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Nonlinear oblique modulation of ion-acoustic waves in a multicomponent plasma with negative ions
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The stability of oblique modulation of ion-acoustic waves in a plasma consisting of positive ions, elec-
trons, and negative ions is investigated. A nonlinear Schrodinger equation that governs the nonlinear in-
teraction of a quasistatic plasma slow response with ion-acoustic waves for the system is derived. It is
found that for a given value of negative-ion concentration (0.), there exists a range of obliqueness (0) cor-
responding to every value of wave number (k) for which the wave would be modulationally unstable.
For a given value of a & a„and k lying in the range 0 & k & k„ the wave is unstable for values of 0 & 0„
whereas, for the values of k & k„ the wave is unstable for values of 0) t9, . But for a given value of
a& a„and k lying in the range 0&k & k„ the wave would be unstable for values of 0) L9„and for
k & k„ the wave is unstable for values of 8 & 6, .

PACS number(s): 52.35.Fp, 52.35.Mw

I. INTRODUCTION

Studies of nonlinear wave phenomena in plasmas pro-
vide a firm base not only for exploring fundamental
researches on nonlinear physics, but also for developing
practical applications in controlled nuclear fusion tech-
nology. The study of wave propagation gives basic infor-
mation and imports physical understanding about the
dynamical behavior of plasma. For proper understanding
of the propagation of monochromatic waves in plasmas,
consideration of nonlinear effects which can disturb the
wave structure is essential. The modulational instability
is one of such fundamental effect which needs thorough
investigations.

In the past few years, modulational instability has been
a topic of significant interest because of its relevance in
stable wave propagation, plasma heating [1],plasma beat
wave accelerators [2—4], space communication, etc.
Several authors have pointed out that modulational insta-
bility might have a dramatic effect upon the growth of
the beat plasma wave in the context of plasma beat wave
accelerator. The modulational instability also plays an
important role in optical fibers. The experimental obser-
vation of modulational instability in optical fibers have
been reported by Tai, Hasegawa, and Tomita [5]. They
also indicate that modulational instability may be used to
generate a soliton train at a high repetition rate in optical
fiber communication.

The modulational instability of ion-acoustic waves due
to nonlinear interaction with slow response quasistatic
plasma has been studied by several authors [6—10]. Most
of these studies are focused on plasmas consisting of sing-
ly charged positive ions and electrons. However, in a re-
cent paper [11], we have investigated the modulational
instability of ion-acoustic waves in a plasma consisting of
positive ions, negative ions, and electrons for parallel
modulation. Experimental observations of modulational
instability in a plasma consisting of positive ions, elec-
trons, and negative ions have been reported by Tsuka-
bayashi and Nakamura [12] and Bailung and Nakamura

[13]for parallel modulation.
The purpose of the present paper is to study the modu-

lational instability of ion-acoustic waves when modula-
tion is allowed in a direction oblique to that of wave
propagation vector. Assuming that the wave is propaga-
ting in the (x-y) plane making an angle 0 with the
x axis, which is taken as the direction of modu-
lation. The potential P in this case varies as
P(x, t)exp[i(k x+kyy cot)]. Su—ch a situation provides
new additional factors, which contribute to the modula-
tional process significantly. For example, the coefficient
of the dispersive term P of the nonlinear Schrodinger
equation given by P = —,'8 co/Bk„ in this case comes out to
be —,

' [cos 8(B to/Bk )+ ( 1/k )sin 8(t)to/Bk ) ]. This shows
that P consists of two parts: one of them is proportional
to cos 0 and depends upon the group velocity dispersion
(8 co/Bk ), and the other one is proportional to sin 8 and
depends upon the dispersion of the wave, i.e., group ve-
locity, Bco/Bk. Therefore, in the case of oblique modula-
tion the coefficient P depends not only on the group ve-
locity dispersion but on the dispersion of the wave as
well, whereas in the case of parallel modulation it de-
pends only on the group velocity dispersion. It may be
noted that 8 co/Bk is negative for all values of k,
whereas c)co/Bk is always positive. Hence, in this case P
has an anisotropic expression and it can in general be
different from the case of parallel modulation, i.e., k =0
case. Therefore, in this case it leads to the possibility that
the sign of the product, i.e., PQ becomes positive for cer-
tain values of 0 and k, leading to modulational instability.

In the present paper we intend to investigate the modu-
lational instability of ion-acoustic waves in a plasma due
to nonlinear interaction with slow response quasistatic
plasma, when negative-ion species and obliqueness of
modulation contribute simultaneously. We have derived
a nonlinear Schrodinger equation which governs the slow
modulation of wave amplitude. The presence of negative
ion species changes the coefficient of nonlinear term in
the nonlinear Schrodinger equation. It is found that in
the presence of negative-ion species, the sign of the
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coefficient of nonlinear term (i.e., Q} depends sensitively
on the negative ion concentration (a), charge multiplicity
ratio (c., ), and relative mass of the two-ion species. The
sign of Q does not depend on 8, whereas the sign of the
coefficient of the dispersive term P depends only on 0 and
is independent of a, c,„and p. Hence, the unstable re-
gions in the (k-8) plane strongly depend on a, s„and )M.

Although the basic motivation behind the present pa-
per is to examine the modulational instability of ion-
acoustic waves, when obliqueness of modulation and the
negative-ion species contribute simultaneously, the
analysis presented here however remains valid in the
presence of both positive and negative ions with arbitrary
charges. Therefore, one can directly apply this method to
investigate the modulational instability of ion-acoustic
waves in dusty plasmas. The dusty plasmas have been
frequently observed in different space plasma environ-
ments such as asteroid zones, planetary rings, magneto-
sphere, cometary tails, as well as in the lower part of the
Earth's ionosphere [14—16]. Moreover, such plasmas are
being increasingly studied in laboratory experiments
[17—19]. Recently, ion-acoustic waves have been shown
to exist in a dusty plasma by de Angelis, Formisano, and
Cxiordano [20]. Hence, we expect that using the ap-
propriate values of parameters of the dusty plasmas, the
study can be applied to investigate the modulational in-
stability of ion-acoustic waves in such plasmas. In addi-
tion to this negative-ion plasmas are found in the D re-
gion of the Earth's ionosphere [21]. Since, in the present
paper as an approximation, we have taken the plasma to
be collisionless, we therefore expect that theory can be
applied to study the modulational instability of ion-
acoustic waves in the upper part of the D region where
ion-collisional frequency is expected to be small and can
be neglected. However, to provide a more realistic and
full description of the entire range of the D region of the
Earth s ionosphere, inclusion of collisions is essential.

Present analysis is a bit more general than the earlier
one in the sense that the results of the present investiga-
tion reduce to those obtained by Shukla [6] in the limit
a =0 and 0=0 and to those studied by Mishra, Chhabra,
and Sharma [11]in the limit 8=0.

The paper is organized as follows. In Sec. II we write
the normalized Quid equations for the system. In Sec. III
the nonlinear Schrodinger equation describing the ampli-
tude of obliquely modulated ion-acoustic waves is de-
rived. Discussion is given in Sec. IV. Conclusions are
summarized in Sec. V.

plasma is governed by the following set of normalized
Quid equations:

anii
+V (n;(V;, )=0,

at

aV;, 1 1 T;
+(V, , V)V, , = ——V$ — Vn;, , (2)

ani2 +V.(n,. V, }=0,
at

aV2 pc.,+(v, , V)v, ,= vy-
at

1VP= Vn, ,
n,

n;j ac,,

p ~i 1
Vn;2,

pZ, T, n2

(4)

(5)

III. DERIVATION OF THE NONLINEAR
SCHRODINGER EQUATION

In order to examine the slow quasistatic plasma
response to the ion-acoustic waves, we write "the field
quantities in normalized form as follows:

where V; =( V; „,VJ~, O), V=(a/ax, a/ay, o},
P=(1+a(Me, )l(1—ae, ), s, =Z2/Z&, @=M&/Mz, and

n (0) ln (0)
cx —ni2 ni i

In the above equations, n;„V;, and n;2, V;2 are the den-
sity and Quid velocity of the positive ion and negative ion,
respectively. n, is the electron density, P is the electro-
static potential, p is the mass ratio of the positive ions to
the negative ions, a is the density ratio of negative ions to
positive ions, and c., is the charge multiplicity ratio of
negative ions to positive ions. In Eq. (5), we have neglect-
ed the electron inertia. The quantities V, P, t, and x and
y are normalized with respect to ion-acoustic wave speed
in the mixture C, =(T,PZ, /M&)', thermal potential
(T, /e), inverse of the ion plasma frequency in the mix-
ture co;'=(4~n( 'e Z(P/M&)'~, and Debye length kt),
respectively. Densities n;&, n;2, and n, are normalized
with their corresponding equilibrium densities, i.e., n

&
',

n-'2' and n' ' respectively.

II. BASIC EQUATIONS

We consider an ion-acoustic wave traveling in the
(x-y) plane making an angle 8 with the x direction in a
collisionless plasma consisting of a mixture of warm
positive-ion species and negative-ion species with
different charges, masses, and concentrations and hot iso-
thermal electrons. We further assume that the modulat-
ed amplitude of the ion-acoustic wave varies in the x
direction. The nonlinear interaction of finite amplitude
ion-acoustic waves with the background collisionless

n, =1+n,"+n,',
V =V"+V'

e=a"+o', (9)

where n"'"((1. The superscripts h and l represent the
corresponding quantities associated with the ion-wave
(high frequency) and with the quasistatic plasma slow
motion (low frequency), respectively.

On substituting Eqs. (7)—(9) in Eq. (5), the electron
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n,"=(I +n,')P" . (10)

density perturbation associated with the ion-acoustic
waves in the presence of plasma slow motion is given by

Now we combine Eqs. (1) and (2), and (3) and (4). Then
introducing Eqs. (6)—(9), we obtain the following non-
linear equation for the ion-acoustic waves in the presence
of the plasma slow response

B21—
Bx

B B

By Bt

B B

Bx By

B 1 a B

Bt' P Bx' By'
n,'yh=o .

CLC

n =n and V =V =0
(1 )

12 e i e(1—aE, )

In deriving Eq. (11), ions are assumed to be much colder
than electrons, i.e., T; /T, « 1. We have used the
quasineutral and quasistatic behavior of the plasma to-
wards slow response, i.e.,

I
n, &

modulation is much smaller than the electron and ion
thermal velocities. In the above equations angular brack-
ets denote averaging over the ion-acoustic wave period.
The left-hand sides of Eqs. (14) and (15) represent the ion
ponderomotive force. With the help of Eqs. (14)—(16),
and using quasineutral behavior of plasma towards slow
response, i.e.,

In the absence of nonlinear interaction, linearization of
(11)yields the following dispersion relation:

1

(1—aE, )

A Ez =n

k
Q)

(1+k )
(12)

where k =k +k, k and k being the x and y com-
ponents of the wave vector k of the ion-acoustic wave.
The modulation group velocity (i.e., the velocity with
which the modulation propagates) of the wave is given by

Bco co
Vg

= = cos8,
k

(l(v„„) I) = ——1 a , , 1 By'
2 ax ""

P ax
1

PZi Te Bx
14

which is the component of the group velocity (Bco/Bk)
along the direction of modulation, where 0 is the angle
between the wave vector of the ion-acoustic wave and the
x axis, the direction in which the modulation of the wave
amplitude propagates.

Now we calculate the electron density perturbation n,'

associated with the quasistatic plasma slow motion. Tak-
ing the x component of the momentum balance equations
for ions and electrons, i.e., Eqs. (2), (4), and (5) and using
Eqs. (7)—(9), then averaging over the ion-acoustic wave
period, we get

Now from the ion-momentum equations, i.e., Eqs. (2) and
(4), we get

k
Vh x

yh
pco

Vh
l 2X

P~z kx
(19)

On substituting the values of Vh and V;2 from Eqs. (18)
and (19) in Eq. (17), the electron density perturbation n,'

associated with the quasistatic plasma slow motion is
given by

we get

Zi
( (v' )'l)

2(1—aE, ) Bx

P i z B

2 p (1—aE) Bx

Z, (1+ac, ) T; Bn,'+ . (17)
(1—ae ) T, Bx

1 B
( l)

I BP
2 Bx ' P Bx

P Ti Bni2

PZi Te Bx
J

n e

Z, (1+k ) (1—apE, )

2p(1 —«. ) Z, (1+aE,')' +y(1 —aE, )

cos 6}l@ l

an,'

Bx Bx

where we have assumed that the phase velocity of the
I

(20)

where y = T, /T, is the ratio of the ion to electron tem-
perature. Substituting Eq. (20) in Eq. (11),we get

B21—
X

B2 B2

By Bt

B + B ~h
Bx By

Z,(1+k'), Z, (1+aE,')
(1—aiMc, , ) +7'

2p(1 —aE )
' (1—ae, )

B2

Bt2
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2g
l

yh
l
2yh —() (21)
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We assume that the nonlinear interaction of the quasi-
static plasma slow response with the ion-acoustic waves
gives rise to an envelope of wave whose amplitude varies
on time and space scales much more slowly than those of
the ion-acoustic oscillations; accordingly we let

which shows that only for the case of Zi=Z2=1 can a
be equal to 1 but this corresponds to n,' '=0. Hence, in
this situation plasma composes of positive ions and nega-
tive ions only and ion-acoustic waves are no longer possi-
ble. However, in all other cases a is less than unity.

P"= E'~ P"(g,r)exp( i —cot +ik x +ik y ) +c c. (22) IV. DISCUSSION
where c indicates the magnitude of small but finite ampli-
tude P", g, and r are defined such that

and

(x —
Vg t), (23a)

(23b)

Substituting Eqs. (22) and (23) in Eq. (21) and using Eqs.
(12) and (13), we get to 0 (E ~ ), the following nonlinear
Schrodinger equation:

h g2 h'& +P'& +Q~y"~ y =0. (24)Br

In the above equation (24), P and Q are the coeificients of
the dispersive and nonlinear terms, respectively. The
coefficient of the dispersive term P is half the component
of the modulation group velocity dispersion (BVg/Bk)
along the direction of modulation, i.e.,

1aV,P =— cosO
2 ak

1 8 co 1 i 9 . 1 Bcocos 0 +sin 0—
k Bk

The amplitude of the modulated ion-acoustic wave,
defined by the nonlinear Schrodinger equation, i.e., Eq.
(24), will be modulationally stable or unstable according
as PQ &0 or PQ &0 [22].

Hence, the wave will be modulationally unstable in the
following two situations: (i) when P &0 and Q &0 and
(ii) when P &0 and Q & 0.

From Eqs. (25) and (26), we note that for a given value
of k, the sign of P depends on 8, whereas that of Q de-
pends upon a. To locate the regions of modulational in-
stability, we plot two sets of curves for plasma consisting
of Cs+, F ions, and electrons: (i) a curve for P =0 on a
polar (k-8) graph separating regions of P )0 and P & 0
(Fig. 1) and (ii) curves E2 =0 and F3 =0 on a (a-k ) graph
indicating regions of Q & 0 and Q & 0 (Fig. 2).

From these figures, it is clear that the wave will be
modulationally unstable when the values of (u, k, 8) are
such that they lie either (a) in region I of Fig. 1 and in re-
gions I and III of Fig. 2 or (b) in region II of Fig. 1 and in
regions II and IV of Fig. 2. Thus we have PQ )0 (i) for
a &a, when (a) k &k, and 8&8„(b) k & k, and 8&8„
and (ii) for a) a, when (a) k &k, and 8)8„(b) k )k,
and 8&8„where, from Eqs. (25) and (26),

and

P= [(1+k ) —(1+4k )cos 8]
1 1

2k (1+k')'"

Z, k F2F3
cos 0,4(1+k )'i

(25)

(26)

where

Fi= Z, (1+aE, )

(1—ae, )
+y (27a)

ape, (1+8,)
E2 1

( I+ape, )

as, (1+pe, ) (1+k2)
(1+paE, ) k

(27b)

(27c)

1a-
Z2

n (0)
ne

(0)
nil

(2g)

It may be noted that our expressions for P and Q reduce
to those obtained by Shukla [6] in the limit a=0 and
0=0 with p=1 and c, =1, and for Mishra, Chhabra, and
Sharma [11] in the limit of 8=0. It may be pointed out
that for a given plasma with Z„Z2, n,' ', and n, ' fixed,
a is given by

0.2 0.4 0.6 0.8 1.0
ip'

$.4

FIG. 1. Plot of P =0 in the (k-0) plane for the plasma hav-
ing Cs+, F ions and electrons with Zl=Z2=1, c, =1, and
p=6.99. Region I corresponds to P (0 and region II corre-
sponds to P )0.
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FIG. 2. Plot of F2=0 and F3=0 in the (a-k) plane for the
plasma having Cs+, F ions and electrons with Z& =Z2=1,
c,=1, and p=6.99. Curve A refers to F2=0 and B refers to
F, =0. In regions I and III Q (0, while in regions II and IV
Q &0.

a =
C 3

PCz

M2Zi

MiZ2
(29a)

ae, (l+pE, )

(1—ae, )

1/2
1+k

0, =cos
1+4k

(29b)

Thus for every given value of negative-ion concentration,
i.e., a, we have domains in the (k-8) plane over which
the wave is modulationally unstable. These domains are
shown in Figs. 3(a) and 3(b) for a & a, and a) a„respec-
tively.

The dependence of regions of modulational instability
on the various parameters related to negative ions, i.e.,
their fractional concentration, mass ratio, etc. , is ex-
pressed by the expression for a„k, along with these
curves.

A comparison with the earlier study of parallel modu-
lation [11] shows that the results are drastically afFected
due to the obliqueness of modulation, and obliqueness of
modulation provides a new domain of instability. The
main new endings in comparison to the earlier study are
as follows: (a) In the case of oblique modulation it is
found that for a given value of negative-ion concentration
(a), there exists a range of obliqueness (0) corresponding
to every value of wave number (k) for which the wave

0.2 0.4 0.6 0.8
k

1.0 1.2

FIG. 3. (a) Plot of P =0 and Q =0 in the (k -8) plane for Cs+
plasma containing F ions and electrons with Z& =Z2=1,
c,=1, p=6.99, and a, =0.14. Curve A refers to I' =0 and
curve B refers to Q =0 for a =0.025 ( (a, ). The domains (i) ly-

ing below curve A and curve B and (ii) lying above curve A and
curve B represent the modulationally unstable domains. (b} Plot
of P =0 and Q =0 in the (k-8) plane for Cs+ plasma containing
F ions and electrons with Z&=Z2=1, c, =1, p=6.99, and
a, =0.14. Curve A refers to P =0 and curve B refers to Q =0
for a=0. 15 ( & a, ). The domains (i) lying below curve A and
above curve B and (ii) lying above the curve A and below curve
B represent the modulationally unstable domains.
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would be modulationally unstable. %"hereas, in the case
of parallel modulation, the wave was found to be unstable
only for a range of k values. (b) In the case of parallel
modulation, it was found that for a given value of
negative-ion concentration a, such that 0 & a &a„ there
exists an upper bound on k, kd„below which the waves
remain modulationally unstable. %'hereas, in the case of
oblique modulation, it is found that the waves would be
unstable even for k & kd, for certain range of obliqueness.
(c) For a&a„ it was found that there exists a lower
bound on k, k,r, above which the waves remain modula-
tionally unstable in the case of parallel modulation. On
the other hand, in the case of oblique modulation, the
waves may be unstable even for k & k,i for a certain range
of obliqueness.

Since the analysis presented here remains valid in the
presence of both positive and negative ions with arbitrary
charges, one can directly apply this method to investigate
the modulational instability of ion-acoustic waves in dus-
ty plasmas. In addition to this the theory can be used to
study the modulational instability of ion-acoustic waves
in planetary atmospheres.

It is also expected that the ion-acoustic wave will form
an envelope soliton for obliqueness of modulation, corre-
sponding to PQ & 0, i.e., in the region in which the wave
is modulationally unstable.

V. CONCLUSIONS

Our main conclusions are as follows:
(i) It is found that obliqueness of modulation drastical-

ly a8'ects the instability and provides a new domain of in-
stability.

(ii) It is found that for a given value of negative-ion
concentration, there exists a range of obliqueness (8) cor-
responding to every value of wave number k, for which
the wave would be modulationally unstable.

(iii) For a given value of a (a, and k lying in the range
0 & k & k„ the wave is modulationally unstable for values
of 0 below a critical value of 0, . However, for k & k„ the
wave would be modulationally unstable for values of
0& 0, .

(iv) For values of a&a, and k lying in the range
0 & k & k„ the wave is modulationally unstable for values
of 8 greater than the critical value of 0, . But for k & k„
the wave would be modulationally unstable for the values
of 6 &8, .
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