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Pressure ionization in the spherical ion-cell model of dense plasmas and a pressure formuia
in the relativistic Pauli approximation
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We study the continuity of pressure of dense plasmas in the case of pressure ionization. Pressure is
calculated using a quantum-mechanical stress-tensor pressure formula in the self-consistent-field spheri-
cal ion-cell model. It appears that in order to preserve the continuity of calculated pressure one must
take narrow shape resonances into account during the calculations of the self-consistent atomic poten-
tial, electron number density, and pressure. We also derive a relativistic pressure formula in the Pauli
approximation. The obtained formula is only slightly diferent from a nonrelativistic one. When there
are no very loosely bound levels, relativistic corrections only a8'ect bound electrons, while when very
loosely bound levels exist, relativistic corrections to free electron states become important. Hence, if rel-
ativistic corrections are applied only to bound electron states, it may lead to a discontinuity in the
pressure-versus-density curve even in the case of small-Z elements. This observation stresses the need
for a coherent description of bound and free electrons in the spherical ion-cell models.

PACS number(s): 52.25.Jm, 05.70.Ce, 52.25.Kn, 31.30.Jv

I. INTRODUCTION

The self-consistent-field spherical ion-cell model (the
ion-sphere model) is often an important part of equation-
of-state or opacity calculations of dense plasmas. In the
case of strongly coupled plasmas, the dominant electronic
contribution to pressure is usually calculated with this
model. (See, for instance, Refs. [1—3]).

In some papers using the spherical ion-cell model,
bound electrons are treated quantum mechanically, while
free electrons are described via the Thomas-Fermi theory
[4,5]. More recently, the quantum-mechanical calcula-
tions of free-electron density have been proposed and dis-
cussed in several papers [6—8]. It is known that a self-
consistent field of finite range has continuum resonances
accompanying pressure ionization [9]. Several authors
(see, for instance, Refs. [9—13]) have studied the disap-
pearance of bound levels and the appearance of reso-
nances and have shown that the transition from bound
leve1s to continuum resonances induces, in principle, no
discontinuity in the partition function nor in any thermo-
dynamic quantity within the framework of a spherical-
cell central field model. More discussed in Ref. [9] this
problem and considered also the problem of pressure cal-
culation. He proposed a quantum-mechanical stress-
tensor pressure formula, which could be used in the
spherical ion-cell model (see also Ref. [14]).

In the present paper, we generalize the quantum-
mechanical stress-tensor pressure formula to the case of
relativistic Pauli approximation. The obtained formula
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difFers only slightly from the corresponding expression
for the nonrelativistic case. We report some results of
our numerical calculations using both nonrelativistic and
relativistic formulas. We are especially interested in the
problem of the continuity of calculated pressure when
pressure ionization takes place. It appears from our cal-
culations that the continuity can be assured only when a
careful search for resonances is performed at each step of
iterations for the self-consistent atomic potential and
when energy integration mesh in calculations of free-
electron density takes account of their presence properly.

Our study on the continuity of pressure calculated with
relativistic corrections reveals another important obser-
vation. Both populations of bound and free electrons
should be treated in the same manner, i.e., both with rela-
tivistic corrections or both without them. When only
bound electrons are treated relativistically and free elec-
trons are considered as nonrelativistic, the total pressure
i; discontinuous when pressure ionization occurs. This
discontinuity appears even in the case where the relativis-
tic corrections to free electrons are expected to be ex-
tremely small and where the nonrelativistic treatment of
these electrons seems justified. We study the origin of
this behavior in detail. It seems that this is an artifact
due to the condition of neutrality of the Wigner-Seitz
sphere, which is imposed in our spherical ion-cell model.
Nevertheless, the discontinuity does not appear when
both populations of electrons are calculated in the same
way, and the relativistic corrections to free electrons turn
out to be small except for the density region where the
pressure ionization occurs. Similar efFects may appear in
other approaches in which bound and free electrons are
treated difFerently.

The present paper is organized as follows. In Sec. II,
we recall briefly the spherical ion-cell model and the rela-
tivistic corrections to it in the Pauli approximation. The
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nonrelativistic stress-tensor pressure formula is presented
in Sec. III followed by the derivation of its relativistic
version in the Pauli approximation. Section IV presents
our results and discussions. We include in this section,
also, our results concerning the convergence of free-
electron density and pressure with respect to the summa-
tion over the azimuthal quantum number I. This ques-
tion led previously to some controversy in the literature
[6—8]. Conclusions are given in Sec. V.

II. ATOMIC MODEL

A. Nonrelativistic spherical ion-cell model

n(r)=+~ALII, (r)~ f(s;,p), (2.1)

where, f is the Fermi-Dirac function:

In the nonrelativistic self-consistent spherical ion-cell
model, we use the quantum Schrodinger states for free
electrons as well as for bound electrons, i.e., the electron
number density is obtained by summing over a complete
set of bound and free states,

1/3

(2.9)

where p indicates the number density of atoms. In Eq.
(2.5) V„,(r) is the exchange-correlation potential, for
which, in practical calculations, we use formulas given in
Ref. [16]. (See also Ref. [17].) In the first of Eq. (2.8), we
assume that the self-consistent potential is constant for
r ~ rp and set this constant equal to zero. This assump-
tion requires that the total electron density, determined
from Eq. (2.1), is also nearly constant and equal to its
asymptotic value for r~ ~. The charge neutrality out-
side the Wigner-Seitz sphere is assumed to be assured by
a constant homogeneous positive ion distribution. Since
we use the local density approximation, the exchange-
correlation potential V„,(r)= V„,(n(r)) is also assumed
to be constant for r ~ro. The first Eq. (2.8) can, there-
fore, be seen as the condition eV,i(ro)= V„,(n(r 0)). The
second of Eq. (2.8) is required by the neutrality condition
within the Wigner-Seitz sphere, from which the chemical
potential p is found. We will return to the problem of the
constant electronic density for r ~ rp in Sec. IV C.

B. Relativistic corrections

f(sp)= exp +1
T

(2.2)

2
2m dr2

l(l+1) —eV„y, &(r) =ay, &(r),

The wave functions are calculated from the radial
Schrodinger equation:

We use the Pauli theory [18], in which only first-order
relativistic corrections to the Schrodinger equation are
retained. This approximation is sufhcient for most of
practical problems. The Pauli theory gives an approxi-
mate equation for the large components U~ of Dirac spi-
nor. For a central potential, the radial part y(r) of U„
satisfies the following wave equation:

y, &(r)(r)= '
&, (e, V ),r

(2.3)

(2.4)

d
2m dr

l(l +1) —eV„

—eV„(r)= —eV,i(r)+ V„,(r), (2.5)

where I'& (O, y) is a spherical harmonic. Bound states
are found using the phase function method, which is de-
scribed elsewhere [15]. The self-consistent potential
V„(r) is

+ V, + VD„„,„+V„y(r)=Ey(r) . (2.10)

Compared with the Schrodinger equation (2.3), this equa-
tion has three additional terms, i.e., the mass-velocity
term V „the Darwin term VD„;„,and the spin-orbit
term V„:

2

V eV,i(r)= n(r),
Ep

(2.6)

where cp is the permittivity of vacuum, with the bound-
ary conditions,

where e ( )0) is an absolute value of the electronic
charge, and V,i(r) is the electrostatic potential, which is
determined by the electron and nuclear charges via the
Poisson equation:

V, =—(E+eV„)
2EO

dV„
VD„;„= e

2m 2E +c+eV„dr dr

«.. X
V e

2m 2Eo+c+eV„dr r

(2.11)

(2.12)

(2.13)

1 Ze
e V„(r)—

r~p 47TE,O r

dV, iV„(r)=0, ' (r)=0 on r ~ro,
dr

(2.7)

(2 8)

with rp being the radius of the Wigner-Seitz sphere
defined by

where X is an eigenvalue of the operator 2L.s, and Ep is
the rest-mass energy of electron. In the original version
of the Pauli theory, the expression (2EO+E+eV„) ' in
Eqs. (2.12) and (2.13) is replaced by (2EO) '. We use,
however, the present version of these equations for the
reason described in Ref. [19]. Since the effect of the
Darwin term is small in the case of l & 1 [19], we omit
this term for l ~ 1 in practical calculations. We replace X
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by its average value X=0 (see Appendix A). The angular
dependence of U„ is summarized in Appendix A.

C. Calculation of the electron density

In the case of a central potential, the radial wave func-
tion y, I (r) is normalized as follows:

5, b for bound states

f 'b ' 5(s, —sb ) for free states .d~ (r)y (r) =

(2.14)

As the potential is constant outside the ion sphere, the ra-
dial wave function of bound states outside the sphere can
be written as

where ~I is the modified spherical Bessel function of the
third kind [20] k and K are defined as

1/2 1/2
2mB E,

fez 2Eo
2mB

(2.16)

and C„ I is a constant determined by the normalization
and by the boundary conditions at r0. As follows from
Eq. (2.8) the bound-electron wave functions extend
beyond r0. The condition that their logarithmic deriva-
tives are continuous at r0 determines the one-electron
eigenvalues c. The radial wave function of a free state
outside the ion-sphere can be written as

C«ra I (
—ikr) for the nonrelativistic modelC„&ra�&(

i—Kr) for the relativistic model,y (r)= '

(2.15)

1/2
2m k

r[cos5,
&ji(kr) —sin5«nI(kr)] for the nonrelativistic model

1/2
2m L 1+ r [cos5«j&(Kr}—sin5«n&(Kr) ] for the relativistic model,

E0

(2.17)

where jI and nI denote spherical Bessel functions of the
first and the second kinds [20], respectively, and 5, I is
the phase shift. k and K are pure imaginary for bound
levels and real for free levels.

With the normalization (2.14), the electron number
density (2.1) can be written in terms of the radial wave
functions as follows:

nr«, (r) —= f ds f(s,p)
0

'-" 2(2l+1) yl I(r} yo. ~(—r)
4~ r2I=O

2(21 +1) y0;E, l("}
4~ r' (2.22)

n (r) =nb, „„~(r}+nr„, (r)

2(21+1) y I(r)
nbo d(r) y f(s I p)

n, I Ebound 4~ r2

2(2l +1) y, l(r)
nf„,(r)= f ds f(s,p) g0 4m r

(2.18)

(2.19)

(2.20)

. where the subscript 0 indicates the normalized radial
wave functions of the case where there is no potential,
which can be obtained by setting 5, &

=0 in Eq. (2.17). In
Eq. (2.22) we have used the fact that the phase shift 5, &

rapidly tends to zero as l increases and that at l )l,„,
the radial wave function y, I is very close to y0. , I. The
second term of the integrand (the homogeneous part) can
be calculated analytically using Eq. (2.17) and the identi-
ty pi" o(2l + 1)ji (x ) = 1 [20]:

'" 2(21+1) y, I(r)
nf„,(r) —= ds (s,p) g0 I =0 4~ r2

(2.21)

it is better to divide Eq. (2.21) into two parts as follows
[7,8]:

The neutrality condition of the Wigner-Seitz sphere [Eqs.
(2.8) and (2.9)] involves the bound and free wave func-
tions only for r (r0 ~ In numerical calculations, we sum
in Eq. (2.20) over only a few values of l (l,„. In per-
forming this summation, rather than summing up to l,„
directly, i.e.,

2(2l + 1) yol ( )r
4m r

2m k
(the nonrelativistic model)

2m
'2

2m K c
I 2- '+E.

(2.23)
(the relativistic model) .

As shown later, retaining l,„=10leads to suf6cient ac-
curacy with Eq. (2.22), while l,„as much as 40 or 50 is
needed for the direct summation formula, Eq. (2.21).
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D. Method of search for resonances

As is well known [9], a finite-range potential may have
continuum resonances. In the nonrelativistic model, the
derivative of the phase shift with respect to the wave
number, d5i/dk can be expressed in terms of the com-
plex resonance wave number Q„ i [9]:

d5I k=2% Im
dk „0 Q l(k2 —Q2l)

(2.24)

where l ~ 1, since there are no resonances for /=0 [9].
Generally, Q„ i is a complex number and can be written
as,

P;~ (r). = gf(e„lti, )Re
2m

+5,"P„,(r),
P„,(r) = —I V„,(n')dn'+ V„,(n)n(r) .

0

(3.1)

(3.2)

2

It seems reasonable [9] to calculate the pressure by
evaluating the radial stress P,„at the radius of the ion-
sphere r0. Then the pressure is given by

2(21+ 1)Pt.t.i=-2 -X
4 f(El )2m, I 4w

Qn, l + nl+ Xlnl&Q —n, l +n i+le n, l

(n )0, a.„l,y„l 0) .

Substituting Eq. (2.25) into (2.24), we obtain

(2.25)
+P„,(ro) .

d ~~, I

dI' I"
0

(3.3)

d5 1 n, l

7E)0 Kpg I+ypg I

As V„(ro)=0, the pressure Pto«& can be written in the
form:

( n, i &n, l—)]'+(2 n, irn, l
)'

(2.26)
If y„ I is much smaller than K„ I, the resonance associated
with that complex resonance wave number appears in the
continuum. When k —=K„ I &&y«, the contribution of all
the other complex resonance wave numbers can be
neglected, and we obtain

Ptotal Pbound +Pfree +Pxc

with

Pbound «&.i V»k, l(y l »
n, I abound

where II is defined as

P„„=I "deaf(E, p) g 11k,,(y, , , ),0 1=0

(3.4)

(3.5)

(3.6)

dnI y., I

(k —a„,)2+y~
l

d5I I „I
(c,—s„ l ) +I „,

(2.27)

(2.28)

2(21 + 1 )

dr
t +l+1

[ ( )]i
7"0

(3.7)

y n'I dk k ~n, I
(2.30)

Although Eqs. (2.24) and (2.26) do not apply strictly in
the relativistic (Pauli) model, we can find resonances in
the same way, i.e., using Eqs. (2.29) and (2.30).

III. PRESSURE FGRMUI. A

A. Nonrelativistic stress-tensor pressure formula

The nonrelativistic quantum-mechanical stress tensor
(momentum tensor) P, is defined as follows [9,22]:

where e„i=A' a„ l/2m and I „i=Pi ~„ly„l/m. Equa-
tions (2.27) and (2.28) indicate that the phase shift in-
creases abruptly near the resonances position. Therefore,
the resonance can be found as the (real) wave number
k =a.„ l such that (see also Ref. [21])

=0 and )0, (2.29)
dk

and the half width y „I of the resonance is given by

B. Relativistic pressure formula in the Pauli approximation

We start with the Dirac equation:

[ —e V„+PEo+cu.p]%, =E,qi, , (3.8)

and the relativistic stress-strain tensor (energy-
momentum tensor) P [22],

Bound-electron pressure Pb,u„d and exchange-
correlation pressure P„, are always negative. Generally
only the contributions of loosely bound levels are impor-
tant while those of tightly bound levels are extremely
small. In free-electron pressure P&„„ the pressure of
low-energy free electrons is slightly negative, and that of
high-energy free electrons is signi6cantly positive. The
resonance pressure, which is attributed to the additional
density of states due to narrow resonances, is included in
P&„,. The pressure of a narrow resonance is important
and negative. In principle, the thermal ionic contribution
should be included in pressure calculations [3]. It is
neglected in the present study since we consider mainly
strongly coupled plasmas.
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P,"(r)=cfigf(e„p)lm 4,+a.
S

+5, P„",(r),

(3.9)

where e, =E, Eo—, %', is the Dirac spinor and a; and P
are the Dirac matrices. In Eq. (3.9) the exchange-
correlation pressure P„, is given by Eq. (3.2). We calcu-
late the pressure again by evaluating the radial stress P„„
at r =ro..

ccT p
E, +Eo+eV„ (3.1 1)

where cr~ is the Pauli (two-by-two) spin matrices. Then
a%', can be written in terms of U„[18]:

Now, we show that the Pauli approximation to the
Dirac theory reduces the relativistic pressure formula,
Eq. (3.10) to a form similar to the nonrelativistic one, Eq.
(3.3). The large components U„and the small com-
ponents Us of qr, satisfy the following relationship [18]:

8%,
P«,» =cA'gf (E„p)lm 4',+r a

S
()r r=r 0

+P„,(ro),

(3.10)

Ip+i(pXo~)] U~

(3.12)

where r =r/r. Using Eqs. (3.11) and (3.12), one gets,

ae, , w,
4,+r.a =(r aqr, )+

Br ' 8r
icA

E, +Eo+eV„
aU,+ aU, e'U,—U~ar

(I. sU, )+ BU„—2
r Br

LsU—U"Or r

av„U+" E, +Eo+eV„dr
a 2L-s
Br r

(3.13)

where we have used the following identities [23], [18]:

(o'~. A)(cr~ B)= A 8+i o~ ( A XB), (3.14)

s =cr~/2 . (3.15)

The discussion so far is rigorous. In this stage, we introduce the Pauli approximation. In this approximation, since Uz
is the eigenstate of 2L.s with the eigenvalue X, we obtain

B%,
qr, r.a

Br
icA

E, +Eo+eV„
OU,+ aU, a'U,

U+
ar ar

XU~ U~

r2

e 0 Vs

E, +Eo+eV„Br
BU~—U~ — +

Br

XU~ U~
(3.16)

As described in Appendix A, there are 2(21+ 1) states for given s (or n) and l. In the present study, since we set V„=0
in Eq. (2.10), the radial wave function y, I(r) is common to all these states. If we assume that these states are equally
populated by electrons and use Eq. (A7), we get the radial stress as follows:

2(21 + 1) 2Eo
P„„(r) P„,(r)=- f(e,p)2m, I r~ 2Eo+c+eV„

d ~c I

dr r
d 2 e av sc &~, t d &~, I

r dr r 2Eo+g+eV„Br r dr r
(3.17)
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It finally follows, since V„(rp)=0 and t)V„sar(ro)=0,
that the pressure formula in the Pauli approximation is

fi 2(2l + 1) 1
total 2 g 4 1+ ~2E f (~~/M)

7

2

C. Calculation of P&„,

To obtain free-electron pressure Pf„, according to Eq.
(3.6) or (3.21) in numerical calculations, we approximate
g/ —pIIk ot /r /(y«) by summing over 0 ~ l ~ l,„either by
a direct summation,

+P„,(rp)

d &~1

dr r dr r r=T0

(3.18)

max

k, !(3',I ) = g +k, /(3, / )
1=0 1=0

(3.22)

bound +Pfree +Pxc (3.19) or by the separation of the homogeneous part,

bound 2 1 + g2E X, I (/nl )
n, 1&bound

fl'aa 1+ g E 2 /r /(3 a I )
f(s, /M)

o 1+e/2Ep I =o

(3.20)

(3.21)

max

2 Hkl(+, !) = X I k, l(3, /) +k, l(3 0;,I ) j
1=0 1=0

(3.23)
The obtained formula, Eq. (3.18) is difFerent from the
nonrelativistic formula, Eq. (3.3) only by the factor
(1+el2Ep) ', which is close to unity. Thus, we have
found that the Pauli theory for a central potential
reduces the relativistic pressure formula to the form
which is similar to the nonrelativistic one.

In the relativistic formula, k's must be replaced by K's.
The second term of the right hand side (rhs) (the homo-
geneous part) of Eq. (3.23) can be calculated analytically
(See Appendix B):

oo kg ilk /(yp I )
&

for the nonrelativistic treatment,
3&

2oo X Eg +k, /(3 p;, I ) 1+
1=0 3m Eo

for the relativistic treatment .
(3.24)

Similarly as in the calculation of free-electron density
n&„„Eq. (3.23) is more efficient than Eq. (3.22).

IV. RESULTS AND DISCUSSIONS

A. Convergence with respect to I

First, we discuss the convergence with respect to the
azimuthal quantum number l. This problem appears
both in self-consistent calculations of atomic potential
and electron density, and in calculations of pressure. In
both cases the homogeneous part can be separated and
calculated analytically, which reduces the cut value l,„
needed for convergence [compare Eqs. (2.21) and (2.22)
for free-electron density and Eqs. (3.22) and (3.23) for
free-electron pressure]. In one of the first papers in
which the free-electron density was calculated via wave
functions, Davis and Blaha [6], who did not use the above
mentioned separation, reported that large values of l,„
(50 or 70) were necessary. Dharma-wardana and Perrot
[7] introduced the separation and retained l,„equal to 8
or 10. More recently, Beynon and Landeg [8] found thatl,„=3was sufficient in the case of aluminum at 30-eV
temperature and at 0.4 of solid density.

In Table I, we show the one-electron bound energy lev-
els of iron at 200-eV temperature and 0.1 solid density
obtained using relativistic formulas, Eqs. (2.10)—(2.13)

with different values of l,„.We present results calculat-
ed using Eqs. (2.21) and (3.22) (without the separation
into the homogeneous and nonhomogeneous parts) and
with Eqs. (2.22) and (3.23) (with the separation). We give
the number of free electrons contained inside the ion
sphere in the second row from the bottom and the total
pressure in the last row. It seems that a good conver-
gence is obtained by taking l,„=50 in calculations
without the separation and l,„=20 with the separation
although in the latter case l,„=10gives already good
accuracy. We have found that in plasmas of higher den-
sities and lower temperatures than in our example in
Table I, l,„=10 leads to relatively good convergence
when Eqs. (2.22) and (3.23) are used. However for higher
temperatures and lower densities than in our example,
higher value of l,„may sometimes be necessary even
when Eq. (2.22) and (3.23) are applied. All the results of
our calculations presented in what follows were per-
formed with the separation into the homogeneous and
nonhomogeneous parts and with l,„=10.

B. Comparison with other calculations
and experimental results for zero-temperature case

Figure 1 presents results of our calculations and those
obtained by Young, Wolford, and Rogers [24], for alumi-
num at zero temperature. In Fig. 2, the comparison of
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TABLE I. The one-electron bound energy levels of Fe plasma at T =200 eV and p=0. 1po (po=7. 86
g/cm'). All the energy values are in eV and minus signs are omitted. The second row from the bottom
is the number of free electrons contained inside the Wigner-Seitz sphere. The last row is the total pres-
sure in Mbar. The numbers in brackets denote multiplicative powers of ten.

Level l,„20

Without the separation
Eqs. (2.21) and (3.22)

30 40 50

With the separation
Eqs. (2.22) and (3.23)

10 20 50

1$
2$

2p
3$

3p
3d
4$

4p
4d
4f
5$

5p
5d
5f
5g

free

~total

6.79 [3]
1.21 [3]
1.19 [3]
3.83 [2]
3.69 [2]
3.26 [2]
1.41 [2]
1.35 [2]
1.18 [2]
1.06 [2]
4.49 [1]
4.17 [1]
3.35 [1]
2.70 [1]
2.20 [1]

15.77
29.8

6.82 [3]
1.23 [3]
1.21 [3]
3.95 [2]
3.82 [2]
3.39 [2]
1.50 [2]
1.44 [2]
1.27 [2]
1.15 [2]
5.06 [1]
4.75 [1]
3.93 [1]
3.30 [1]
2.85 [1]

16.08
36.5

6.82 [3]
1.24 [3]
1.22 [3]
3.98 [2]
3.85 [2]
3.43 [2]
1.52 [2]
1.46 [2]
1.29 [2]
1.17 [2]
5.21 [1]
4.90 [1]
4.09 [1]
3.46 [1]
3.01 [1]

16.15
39.5

6.82 [3]
1.24 [3]
1.22 [3]
3.99 [2]
3.86 [2]
3.43 [2]
1.52 [2]
1.47 [2]
1.30 [2]
1.18 [2]
5.23 [1]
4.92 [1]
4.11 [1]
3 49 [1]
3.04 [1]

16.17
40.2

6.82 [3]
1.24 [3]
1.21 [3]
3.98 [2]
3.85 [2]
3.42 [2]
1.52 [2]
1.46 [2]
1.30 [2]
1.18 [2]
5.25 [1]
4.94 [1]
4.13 [1]
3.50 [1]
3.06 [1]

16.12
41.3

6.82 [3]
1.24 [3]
1.22 [3]
3.99 [2]
3.86 [2]
3.43 [2]
1.52 [2]
1.46 [2]
1.30 [2]
1.18 [2]
5.23 [1]
4.92 [1]
4.11 [1]
3.48 [1]
3.04 [1]

16.16
40.5

6.82 [3]
1.24 [3]
1.22 [3]
3.99 [2]
3.86 [2]
3.43 [2]
1.52 [2]
1.47 [2]
1.30 [2]
1.18 [2]
5.23 [1]
4.93 [1]
4.11 [1]
3.49 [1]
3.05 [1]

16.17
40.4

our calculations and experimental results [25] for zinc at
zero temperature is displayed. Our calculations were per-
formed with relativistic formulas. Our calculations usu-
ally give values a little lower than results of other au-
thors' calculations and experiments. One of the reasons
may be the local density approach to the exchange-
correlation pressure, which has a large contribution at
zero temperature.

C. Continuity of pressure in pressure ionization

The question of disappearance of bound levels and of
the continuity of plasma properties has been studied by
many authors [10—13]. Lee and Thoros [26] and More

[9] considered the equation of state in the average atom
model when the disappearance of bound levels leads to
the appearance of resonances.

We have studied in detail the continuity of numerically
calculated pressure when the pressure ionization of
bound levels takes place. In our calculations reported in
this subsection, we used the relativistic self-consistent ap-
proach, Eqs. (2.10)—(2.13). One of our conclusions is that
one has to take into account properly the existence of
narrow resonances during self-consistent calculations in
order to preserve the continuity. This can be seen in the
example of argon at 2.72-eV temperature and at densities

5 I I ( I I I l I I I ( I I I ( I I I
f

I I I
]

I I

40 I I I 1 [ 3 I I I
( I I I I

our calculations
35

I I l
)

I I I 1 ) I I I

30

25

20

Ch

10
0

I I I I I

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

0
0 2 3 4

density p/ po

FIG. 1. Comparison of our calculations and those of Young,
Wolford, and Rogers [24] for Al at zero temperature. Densities
are in solid density units (2.7 g/cm ). Our calculations were
performed with relativistic corrections.

density p/p,

FIG. 2. Comparison of our calculations and experimental re-
sults for Zn at zero temperature. The line is based on experi-
mental data as reduced to zero temperature by Al'tshuler,
Bakanova, and Trunin [25]. Densities are in solid density units
(7.1 g/cxn ). Our calculations were performed with relativistic
corrections.
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d 4.2 where po denotes the liquid density 1.4al'ollll . po, w o
ionizationcm ). In this case, we observe the pressure io

'

l. I F' . 3 we present the phase shift 5&of the 3p leve. n ig.
and its derivative d5 /dE which is proportional to t e
additional density of states [27], for l =1 as functions o
energy c in e caseth se of density p =4.21p0. This resonance

2 84X10 ehas a Lorentzian shape with the peak at 2. 84X10 e

spectrum of free electrons which should be taken into ac-
count in density calculations extends from 0 to 10 e
Moreover, in gene ral resonances become narrower with
increasing l. It is therefore clear that resonances like t e
one shown in ig. sh

' F' 3 should be searched for at each itera-
tion and the mesh of integration with respect to energy
should be chosen in order to take account of their pres-
ence.

t T=2.72Fi ure 4 shows the pressure of Ar plasma a
V the function of atomic density. We presen

igul e s
resent the re-

f the reso-sults of both the cases where the presence of the
nance is and is not taken into account. The bound level

es that the calculation with a careful treatment of
the resonance gives a completely continuous an smoo
curve, while the one which does not take the resonance

nt leads to a discontinuity at the density where
the pressure ionization takes place. In Fig. S are presen-
edt e oun ed h b d electron and free-electron contri utions to
h t t 1 ressure. The pressure associate wit eac

verified by use of Eqs. (2.15), (3.S), (3.20) and the explicit
forms of the modified spherical Bessel function ~&. From
Fig. 5, we see that although both the bound electron and
free-electron contributions change discontinuously w en
3 b d level is ionized, the two discontinuities cancel
each other exactly, which results in the overall continui y

re detail. InLet us discuss this exact cancellation in more detai . n
Table II, we present the contribution of each bound level
to the total pressure in the case of p= . p0. s

'=4.21 . As is men-
tioned above, every value is negative. .aTable II indicates
that the contributions of tightly bound levels are very

0.9

I I I I
I

I I I I I i I I
I

I I I I I I I I I

with resonance

without resonance

0.8

m 07

0.6

1 l i i i i I II

4 4 1 4.2 4.3 4.4 4.5
density pl p,

46

small and that those of loosely bound levels are relatively
large. In particu ar,1 the contribution of 3p level, which is
nearly ionize, is very1

'
d

'
ry important. When atomic density

increases so that the energy eigenvalue of the 3p level ap-
proaches 0, the contribution of this level to the pressure
does not tend to 0. In fact, the pressure of a p bound
electron in the limit c.~—0 is

Pb,„„d&,(E~O, one electron)

3EHa()
(1—g)f(8=0,p),

m-r05
(4.1)

where EH is the ionization potential of the hydrogen
atom in the limit of infinite nuclear mass, a0 Bohr radius,
and g the existence probability of a p electron inside t e

FIG. 4. Comparison of the total pressures of Ar T=2.72
eV) calculated through relativistic formulas with (black circles)
and without (white circles) the presence of the resonance (shown
in Fig. 3) taken into account. Densities are in liquid density
units (1.4 g/cm ). The pressure ionization of 3p bound leve
takes place between p=4. 20po and p =4.21po. For densities be-
tween p =4.2po and p =4.3po, the iteration for the self-
consistent potential does not converge if the resonance is not in-
cluded.
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free electron pressure
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derivative
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FIG. 3. Phase shift 6I &
(broken line) and its

d6I =I/dE for argon (Ar, Z = 1 ) at T=2.72 eV and
( = 1.4 /cm ). Calculations were performed withpo= . gc
cally corrected formulas.

FIG. 5. Bound- and free-electron contributions to the total
re of Ar (T=2.72 eV) calculated through relativistic for-pressure of r = . e

into account.mulas with the presence of the resonance taken into
Densities are in liquid density units (1.4 g/cm ).



51 PRESSURE IONIZATION IN THE SPHERICAL ION-CELL. . . 4877

TABLE II. The contribution of each bound level to the total
pressure of Ar plasma at T=2.72 eV and p =4.20po.

Level

1$
2$

2p
3$

3p

Energy (eV)

—2.87 [3]—2.67 [2]—2.2D [2]—1.D8 [1]—1.2D [—2]

Pressure (Mbar)

—4.19 [—31]
—2.46 [—8]—1.94 [—7]—5.42 [—2]—4.76 [—1]

Wigner-Seitz radius in the limit E~ —0. Since 0 & g & 1,
the rhs of Eq. (4.1) does not vanish. This means that
when 3p bound electrons are ionized, the absolute value
of the bound-electron contribution to the total pressure
decreases discontinuously. This corresponds to the
abrupt change of bound-electron pressures seen in Fig. 5.
When the ionization of 3p level occurs, nearly six elec-
trons disappear from the bound levels and appear in the
continuum. This sudden increase of free-electron number
should be absorbed by the increase of continuum density
of states due to the appearance of the resonance whose
parent bound level is 3p. Unless we take into account
properly the existence of the resonance during the itera-
tions, it is not the case. This can be seen clearly in the
change of chemical potential p. Figure 6 shows chemical
potential p vs atomic density plpo. When calculations
include the resonance properly, the chemical potential in-
creases continuously (almost linearly) with the atomic
density, while when the calculation does not take the res-
onance into account, the chemical potential displays a
discontinuity when the pressure ionization takes place.
The reason is that since the resonance is not included, the
increase in the number of free electrons is not absorbed
by the increase of density of states around the resonance
energy but appears as an increase in the number of high-
energy free electrons. This leads to the discontinuous
jump of the pressure as we see in Fig. 5. On the contrary,
when we take the resonance into account properly, the

electrons which appear in the continuum following the
pressure ionization are absorbed by the resonance. The
resonance contribution to the total pressure is negative
like that of bound levels, and this manifests itself in the
discontinuous decrease in free-electron pressure and can-
cels the abrupt change of bound-electron pressure exactly
as shown in Fig. 5. To sum up, narrow resonances
behave very much like bound levels, physical properties
like pressure and electron density changes continuously
and smoothly as bound levels are ionized and pushed into
the continuum, and this continuity and smoothness can
be obtained in numerical calculations by taking into ac-
count properly the existence of narrow resonances at
each step of iteration for atomic potential and electron
density.

Figures 7 and 8 present the electron densities of argon
atom at T=2.72 eV and p=4. 20p0 and p=4. 21p0, re-
spectively, i.e., before and after the pressure ionization.
We notice that in both cases the total density curves are
almost identical and nearly constant for r ) r0, which is
consistent with our Eqs. (2.8). There is a small deviation
of electron charge density from its asymptotic value just
outside the atomic sphere. Let us remark, however, that
the additional charge corresponding to this deviation is
very small compared with the total electronic charge con-
tained inside the ion cell. We see that before the pressure
ionization (Fig. 7) the bound-electron density extends
rather far outside the Wigner-Seitz sphere. After the
pressure ionization (Fig. 8) the bound-electron density at
r0 is small. This change of the bound-electron density is
compensated by the free-electron density, which includes
the effect of the resonance. The use of the bound wave
function vanishing at infinity [Eq. (2.15)] together with
the neutrality condition of the Wigner-Seitz sphere [Eqs.
(2.8)] may be justified in the case of strongly coupled plas-
mas [7]. The usual situation will be that of Fig. 8 where
the bound functions have already at r0 their asymptotic
form and are small. The case of a bound wave function
which extends far outside r0 corresponds to a situation
close to pressure ionization. Due to the continuity of the
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I I I I l I I I I I 'f I I I I '
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FIG. 6. Comparison of the chemical potentials of Ar
( T=2.72 eV) calculated through relativistic formulas with
(black circles) and without (white circles) the presence of the
resonance taken into account. Densities are in liquid density
units (1.4 g/cm ). For densities between p=4. 2po and 4.3po the
iteration for he self-consistent potential does not converge if the
resonance is not included.

0.5 1.5 2 2.5

FIG. 7. The bound, free, and total electron densities of argon
at T=2.72 eV and p=4. 20po (p0=1.4 g/cm ) (i.e., before the
pressure ionization). The Wigner-Seitz radius equals 1.39 A.
The line corresponding to the constant asymptotic total density
is prolonged inside the ion cell.
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FIG. 8. The bound, free-, and total-electron densities of the
argon atom at T =2.72 eV and p =4.21po (po= 1.4 g/cm ) (i.e.,
after the pressure ionization). The Wigner-Seitz radius equals

0
1.39 A. The line corresponding to the constant asymptotic to-
tal density is prolonged inside the ion cell.

total density (Figs. 7 and 8) the model works also in that
case.

D. EfFects of relativistic corrections
to bound- and free-electron states

Relativistic efFects on bound-energy levels and radial
wave functions become important for high-Z elements
[19]. In Sec. B, we have derived the relativistic pressure
formula in the Pauli approximation. The difFerence with
respect to the nonrelativistic approach is the presence of
the correction (1+E/2EO) ' and the fact that the one-
electron states and chemical potential in the formulas
Eqs. (3.18)—(3.21) are calculated from the relativistically
corrected wave equation, Eq. (2.10). Figure 9 presents
pressure versus density of Hg (Z=80) at T=2.72 eV.
We show the results of both relativistic and nonrelativis-
tic calculations. From this figure, we see that in this case
relativistic effects are non-negligible and that relativistic
corrections should, in principle, be included in calcula-
tions for high-Z elements.

On the other hand, the relativistic corrections are ex-
pected to be relatively small in the case of low and
intermediate-Z elements and not too high temperatures.
We will show the results of both relativistic and nonrela-
tivistic calculations in the case of argon (Z=18) at
T =2.72 eV.

In the spherical ion-cell calculations, sometimes
bound- and free-electron densities are evaluated through
different expressions. Our results, however, indicate that
both bound and free electrons should be treated in the
same manner, i.e., that one should treat both simultane-
ously either in the relativistic or in the nonrelativistic
way. In principle, one may reason that only low lying
bound energy levels are affected by relativistic corrections
and that, therefore, the relativistic treatment of bound
levels combined with the nonrelativistic approximation
for free electrons may be sufhcient. We will show that
this is not the case from the viewpoint of the continuity

FIG. 9. Comparison of relativistic and nonrelativistic calcu-
lations of pressure for Hg (Z=80) at T=2.72 eV. Densities are
in liquid density units (13.6 g/cm ).
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I I

treatment (i)
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2.5

I
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4 4.5
density p~p

5.5

FIG. 10. Comparison of the total pressures of Ar (T=2.72
eV) calculated for the cases (i)—(iii) described in the text, with
the presence of the resonance taken into account. Densities are
in liquid density units (1.4 g/cm').

of plasma pressure. In Fig. 10, we display pressure versus
density of argon at 2.72-eV temperature. The results of
three calculations are shown: (i) relativistic treatment of
all electrons, (ii) nonrelativistic treatment of all electrons,
(iii) relativistic treatment of bound electrons and nonrela-
tivistic treatment of free electrons. As one could expect,
the difFerence between the results of (i) and (ii) is small.
The mixed case (iii) leads, however, to the presence of a
dip in the pressure curve at the value of the density for
which pressure ionization takes place. We have studied
the origin of this dip. Table III presents one-electron en-
ergy levels and pressures obtained in each of the three
cases at the density 4.05p0. These results indicate that
the relativistic efFects on tightly bound levels are relative-
ly more important, as expected, but that the contribu-
tions of these levels to the total pressure are so small that
they cannot afFect the total pressure. On the other hand,
the change in the pressure of loosely bound levels intro-
duced by relativistic corrections is not large enough to
explain the dip seen in Fig. 10. We have found that the
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TABLE III. The one-electron energy and the pressure of each bound level of Ar plasma at T=2.72
eV and p=4. 05po in each of the cases (i)—(iii) described in the text. Energies are in eV, and pressures
are in Mbar.

Level
Case (i)

Energy Pressure
Case (ii)

Energy Pressure
Case (iii)

Energy Pressure

1s
2s
2p
3s
3p

—2.87 [3]—2.67 [2]—2.21 [2]—1.12 [1]—2.58 [—1]

—1.57 [—31]
—1.75 [—8]—1.41 [—7]—4.78 [—2]—465 [—1]

—3.08 [3]—2.82 [2]—2.18 [2]—1.26 [1]—4.59 [—2]

—8.28 [—33]
—9.63 [—9]—1.61 [—7]—4.11 [—2]—4.57 [—1]

—2.87 [3]—2.67 [2]—2.21 [2]—1.12 [1]—2.64 [ —1]

—1.57
—1.76
—1.41
—4.78
—4.65

origin of the dip is a slight change of the 3p wave func-
tion in method (iii) with respect to the result of method
(ii). The 3p wave functions obtained in each of the
cases (i)—(iii) are displayed on Fig. 11. The integral

Jo'y3 (r)dr equals 0.700, 0.634, and 0.701 for cases (i),

(ii), and (iii), respectively. Since 2(2l+ 1)=6 for the 3p
level, the total number of bound electrons in case (ii) is
lower by the number 0.40 X (Fermi-Dirac factor) than the
number of bound electrons in cases (i) and (iii). This fact
and the neutrality of the ion-sphere lead in turn to a
difference in the number of free electrons [2.00 for (i),
2.37 for (ii), and 2.01 for (iii)]. Although this difference
seems to be small, it concerns essentially the high-energy
free electrons, which have important contributions to the
pressure. Thus, finally, the pressure in case (iii) is much
lower than in case (ii) and this effect explains the dip seen
in Fig. 10. In case (i), in spite of the fact that the free-
electron number is lower than in case (ii), the continuity
of pressure is preserved due to the relativistic corrections
to free-electron states. From Fig. 10, we see that cases (i)
and (iii) give practically the same result except for the
dip. Thus, for densities far from the value where pres-
sure ionization occurs, i.e., where there are no very loose-
ly bound levels, the relativistic corrections affect only
tightly bound levels which do not have much impact on
pressure.

0.4

The dip in case (iii) can be considered as an artifact due
to the notion of the neutral Wigner-Seitz ion sphere. It
is, however, important to note that when one uses exactly
the same one-electron Hamiltonian for both bound and
free electrons, calculated pressure preserves its continuity
[cases (i) and (ii)]. Similar effects may be encountered in
calculations of other quantities such as partition function
or opacity. This observation stresses the need of a con-
sistent description of bound and free electrons in the
self-consistent-field spherical ion-cell model.

V. CONCLUSIONS

We have studied the pressure ionization and the con-
tinuity of pressure calculated via the quantum-
mechanical formulas in the self-consistent-field spherical
ion-cell model for partially ionized plasma. It appears
that self-consistent calculations of electron density and
atomic potential are correct only when a careful search
for narrow resonances is performed at each iteration. In
that case, pressure-versus-density curves are continuous
and smooth despite pressure ionization phenomena.

We derived a relativistic pressure formula in the Pauli
approximation. This formula is only slightly different
from the nonrelativistic one. Our results indicate that
bound and free electrons should be treated in the same
manner, i.e., both with relativistic corrections or both
without them. These observations concern all the self-
consistent-field calculations which use spherical and neu-
tral atomic cells of finite size, since the existence of nar-
row continuum resonances is a common feature of finite-
range potentials.
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FIG. 11. Comparison of the radial wave functions y3~(r) of
the 3p bound level of Ar ( T=2.72 eV, p=4.05po) calculated for
the cases (i)—(iii) described in the text, with the presence of the
resonance taken into account. The distance from the nucleus, r,
is in Bohr radius. The curves corresponding to the cases (i) and
(iii) almost overlap.

APPENDIX A: THE FORM OF Ug
IN THE PAULI THEORY FOR A CENTRAL FIELD

In the Pauli theory for a central field [18], the large
components Uz of Dirac spinor are simultaneous eigen-
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states of the operators J, J„L,s, and 2L.s. For given
values of s (or n) and 1, there are (21+1) eigenstates,
which are classified in two by the quantum number j and
the eigenvalue X of 2L s, each labeled + and —,respec-
tively, as follows,

j = I +—,', X =l,
j =I ——' X = —(I +1),

and there are (2l+1) states for + and 21 states for-
with normalized eigenfunctions,

U
1

A +, I J~=m+ i/2

U
1

A —,l j =m+i/2 ~21 + 1

y („) &l+m+1Yi (O, y)
m= —l —1, —l, . . . , l,r —&l —m Yl +,(O, y)

y („) &l —m Yl (8,&p)

(8 )
y m ly i + ly pl 1

7

where we set Yl l+, (O, y)= Yl i,(O, y)=0, and the ra-
dial wave functions y+ l(r) are calculated from Eq. (2.10).
Let us assume that these 2(21+ 1) states are occupied by
electrons with equal probability. Then the average value
of Xis

2g (21 +1)[ji' (x)+jl(x)jl'(x)]=0,
1=0

(B2)

which immediately leads to the first equality of Eq. (Bl).
To prove the second equality of Eq. (Bl), we start with
the identity [20]

X= (2l +2)l +2l ( —i —1)
2(21+ 1)

(A3) e'""' = g (21+ 1)i'jl(x)Pl(cosO),
1=0

(B3)

The use of Eq. (A2) makes us find

rn = —1 —1 m= —1

+2(i+1) y+, l(") 2i y ,l(")—
4m r2 4~ r2

I 1 —1

gU„+U„= g U„++U„++ g U„+ U„ 2f Pl(z)Pl (z)dz = 5ii. .
0

(A4) By difFerentiating (B3) with respect to x, we get

(B4)

where P1 is a Legendre polynomial, which satisfies the
following relation:

gXUA UA = [y +,l(r) y , I( r) ], —
2l (i + 1)

+m 4mr
(A5) i cos(8)e'""' = g (2l +1)i J'i'(x)Pi(cosO) .

1=0
(B5)

2(2l +1) yl
A A (A6)

g XUA+ U„=O .
+, Pal

Equation (A6) leads to Eqs. (2.19) and (2.20).

(A7)

APPENDIX B: PROOF OF EQ. (3.24)

In order to derive Eq. (3.24), we first prove the follow-
ing identity:

where we have used the identity g~ l I Yl (O, p) I2

= (2l + 1)/4m [18]. Equation (A4) indicates that the elec-
tron number density is independent of the angular direc-
tions (O, y) as well as in the nonrelativistic treatment. In
the present study, we set Vso =0 in Eq. (2.10) as is men-
tioned in subsection II B. It follows then that
y+ l(r)=y l(r)=yl(r), and, therefore, Eqs. (A4) and
(A5) become

If we multiply each side of Eq. (B5) by its complex conju-
gate and replace cosO by z, we get

z = g g (2l+1)(21'+1)
1=01'=0

Xj l'(x)j l'. (x)Pl(z)Pl (z), —l~z~1 . (B6)

2(2l +1)
k, l 0;c, l 2 4

II y.
2

d 10~1
dr r

The integration of the previous equation with respect to z
from —1 to 1 and the use of Eq. (B4) lead us to the
second equality of Eq. (B1).

Now we prove Eq. (3.24) for the nonrelativistic treat-
ment. The formula for the relativistic treatment can be
proved in the same way. It is more convenient to start
with the expression of IIk l(y0. , l) obtained directly from
Eq. (3.3):

—g ( 21 + 1 )jl (x )ji '(x )= g ( 21 + 1 )ji' (x ) = —,
'

1=0 1=0
d2 Io;., 1

dr r 0

The first equality of the previous identity is easy to ob-
tain. By differentiating the we11-known identity
gi 0(2l + 1)jl (x)=1 [20] twice with respect to x, we get

rather than to start with Eq. (3.7). By setting 5, l=0 in
Eq. (2.17), we get the expression of y0. , l (r):
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yo;., i(r) =
1/2

2m k
rjt(kr) . (B8)

(2I +1)k
+k, l(30;c, l ) z [jt («o) —J(«o)jt (k"o)]

If we substitute the previous equation into Eq. (B7), we
obtain

(B9)
By using Eqs. (Bl) and (B9), we finally obtain Eq. (3.24)
for the nonrelativistic model.
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