i( gtt

Eg-) (68)

and taking into account the de6nition B' = —B"B„,one
obtains

2

pll All A

p ocA~ ocB,
2 2

AllA = pll.

(60)
(6I)

which are the ordinary CGL state equations in the form
(46).

In the ultrarelativistic limit when All » A~ && 1

The continuity equation (1) reduces to

~~g]pv" = const,

where ~g~
= gttg„~ggggyy In a similar way. (13) gives

gigi(B"U —B U") = const

B(gggggp) ~ = const,

(69)

(70)

This case is typical for pulsar magnetospheres, where
the transverse momenta are rapidly radiated. out due to
synchrotron radiation in a strong magnetic field (see e.g. ,

where we have taken into account the relations (67) and
(68). In the equatorial plane of the Schwarzschild metric
ggg = gd, y = r and Eq. (70) takes a simple form
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r B = const,

g«V I~IT" = g«V lglU'U" (e+ p()) (71)

I et us consider the parallel pressure dominated case,
in which (see above) e

p~~
oc p /B. Combination of the

derived constants easily gives

which looks like the ordinary r dependence of the radial
inagnetic field [13]. It should be noted, however, that
our B is the magnetic Geld in the fluid kame. The dis-
tant observer's magnetic Geld is obtained with the help of
the transformation rule (10), where U" = (g~~ ~, 0, 0, 0).
Taking into account the relations (67) and (68) one finds
B' = 0, B = B/gg«.

The t component of (2) gives after simple transforma-
tions

waves in the relativistic plasma in the framework of the
(specially) relativistic anisotropic MHD has been done in
[15]. The generalization of the analysis onto the gener-
ally relativistic case requires separate investigation since
it is significantly complicated by (a) problems of the equi-
librium state determination, (b) inhomogeneity due to
I'"„g 0, and (c) perturbations of the metric. In the
present paper we consider the case when the plasma and
magnetic Geld energy density are not large, so that one
can neglect the metric perturbations. The diKculties (a)
and (b) are avoided by consideration of the waves in the
limit of the geometrical optics.

Namely, let the plasma variables be disturbed by bp,
bB, bU", and bn". We assume that the coordinate de-
pendence of these variables is oc exp ill O(x"), where

g && 1. In this case

U i/g«/U i/g = const

and taking into account the normalization gttU U
g„„U"U"= 1, one has

[exp irI 8(x")],„= + I' exp ill 8(x")
)

ik„"
exp ill 8(2:"),

rl

U. ~ (g,.)-'~2, U' ~ (g«)-'~' p oc 1/v g«geegypi

(72)

(73)p[] oc 1/giga/geegyy, p~ oc B oc 1/geegyy.

In the far zone of the Schwarzschild geometry the main
dependence is gee oc g@y oc r, and one has

where k&
——0 „and we assume I'~ O(l). It is easy to

see that in this short wavelength approximation all co-
variant derivatives should be substituted by ik„and the
equations for perturbations take the same form as in the
specially relativistic case. The derivation is straightfor-
ward and we refer the reader to [15] for the details. The
resulting dispersion relation will take the following form:

U const, p oc pll oc B oc r

p~ oc F, p~/pii oc t, pii/B oc T

(74)

(75)
V VA COS 02= 2 2

for the intermediate (Alfven) wave, and
The last two relations show that the fluid remains "trans-
versely cold" and that the ratio of the kinetic to magnetic
pressure rapidly increases.

In the case of the perpendicularly dominated pressure
e —p~ oc pB / one obtains

v —v [(v, + v~) cos 0 + v~ sin 0]

+ cos 0[v, (v~ cos 0 + v~ sin 0)
—v, (1 —v~) sin 0] = 0

(80)

U oc (geegyy) /g«.
for the fast and slow magnetosonic waves. Here the fol-
lowing notation is used:

In the far zone of the Schwarzschild geometry U oc r,
in this case one has

U'm (geeggg)'~4/(g«g„„)'~' ~ r,

poc (geegyy) oc F

p~~ p~, ~ B' ~ 1/(gee», ) ~.-'.
(77)

(78)

One can see that the pressure decreases rapidly with
the increase of r, so that one can expect that the
plasma temperature quickly becomes nonrelativistic in
the plasma rest kame.

kcos0

V 8

V2t

(u/k, ~ = k„U",
kp n

Bp((/oj ln p

'+Pll
Bp~/8lil p

e+ P)l

k =~ —k k",P

p~ —
p~~ + (B /47r)

e + p& + (B'/4~) '

(Bp~/8ln B) + (Op~/0ln p) + (B /47r)
~ +p~+ (B2/4~)

(82)

(83)

(84)

(85)

VI. LINEAR VfAVES

The fully covariant formulation should be especially
useful for the analysis of the small amplitude pertur-
bations and comparison with the nonrelativistic results,
since this analysis is usually carried out in the plasma
rest frame (where B is de6ned). Such an analysis of the

It is worthwhile to notice that the intermediate solu-
tion (79) is unstable (firehose instability), when p~~

—p~ )
B2/4m As we have .seen above in the parallel pres-
sure dominated wind the ratio p~~/B oc r monotoni-
cally increases and becomes large. Therefore, the paral-
lel pressure dominated wind always achieves the point of
Brehose instability, where the wind should be efhciently
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isotropized.
A more detailed analysis of the dispersion relations, as

well as consideration of the deviations from geometrical
optics and/or metric perturbations, are beyond the scope
of the present paper.

VII. CONCLUSION

In the present paper we have derived generally co-
variant hydrodynamical equations and the correspond-
ing state equations for an anisotropic plasma in a strong
magnetic Beld. We assumed that the plasma can be de-
scribed in the framework of one-fluid hydrodynamics, and
that it is magnetized. The last assumption implies that
the electric field in the plasma rest frame should be ab-

sent. We have shown that generalization of hydrodynam-
ical equations onto the generally relativistic case can be
obtained &om the corresponding equations of special rel-
ativity [7] by direct substitution of ordinary derivatives
to covariant derivatives. All Quid and thermodynamical
variables, such as density, pressure, and internal energy
density, are defined in the plasma local rest &arne in the
invariant way. Most general state equations are derived
which are a generalization of the CGL state equations
onto the generally relativistic case. The exact CGL form
of equations is recovered when the Quid temperature in
the Quid rest &arne is nonrelativistic.

We applied the obtained HD equations to the relativis-
tic wind description in the monopole geometry and found
the wind density, velocity, and pressure behavior in two
ultrarelativistic limits. The MHD dispersion relations in
the limit of geometrical optics are also presented.
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