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Effect of configuration widths on the spectra of local thermodynamic equilibrium plasmas

A. Bar-Shalom and J. Oreg
nuclear Research Center Negev, P.O. Box 9001, Beer Sheva 84190, Israel

W. H. Goldstein
Lawrence Livermore 1Vational Laboratory, Livermore, California 94550

(Received 31 August 1994)

We present the extension of the supertransition-array {STA) theory to include configuration widths in
the spectra of local thermodynamic equilibrium (LTE) plasmas. Exact analytic expressions for the mo-
ments of a STA are given, accounting for the detailed contributions of individual levels within the
configurations that belong to a STA. The STA average energy is shifted and an additional term appears
in its variance. Various cases are presented, demonstrating the effect of these corrections on the LTE
spectrum.

PACS number(s): 52.25.Nr, 32.90.+a

I. INTRODUCTION

The supertransition-array (STA) model for calculation
of atomic spectra under local thermodynamic equilibrium
plasma conditions was presented in Ref. [l] (hereafter
denoted as I). The model accounts for all possible
bound-bound and bound-free radiative transitions. It
divides the set of all accessible configurations into sub-
sets, or superconfigurations. Each sup erconfiguratio
comprises configurations that are similar in energy. The
transition array between two superconfigurations is
represented by a Gaussian distribution of spectral
strength called a supertransition array. Thus a STA can
be considered a collection of unresolved transition arrays
(UTAs) [2,3] where, as is usually defined, each UTA
represents the set of level-to-level transitions between a
pair of configurations.

The first three moments of a STA—total intensity,
average energy, and variance —can be calculated exactly
using an analytic technique that bypasses the direct sum-
mation over all the UTAs it comprises. A convergence
procedure is used [4,5] to successively better approximate
the detailed structure of the spectral distribution. Each
STA is iteratively divided into a number of smaller STAs
as described below. The end point of this process, of
course, is reached when each STA contains a single UTA.
In practice, it is never necessary to carry the procedure
past a few iterations to obtain an excellent approximation
to the UTA spectrum.

In I, the STA moments were calculated neglecting the
energy splitting within configurations, i.e., in the approxi-
mation of vanishing UTA widths. In this case each UTA
is represented by a single line. Recently, several publica-
tions have appeared presenting STA results [4—6] and
comparing with experiments [7,8]. These works have in
fact been based on an improved model that already in-
cludes UTA widths, as well as additional improvements.
However, these theoretical developments have not yet
been presented.

In this paper we present the STA theory accounting

for UTA widths and shifts. This involves deriving the
analytical expressions of the STA moments that explicitly
take into account individual level-to-level contributions
rather than the configuration averages used in I.

In the next section we reintroduce the concepts and
definitions required in the STA model. In Sec. III, we
rederive the STA moments, taking into account the indi-
vidual levels of each superconfiguration, and obtain addi-
tional terms representing the energy splitting within
configurations. Examples with and without UTA width
effects and comparisons with recent experiments are
presented in Sec. IV, showing that the UTA widths and
shifts significantly affect the spectrum. A discussion and
a summary are given in Sec. V.

II. THE BOUND-BOUND SPECTRUM

The spectral distribution $(E) of transition strength
between bound atomic levels gives the probability per
unit length for absorption (or emission) of a photon of en-
ergy E per unit of energy. In the following we will treat
absorption: emission is obtained simply by multiplication
with the Planck function.

The set of bound-bound transitions may be divided into
subsets G such that

&(E)= y&G(E),
G

where

SG(E)= g N;w;JP; (E E;J) . —
i,jEG

X, is the density of atoms in the lower level i and w, . is
the absorption transition probability to level j,

me h
ft& ~

inc

where f;1 is the absorption oscillator strength and
P;J(E E;1 ) is the normaliz—ed line shape of the transition,
centered at the transition energy Ej Ej E,
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JG
——JSG(E)dE = g N;w;J,

i j EG
(4)

fSG(E)EdE i j EG
N;w;JE;J

The total intensity, the average energy, and the vari-
ance of the group of transitions 6 are given by, respec-
tively,

III. EVALUATION OF THE SPECTRAL MOMENTS
BY SUMMATION OVER LEVELS

In the STA model one such group G is the collection of
transitions originating from a specific superconfiguration
by a specified one electron jump. A superconfiguration =
is a collection of ordinary configurations defined symboli-
cally by the product over supershells o.,

fS,(E)(E E, )'—dE
(bEG) =

IG

In Eq. (6),

(6)

A supershell, in turn, is the union of energetically adja-
cent ordinary atomic subshells s =j, =n, l,j, In. Eq. (11)
the superconfiguration is constructed by distributing the
Q electrons occupying supershell o among the subshells
in all possible ways subject to g, ~ q, =Q

N;w;, (E;, EG)—
i,jEG

LKG
IG

and

b,~—:JP(E E)(E —E) dE—

IG E —E
PE —EG ) = exp

v'2mb, G 2

2

In order to describe correctly the contribution of the in-
dividual lines to the spectrum we define SG by convolu-
tion of this Cxaussian with the individual line shape P (ap-
proximated in our code as a convolution of doppler and
Lorentzian collisional profiles, i.e., a Voigt function)

SG(E)= J I"(E' EG)P(E E')—dE' . — (10)

This representation of the spectrum of G keeps the non-
Gaussian contribution of the individual line shape and
has the same moments as SG of Eq. (1).

Equations (4)—(6) for the moments include detailed
summation over all the level-to-level transitions in G.
The detailed transition energies (which were averaged
over configurations in I) will be retained in the analytic
derivation presented in the next section.

So far the theory relates to an unspecified group G of
neighboring lines. In the STA model we are dealing with
such well defined groups, i.e., the STAs, having the ad-
vantage that their moments can be derived analytically.
In the next section we derive exact analytical expressions
for the STA moments including energy splitting within
configurations.

is the variance of the single line shape profile assumed
equal for all the transitions ij in G.

With the moments of SG we could present the group of
neighboring lines G as a Gaussian. This, however, has
two drawbacks: (i) This approach hides the non-
Gaussian profile of the individual line obtained by convo-
lution of the Doppler and collisional profiles and (ii) the
variance b~ may be infinite, as is the case when a
Lorentzian contribution is important. Instead, we use
the moments IG, EG, and hG to construct the distribu-
tion of the line centers in G as the Gaussian:

~ g
js (12)

E; =EG+AE; (13)

where EEj is the deviation from the average STA ener-
gy. We have found, that the dependence of f ~

on b,E, .

can be dealt with by modifying the Voigt function of Eq.
(10). (However, since the derivation of this modification
is nontrivial and its effect is negligible, it is not presented
in this paper. ) Thus in the calculation of the STA mo-
rnents, f;~ depends only on EG,

f;, (E~J )=f;,(EG ) . (14)

The explicit dependence of the moments on Eij is of

Clearly, each partition of Q in Eq. (11) is an ordinary
configuration and the particular one-electron jump from
this configuration results in another configuration. The
transitions between the two configurations constitute an
UTA.

The convergence procedure mentioned above splits
supershells to smaller supershells according to their ener-
gy spread. For each superconfiguration in its turn, at
each step, supershells that give rise to relatively well-
separated configurations are preferentially split. The de-
tailed structure of the spectrum is thus gradually re-
vealed, yielding a converging spectrum or any other cri-
teria, such as the Rosseland or the Planck means. The
process terminates when a dictated change in these quan-
tities is reached.

The STA model makes the essential approximation
that the plasma is hot enough that the Boltzmann factor
for the level population does not vary significantly over
an ordinary configuration. This approximation is identi-
cal to that adopted in the UTA model of Bauche-
Arnoult, Bauche, and Klapisch [2,3]. However, this
would not be a good assumption for a superconfiguration
and the variation of the Boltzmann factor from one
configuration to another is accounted for in the STA
model.

Another essential point is related to the dependence of
the oscillator strength f1 on the transition energy E;J be-
tween the corresponding two levels. This transition ener-
gy can always be written as
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course retained.
It can be shown from Eqs. (4)—(7) and (11) that the mo-

ments of a STA that contributes to the one-electron jump
from orbital a to orbital P(a -P, a=j =n l j . )

are given in terms of the moments of the UTAs it
comprises with no approximation:

IG= y Ncwc(P',

w (ap)E (ap)cwc c
CE=

numbers). But the number of terms in these suminations
is, in general, still enormously high. To overcome this
difBculty we use the same mathematical techniques
developed in I. (i) Using binomial relations we first ex-
press the moments as generalized partition functions,
which still include the summation over occupation num-
bers. (ii) Recursion formulas are then derived, without
approximations, for the generalized partition functions
that bypass the need for direct summation over occupa-
tion numbers. Details of this procedure are given in Ap-
pendix 8; the results are summarized below.

with

(17)

y N w (E E'p—'+E'p' E, )'—ll,
ca= itic

jGC'

=b,G+5[b,G ],

A. Total STA intensity

The total intensity is not affected by the UTA widths
and the result is as in I:

Q 2—
W (ap)(~(ap) )&cwc c

—(&G )'

W(ap)(g(ap) )2cwc c
5[6,G]—=

(18)

I,=b(NIV...)X.g.gp Q U, (g')
0'

(

ja K Jp
X g(EG)' ', 0, (r P)

K . 2 2 .

where

(23)

Eqs. (15)—(19) the summations are over UTAs
represented by the initial and the Anal configurations C
and C' connected by the orbital jump a --p. The quan-
tities

gN; g w;. , Nc= gN, (20)
i Ec jEc' i BC

gN, gw;E;
E(ap) &CC JEC

(21)(ap)cwc

(22)
g N; g w;~(Ei) EcP)

(~(ap))i i&C jEC'

x w(p)cwc
are precisely the first three UTA moments. These were
evaluated analytically by Bauche-Arnoult, Bauche, and
Klapisch [2,3], assuming statistical distributions

N~ /Nc =g; jgc, where g; and gc are the statistical

weights of level i and configuration C, respectively. The
results were obtained in terms of the occupation numbers

of C and radial integrals. A compact presentation of
these results is presented, for the case of orthogonal or-
bitals, in Appendix A. Equation (19) gives the correction
to the width of the STA owing to the widths of the UTAs
it comprises. The term (b, (cp') was neglected in I. In ad-

dition to this correction in the STA width, it is important
to note (see I) that the effect of individual lines in Eq. (21)
includes the UTA shift of Eq. (A4) and by substitution in

Eq. (16) these UTA shifts cause a global shift in the STA
average energy.

Since the analytic expressions for the UTA moments
do not depend on individual i,j levels, substituting them
into Eqs. (1S)—(17) replaces the sum over levels in Eqs.
(4)—(6) with sums over configurations (i.e., occupation

—[(c,—p)/kT]
X, =e (24)

where z, is the energy of orbital s and p is the chemical
potential. The quantity r p is the relativistic radial in-

tegral for the electron jump a -'p,

Q' =Q.—5
1, aEo.

5 0, aEo, (25)

g p is the set of modified orbital statistical weights with

g, =g, —5, —6,p ,ap

for orbital s (here 5 is the Kronecker delta), and

(E, —Qp)lkT.

(26)

(27)

is the partition function of the superconfiguration = oc-
cupied by Q electrons. N and U„, are, respectively, the
total number density and the partition function of the
system.

B. Average ST% transition energy

The average energy is given by

EG=DO+ g E p(D'), (28)

where for the supershell o.

Sm eao2

b=
3h 4c'

i~ is the rank of the transition multipole (in most cases di-
pole a = 1 is sufficient), and the statistical weight of shell s
is g, =2j, + 1. The Boltzmann factor X, is
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Q

s p(D')= g P„(D')Ug „(g P),
n=1

(29)
I

1
l I I t I I I I

and

P„(D')—= —g g, PD,'( —X, )"
s Eo'

2J~
D,'=D, + 5, —5,p . 5E p.

(30)

(31)

40000
E

30000

0

2OOOO

C)

The explicit expressions for the radial one-body and two-
body parts Do=(P) —(a), D, =(s,P) —(s,u), and for
6E

& are given in Appendix A. 20 140

Energy teV]

180

C. STA variance

The result for the variance is
N

~G= g ~ p(D"),
a=1

(32)

FIG. 1. Absorption spectrum of the 2p3/2 3d5/2 transition ar-
ray in iron at T=59 eV and an ion density of 0.0113 g/cm .
The heavy and the thin lines describe the spectrum with and
without the UTA widths, respectively.

Q~

5 p(D")= y g„(D")UQ „(g p)IUg (g p)
n=1

—[e p(D')] (33)
n —1

g„(D")= g P (D')P„(D')+ng„(D'~+D "2), (34)
m=1

where

(D i2+D ri2
)

—(D ~2) + (D ii2)

(DI2} —D~2

(D"') —= (g, P—I)&'

(35)

where 6, —:(b,,p) was derived in Refs. [2,3]. A compact
and convenient presentation for this quantity appears for
completeness in Appendix A as well. A comparison with
the results of I shows that the UTA widths are included
in the STA moments with the replacements D, —+D,' in
the working formulas for the average energy and
(D), ~(D'), +(D"), in the second term of the variance.

The equations above are derived in Appendix B on the
basis of the technique developed in I that assumes
zeroth-order energies in the Boltzmann factors. This ap-
proximation can be removed by a common correction to
the STA intensity that converges to the correct first-order
results in the convergence procedure. This part is beyond
the scope of the present subject and will be reported else-
where.

1.0
experiment

UTA-widths-----
no UTA-widths---------
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i
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array is the most intense under these conditions. In order
to demonstrate the effect of the UTA widths we compare
this spectrum with the one obtained without UTA widths
as in I. The solid line includes the UTA widths and shifts
while the thin line does not. %'e see in this example that
the UTA width smears some of the structure.

In a recent experiment [8] the spectrum of the mixture
0.802 wt. % Pe+0.198 wt. %%uowa Fwa sobtaine dat
T =59 eV and an ion density of 0.0113 glcm (the same
plasma conditions were used in Fig. 1). In Fig. 2 we show
the calculated and the experimental transmission spectra.
In this calculation, in addition to the bound-bound transi-
tions we have also included the bound-free and free-free
transitions as well as scattering. The main features are

IV. EXAMPLES OF THE UTA WIDTH
IN PX.ASMA SPECTRA

I

150
I

20G
Energy (eV)

I

250 30G

The above analytical expressions were incorporated in
the STA code and used to calculate the following typical
spectra. The erst example is the spectrum of the
2p3/2 3d5/2 transition array in iron at T =59 eV and ion
density 0.0113 glcm, shown in Fig. 1. This transition

FIG. 2. Total transmission spectrum of the mixture 0.802
wt. % Fe+0.198 wt. %%uoNa Fat T=59eVan da n iondensit yof
0.0113 g/crn' (the same plasma conditions were used in Fig. 1).
The dashed and the dotted lines describe the transmission with
and without the UTA widths, respectively. The solid line is the
experimental result.
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1.0
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experiment
UTA-widths-----

no UTA-widths---------

equivalent to the detailed configuration accounting ap-
proach. The only assumption, still hidden in our correct-
ed model, is that an UTA is completely unresolved. This
approximation may overestimate the absorption when the
number of lines within an UTA is very small so that the
accumulated width of these lines is smaller compared to
the UTA width. However, in all the experiments per-
formed so far, as in the examples of Figs. 2 and 3, the
effect of the UTA widths on the spectra is very important
in reproducing the accurate absorption.

00
I

1300
I I I

1400
Energy (eV)

I

1500

FIG. 3. Total transmission spectrum of Ge at T =68 eV and
an ion density of 0.05 I/cm . The dashed and the dotted lines
describe the transmission with and without the UTA widths, re-
spectively. The solid line is the experimental result.
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APPENDIX A: COMPACT FORM
FOR THK ANALYTICAL EXPRESSIONS

OF THK UTA MOMENTS

dominated by the bound-bound part. The dashed and the
dotted lines present the calculations with and without
UTA widths, respectively. The effect of UTA widths is
obvious here. The third (solid) line in Fig. 2, which is the
experimental result of Ref. [S], indicates the importance
of UTA widths. In this case the total Rosseland opacity
is also measured and within the experimental error agrees
with the calculated result of the STA model including
UTA widths, whereas the omission of these widths re-
sults in a discrepancy of about a factor of 2.

Another experiment reported recently [9] presents the
transmission spectrum of Ge assumed at T =76 eV and
an ion density of 0.05 g/cm . In Fig. 3 we compare the
experimental results with calculations for these plasma
conditions with and without the inclusion of the UTA
widths. The calculated spectra here are for T=68 eV,
which fits better to the experiment. Again the effect of
the UTA widths is apparent and the agreement between
the calculations with UTA widths and the experiment is
very satisfactory.

The results obtained by Bauche-Arnoult, Bauche, and
Klapisch [2,3] for the UTA moments can be rewritten in
a concise form. We present here the results for the case
where the same set of orbitals is used for the initial and
the final configurations. Furthermore, we extend the for-
mulas to transitions of the more general case with electric
multipoles of rank a (not necessanly dipole). The work-
ing formulas are obtained as follows.

1. The UTA average energy

E —E ~ E'(ap)—
(A2)

The UTA average energy

E (ap) E '(ap) +gE '(ap)
C C C

includes a shift 5Ec p' from the difference between the
corresponding configuration energy averages (first order),

V. DISCUSSION

In this work we have derived the analytical expressions
for the STA moments including the effect of the detailed
level structure within the configurations. In this respect
the model is therefore equivalent to the detailed term ac-
counting (DTA) approach. However, since it avoids
dealing directly with levels, it is much faster. In fact, for
heavier atoms where DTA calculations are impossible,
the STA model is easily applied. It was shown above that
the UTA width does not affect the formal form of the
STA moments and with only an alternative definition of
the radial quantities this extension, though fairly compli-
cated, is easily incorporated in the numerical code and
does not increase the required computer time.

The convergence procedure of the STA method leads
in this case to the detailed UTA result where each UTA
is a Gaussian with the UTA variance. This assumes that
each UTA is completely unresolved. The results of I, on
the other hand, ignore the UTA widths and are therefore

The shift is given by

gE'(ap)c
2/a

(A4)

(A5)

(A6)

Js
G "(j„,j, ),

2

(AS)

The radial quantities in (A3) and (A4) are
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where hD is the Dirac single-particle zeroth-order Hamil-
tonian, F and G are the Slater integrals, and

j k j'
, 11(ur ),

2 2
0

2j 5E(j2 +j—j&)=F ' s+G (A9) (A17)
with

k

kXO even

Ja Ja Ja k Ja

jp Jp 2 2

and II(lkl'}= 1 when 1, k, and l' obey the triangle condi-
tion and I +l'+k is even, and zero otherwise:

6 (j,j,j,j&)=A, +%,+c,+2), +8,

jp k
X

. 2

g, g, 5«—(2~

2~+ 1

'2
Jp

2 .0

Jp
F"(j j ),

2 .
+1) j k

(A 10)

where

+ 9', (ap)+ V, (pa),

1

& k ~+0~,„,„(2k+1)(2j,+1)(2j„+I)
X [F"(j„j,)]',

(A18)

depending on the radial orbitals, but not on the shell oc-
cupation numbers.

We thus notice immediately from (A4) that the UTA
shift has the same dependence on the occupation num-
bers as in (A3), i.e.,

~kk'

2k+1
1

(2j, +1)(2j,+1)

1

(2j, + 1)(2j,+ 1)

Ec'~'=Do+ g(q, 5, )D,',—

with the following substitution:

2ja
D,'=D+ 5, —5p . 5E p.

2Jp

2. The UTA variance

(A 1 1)

(A12)

XG"(j„j,)G (j„j.),
j„j, k'

g 2( —1)
&
——a, P k(+O) k

1

(2j, +1)(2j,+1)
xF"(j„j,)G"(j„j.),

Ja Ja
2k+1 jp jp & (2j +1)

The compact form of the results of Bauche-Arnoult,
Bauche, and Klapisch [2,3] for the UTA variance is

(A13)

where 6, depends only on radial integrals but not on oc-
cupation numbers. This general form of the occupation
numbers dependence as written in Eq. (A13) is not ap-
parent in Refs. [2,3]. The explicit expressions for 6, of
(A13) is

6, =2+ g
k k' Jp j( Js

+ 1

(2j, +1)(2j +1)(2js+1)

Q2—
2j, —5, —5p

' (A14)

F"(j.jb)=&"(j.jb j.jb»—
G (J Jb)=X (J Jb, Jb J )

(A15)

where b, (j,j,j,j&) for s =a,P and s&a,P are given
below for simplicity in terms of the factored radial Slater
integrals JpX'.

Js

jp k

j, k'

(2j, +1)

XG"(j„j )G (j„j&),
Jp Jp

V, (aP) =2 g g —( —1)" ' .
kXO even k'

where

&'(J.Jb j.jd } ~ Jolllc'"'IIJ, && Jbllc'"lljd &

XZ "(J,Jb, J,Jd), (A16}

XF"(j„j )G" (j„j&),

and p(pa) is the same as P(ap} with the interchange
a~p. For s =a,
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4 (j,j,j,jp)=A,'+s,'+c,'+I),'+6",+ v,',

X X
k (%0) even k' (WO) even

k'

X X
k (WO) even k' (%0) even

2j (2j + 1) j&

Ja

Ja

j k
' (2' +1)Ja Ja

k'

ju k 2J'~(2J' +1)

(A19)

X ( —1) ' P F"(j,j )F"(j,jp),
Ja

X X
k (AO) even k'

2
T

Jp jp
+

Ja Ja

k jp
K Ja

jp k

j k'
1

2j (2j +1) 2m+1
1

2jp+1

X . ( —1) ' F (j,j )G (j,jp),
Ja

ja Ja k

k (%0) k' (%0) (2k + 1)(2jp+ )
X X .Ja K jp

ja Jp K Ja Jp

2J Jp j k Jp J 2ja
F (j , jp)F" (j , jp),

~kk'

(2k + 1)(2jp+ 1)

ja
'Jp

jp k

K Ja

Ja Jp
2Ja 2K+ 1

1

(2jp+1) 2K+ 1

1

(2jp+1)

G"(j,jp)G" (j,jp),
2Ja

Jp Jp k

k (AO) even k' 2JP+ 1

T

—( —1).J +J k k

Ja Jp

k k'

Jp Jp Ja Ja

Ja Jp K

+
jp j k 2K+ 1

1

2Jp+ 1
F (j,jp)G" (j,jp) .

Ja

APPENDIX 8: ST% MOMENTS
INCI, UDING UTA WIDTHS

Q

e p(D)= y y„(D)Ug „(g P)/Ug (g P),
n=1

(83)

Equation (13) for the STA average energy reads

~ (ap)E(ap)

(81)

It is seen immediately that the shifted and the unshifted
average energies (A3) and (Al 1), respectively, have exact-
ly the same occupation number dependence. Since the
derivation procedure of I operates only on occupation
numbers, the result for the STA average energy has the
same form as that of I:

~(ap)(g(up) )2

5[6,G]= (84)

with the substitution D, ~D,' of (A12). The final results
appear in Eqs. (28)—(31).

The derivation for the STA variance due to
configuration widths is more complex. As shown in Eq.
(17), the correction of the STA variance due to UTA vari-
ances is given by

EG=D()+ ps p(D), (82)
Using the relations [1]
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8s=—II q

U, ~C
9'

J K Jp~~~=b(E ~)" q (g qp—)X & (r ~)
. 2 2.

IG — g Nc wc
C, C'GG

together with (A13) gives, by substitution in (82),
Rs

g gb„'(q, 5„—)(g„—5„p q„)—q (g~ qp—) g
5[6,G]=

Ns

g q (g&
—

q&) g X, '

(85)

(86)

(87)

(8&)

It should be mentioned that the 3j symbol in Eq. (86) contains the hidden triangular and the parity conditions
b,(l,a, l&) and I +a+l& even. Using the binomial relations

s s —
& s

g —1 g
(89)

we can follow the steps below:

gap
g b,„q„(gP q„)+ —X, '

5[KG ]=
rn

Ce= s CE" s qs

y a'„g„~(g„~ 1)x„y—
CE=

gap

'gaprr '

s

aX'
s

ar

X, '

~ aprr
s

y 62g„~(g„~—1)X„g y g „X,*
r oE= ~ q =Q sEo . s~sEo s o

ap

n r rr, '- x,'
gg- Q q

—
Q s6o~s Co s o.

gb, g (g —1)X + U „(g "")
r aE"

n U,-(.'}o6-

(810)

where, in general,

~abcd. . . —
&s &s as bs cs ds

q
Qbcd. . . —

q

(g' '""
) stands for the set of values for all s, and

now use the identity [1]
Q

Ug (gr) = g (
—Xr )"Ug „(g},

n=0

leading to

(814)

Q"=Q 5—. 5—b— 1, aEa
0, aEo.. (Bl 1)

Q —1r

U~, (g ~""}= g (
—X„)"U~, „(g ~")

rn=0

In Eq. (810) all the terms with the shell r, r Ko', cancel

out from both the nominator and denominator and we

obtain

Q —1 Q —1 —n

( —X„)" g ( —X„)
m=0

5[bG2]= g

where

Q,:—Q

b, ,g„~(g„~—1)X„U& &(g
~"")

Ug (g ~}
(812)

(813)

XUg ) „(g ),
(815)

and defining k =n +m + 1 we obtain

Q —1 Q„
(gaPrr) y ( x )n y ( x )k

—n —1

r n=0 k=n+1

and o is the supershell containing the shell r The a -.
pearance of r twice in the set of statistical weights g
means, according to (89), that for the r shell the weight
should be reduced by 2 (or 3 in the cases r =a,P). We With substitution in (812)

XU~ „(g P).

(816)
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&I:~G]=g

Q„
b g ~(g ~ 1—)X g k( —X)" 'U (g ~)

k=1

Ug (g ~)

Q—g U (g ~)k g A„g„~(g„~ 1—)( —X„)"
k=1 r Ho.

Ug (g ~)
a

~a

~(g ~)krak(ID" I)
k=1=X

U& (g )
(817)

P„(D"2):——g g, ~ID" I, (
—X, )"

(D ii2) —
(

aP 1 )g2

the results can be summarized as

&I:~G]= & &l:~']
aEG

where

(818)

(819)

(820)

Q
= g ri„(D)Ug „(g ~)/Ug (g ~)—(E (D))'

n=I
(823)

q„(D)= g P (D)P„(D)+ P„(D ) .

It is seen immediately that the same working formula
holds for the corrected variance with the replacement

5[6 ]=

Q

g ng„(D" )Ug „(g ~)
n=1

Ug (g ~)

(D'), ~(D'), +(D"'), (825)

in the second term of (824), i.e., the factor in (823)
should be replaced by

The working formula of I for the variance where the
UTA widths were neglected is

g„(D")—:g P (D)P„(D)+ny„(D +D" ),

g2 g Q2
O. &6

(822)
as presented in the text.

(826)
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