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Critical compositions in the microphase separation transition of random copolymers
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We study the microphase separation transition of random copolymers with two kinds of monomers
with attraction between similar kinds. We perfoxn a mean field analysis for nonsymmetric composi-
tions where the total amount of the one kind of monomer exceeds that of the other. We 6nd a critical
composition f„0.173. For compositions f ( f„or f ) 1 —f, we find a first order transition of
the Landau type in the presence of a cubic term in the efFective Hamiltonian. For f„(f ( 1 —f„
our mean field analysis predicts an unusual continuous transition even in the presence of the cubic
terxn. The efFect of Huctuations is also discussed.

PACS number(s): 61.41.+e, 64.60.Cn, 64.60.Kw, 87.15.Da

I. INTRODUCTION

Recent analytical studies of the microphase separation
transition of random copolymers have generated many
interesting results regarding the mean Geld and the fluc-
tuation behavior of such systems [1—6].

The copolymer problem is quite rich in the case where
there is a tendency for phase separation between the two
components. Due to polymeric bonds a microphase sep-
aration appears instead of macroscopic segregation and
this phenomenon is studied extensively in the past 15
years for the case of block copolymers with well-defined
sequence architecture both theoretically and experimen-
tally [7,8].

In the case of the random, or statistical, copolymers
each monomer along the sequence can be randomly of
one or the other kind and we refer to it as the uncorre-
lated random copolymer [1]. Instead, if there is a wide
distribution of block lengths around a mean homopoly-
meric segment length l of each monomer kind we refer to
it as the correlated random copolymer where the correla-
tions between xnonomer kinds decay exponentially along
the sequence with a correlation length 1 [2,9,10]. This is
the model we will examine in the preselit work.

The efFective Hamiltonian for the study of the mi-
crophase separation transition has been derived by using
perturbation methods [2,1]. These studies estimated only
terms that give the major contribution to the mean Geld
&ee energy. This was done under the valid assuxnption
that, near the transition point, the microdomain scales
are much larger than the microscopic scale which in the
case of correlated random copolymers corresponds to the
coil size of the average homopolymeric segment.

Mean field theory for f = 1/2 predicted lamellar
mesophases after a third order transition with a decreas-
ing size of microdomains as temperature decreases. How-
ever, studies beyond mean field have recently shown [3,4]
that the ordered mesophase is unstable in the &amework
of the Hamiltonians studied before. This was indicated
with a variational method [4,5] and was verified as an
exact result in [3].

Then, the need for the seemingly subdominant terms

in the &ee energy became apparent and the eÃect of these
terms in the polymer problem was indicated in a recent
work [6] for the case of symmetric sequence composition
f = 1/2, i.e. , equal content of the two kinds of monomers.
We found that there is a Huctuationally induced weak
first order transition at a shifted temperature instead of
the third order continuous one predicted by mean field.
The size of the predicted domains depends on tempera-
ture and is larger than the coil size scaling as l / of the
average homopolymeric block I,. These results obtained
by direct loop expansion were in agreement with the re-
sults of a variational approach on a similar generalized
Hamiltonian model [5].

.In the present work we complete this study for the
case of nonsyxnmetric compositions. Here the efFect of
the subdominant terms is important even on the level of
mean field and the effect of Quctuations is also discussed.
A complete derivation of all the important terms is given
in the Appendix. We also find and discuss a critical com-
position f„0.173 where the nature of the transition
changes.

II. THE MODEL

In describing the random heteropolymer we will adopt
the model used by Fredrickson et aL [2] describing the
identity of each kind of monomer as a first order Markov
stationary stochastic process. The probability matrix
P~L, for a monomer of kind K to be followed by a
monomer of kind L with K = 1, 2 and I = 1, 2 has a
nontrivial eigenvalue A which is one of the parameters of
the system. Positive values of this eigenvalue correspond
to homopolymeric blocks where negative eigenvalues cor-
respond to alternating sequences. In this work we will
only consider positive eigenvalues. The other parameter
is the total composition f which corresponds to the total
&action of monomers of each kind. In fact, we express
all of our results in terms of the correlation length of the
stochastic process I = —(ln A)

The random variable 0; takes values +1 corresponding
to monomers i of one or the other kind and its average
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o;=0, —(8) (2.1)

and the two body interaction term is taken in the form

j'
H = —y Q o;o,h(r; —r, ). (2.2)

value is (8) „=2f —1. Then we introduce the variable (o..o ) = 4f(1 —f)e—
I

—~l/

(g'o,.gA:)~~ = 8f(l —f)(1 —2f)e —
I

&I'i—ie li —i II—&

(g,g~g l, gq) —16f (1 f)e I' i I
l&—e II —&II&—

The connectivity between monomers is introduced by
the Gaussian elastic term

1
g(r~+i —r~) =

( exp
2vra

(r'+i —r')
2Q

(2.3)

m(K) = —) cr;h(r; —R) (2.4)

which corresponds to the difkrence between the densities
of the two types of monomers.

The correlation functions for the stochastic process in-
troduced above can be calculated with the tranfer matrix
method [2] and are given by

where a corresponds to the length of the polymeric bond.
In this system, attraction between similar types of

monomers occurs when the Flory parameter y & 0. This
corresponds to an energetic preference for phase sepa-
ration. In the absence of polymeric bonds, a complete
phase separation is taking place. In the presence of poly-
meric bonds, though, we can only expect a microphase
separation. This phase separation is described by the
order parameter

We consider one collapsed chain with infinite length
and impose the incompressibiliy condition by taking the
density equal to unity. This is equivalent to the case of
a melt of long chains as explained before [2].

In our study we omit the efFects of Gnite length which
allow for a small region of macrophase separation as is
studied in [2]. The corresponding region in the phase
diagram is of order 1/K. The appearance of this phase
is not related to the eKects of quenched disorder in the
sequence and nothing new is expected in our study.

III. MEAN FIELD THEORY

In the Appendix we derive the eB'ective Hamiltonian
for the system providing also subdominant terms that
were previously neglected. We show that these terms
are important for describing the phase transitions even
on the level of mean field for compositions f g 1/2. Re-
cently we have shown [6] that these terms are also impor-
tant for the fluctuational analysis and the stability of the
previously predicted mesophases in composition f = 1/2.

The efFective Hamiltonian obtained in the Appendix is

'8 = —) (c k + r)m(k)m( —k) —V ~ p ) m(ki)m(k2)m( —ki —k2)
k+O k1,k2 $0

+V Ai ) m(ki) m( —ki) m(k, )m( —k, ) + V A2 ) m(ki)m(k2)m(ks)m( —ki —k2 —ks),
ky, kg+0 k1,k2) k3 QO

(3.1)

with

2
C

2C2
'

2C2l ' 8l C22
'

1
~

1 (
8a2l2C2 '

16lC~~ ' 4C
I 1+

(3.2)

where C2 = f(1 —f), Cs = 1 —2f, and the
Fourier transform is taken in the form m(k)
(1/v V) f dRm(R)e'~ ~.

The behavior of this Hamiltonian is symmetric around
f = 1/2. Positive values of Cs correspond to positive
mean Geld values of the order parameter and vice versa.
So &om now on for simplicity we will only consider f (
1/2 and Cs ) 0.

The fourth order vertex labeled as A~ comes entirely
&om the polymeric efFect and prohibits phase separation
at macroscopic scales. The vertex labeled A2 is the regu-

lar stabilizing fourth order term in the usual ideal gas en-
tropy in any binary system. Omission of this term corre-
sponds to a Gaussian approximation, where the random
variables 0; follow a Gaussian probability distribution
instead of a discrete model where the random variable
takes the values +1 [3,6].

This effective Hamiltonian exibits very rich behavior
and it is more instructive to start &om the simplest case,
the symmetric composition f = 1/2 where Cs ——0 and
the cubic term is absent.

From previous studies of the symmetric case [1] we
know that the mean Geld solution can be taken in the
foI In

m(k) = mo gV/2 A(k ko) + &(k + ko) (3.3)

where L is Kronecker's delta. This solution corresponds
to the lamellar phase. The mean field amplitude mo and
the frequency ko can be determined by minimization of
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Eq. (3.1) to be

mo ——0 for 7 )0;

1/2
A~ mo

0 (3.5)

for v ( 0. (3.4)
The contribution of A2 to the free energy is negligible

because in the region of validity of the Landau expan-
sion r (( 1/l and therefore Ai/ko )) A2. The transition
predicted by mean field at 7. = 0 is third order.

With the addition of the cubic term for nonsymmetric
compositions f g 1/2 an interesting and peculiar behav-
ior appears. In the mean field we need to minimize the
&ee energy with respect to both mo and ko. Minimiza-
tion with respect to ko gives

at w ( 0. Away &om the critical composition we can
ignore the A2 contribution and find that the transition
amplitude is given by

—7

3(hi~ c —pAs)
(3.9)

(pAs —A,
' 'c)'

2A2B6
(3.10)

For systems near the critical composition mo

(ii) For f ( f„ the overall third order coeKcient is
negative (corresponding to the positive value of mo) and
A2 can no longer be neglected. Then we have a first order
transition of the Landau type at

By substitution of this into the &ee energy we see that
the polymeric fourth order vertex Aq gives a contribution,
effectively, to the cubic term. We can consider that the
order parameter is [7]

and a jump in the transition amplitude

()LiAs —hi~ c)
2A2B6

(3.11)

1/2
m(k) = (—) mo) )Ik(k —k )+ A(k+k')], (3.6)

1
mo =

8A,
—3(A, c —@As)

X/2

9(P ) c —@As) —16&A2Bs (3.8)

where different sets of k, correspond to different recipro-
cal lattice vectors and n is the number of the reciprocal
lattice vectors for the selected lattice. Then the mean
field &ee energy can be writen as

I" = —7.mo + (A, c —pA„)mo + A2B„mo, (3.7)
2

where A, B are the combinatoric symmetry coeKcients
that depend on the selected lattice.

For temperatures near transition the &ee energy is
minimized for the largest value of the symmetry coef-
ficient A . The face-centered cubic (fcc) reciprocal lat-
tice has n = 6 components and corresponds to a body-
centered cubic (bcc) lattice in real space. This lattice
has a larger combinatoric coefficient As ——2/~3 than
the two-dimensional triangular (honeycomb) lattice with

As ——g2/3. Therefore, the bcc lattice corresponds to
lower free energy as in the case of block copolymers [7].

It is easy to see with the help of Eq. (3.2) that as
the composition deviates from f = 1/2, at some critical
composition f„,the coefficient of the total effective cubic
term becomes negative. The value of the critical compo-
sition for the bcc lattice is f„0.173. In the absence of
the so far subdominant term A2 the Hamiltonian would
have been unstable. Therefore, we see that this term is
important even in the mean field for nonsymmetric com-
positions.

With all this in mind we can now distinguish between
the following regimes.

(i) For f ) f„ the total effective cubic term in the
&ee energy is positive and the transition is third order at
7. = 0 with

We see that this jump at the transition point is finite and
independent of the length of the average homopolymeric
block length /. The Landau mean field predictions for
this first order transition are valid for mo &( 1, i.e., for
small deviations &om the critical composition.

The bcc mesophase is the one that appears directly af-
ter the disordered phase in both regimes although by dif-
ferent transitions. The transition orders are only mean
field predictions and are modified by the Auctuational
analysis as it will be explained in the next section. The
above predictions are qualitatively summarized to the
phase diagram of Fig. 1. We see that the difference in
the transition temperature is small but it is important
to remember that the solid line represents a first order
mean field transition.

6
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FIG. 1. The phase diagram for the transition between the
disordered phase and an ordered bcc mesophase predicted by
mean field. The dependence of yl as a function of composition
is given. There is a critical composition at f„-0.173. For
f & f„ there is a first order transition of the Landau type
represented by the solid line. For f ) f, there is a continuous
third order transition represented by the dashed line. The
transition temperature shift in the region f & f„ is seen as
the difFerence between the solid and dashed line.
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IV. EFFECT OF FLUCTUATIONS

We have recently examined [6] the effect of Quctuations
in the Hamiltonian with the general form of Eq. (3.1) for
the symmetric composition f = 1/2 where p = 0.

The Hamiltonian contains two fourth order vertices
with di8erent structure. The vertex Aq has only two &ee
momentum integrations and it it shown [3,4] that due
to this degeneracy-the one-loop Dyson expansion is ex-
act. Then it is seen [ll] that the inverse propagator has
a minimum at nonzero momenta and it can be taken in
the form

(k) = (k —ko) (4.1)

Immediately, as in any system with 6nite wavelength
mesophases, the effect of Buctuations has to be taken
into account as predicted first by Brazovskii [12].

In his seminal work Brazovskii showed that in systems
where the inverse propagator has an absolute minimum
at k, g 0 a continuous transitioii of the Landau type
is impossible. In particular, he showed on the level of
the Hartree approximation, that Buctuations stabilize the
disordered phase and prevent the renormalized mass &om
becoming zero or negative. However, for a Hamilitonian
with the usual ideal gas (Ising) fourth order vertex, he
showed that, in the range where the Hartree approxima-
tion is valid, a first order phase transition is possible,
because the ordered phase can become first locally stable
and eventually globaly stable.

For the heteropolymeric system we took into account
the interplay between the two kinds of vertices. The ver-
tex with the Ising structure A2 is known to have negligible
contribution to the &ee energy on the level of mean Geld.
However, if this vertex is omitted from the fluctuational
analysis the predicted mesophases are completely unsta-
ble [3,4].

We then showed that including this vertex the
mesophases are stable and the transition is possible. This
is done with the following strategy. As we mentioned ear-
lier, the one-loop Dyson equation is exact for vertex Aq.
We calculated the Ginsburg criteria for vertex A2 and
found that the Quctuation eKects of this vertex can be
neglected in the ordered phase for

1
(4.2)

By taking the exact one-loop contribution of vertex Aq
to the Dyson equation we showed that there is a Huc-
tuationally induced Grst order transition to an ordered
mesophase at —v 1/l ~ .

In the presence of the cubic term in the full Hamilto-
nian we have to calculate the Ginsbourg criterion for the
tin. ee point vertex. The most divergent diagram is given
in Fig. 2. However, the mean 6eld picture is very difFer-
ent in the two regimes around the critical composition
f = f„and the two cases must be considered separately.

A. The region f & f
In the region f & f„we have a first order transition of

the Landau type on the level of mean 6eld. The transi-

tion temperature is w p,&/A2, the transition amplitude
1/2

mo p,s/A2, and ko p,s where p,~ = @As —Ai c is
the smallness parameter in our study. We see immedi-
ately that the Landau expansion is valid for p,~ && 1/l.

The contribution of the diagram of Fig. 2 to the Dyson
equation in the disordered phase is

d3k p2

(k + ~)(~k —ko)'+ &)
(4 3)

This can be neglected &om the Dyson equation for

p2 ((7 or T » 4 3.~1/2
(4.4)

By taking into account that r @2&/A2 this is equivalent
to

1
p )& (4.5)

In the ordered phase the mean Geld mass is given by

2 2 2Agmp2

p —Q Qp + 7 + 2 + 12A2B6mp2

kp2

Pe6
(7p,As —4A, c) - p,.~.X/2

2A2
(4.6)

The contribution of the diagram given in Fig. 2 is esti-
mated by

d"k 2k""'. (4.7)
[(k —ko)' + ][(Ik —k

I

—ko)' + ]

This can be neglected &om the Dyson equation when

p ko/r « r. By taking p 1/l, ks p,&, and r p,,s.
we obtain

1
pg)& (4.8)

Between these two criteria the one for the disordered
phase is stronger, so the 6nal conclusion is that the mean
6eld description is accurate in the region

FIG. 2. Feynman diagram for the one-loop contribution of
the cubic vertex to the Dyson equation.



51 CRITICAL COMPOSITIONS IN THE MICROPHASE. . . 4731

1 1
)7/6 (( P ff (( (4.9)

V. DISCUSSION

The lower limit is related to the fact that Huctuations
become very important near the tricritical point p, ff —0.

Regarding the behavior of the vertex Aq, we can ne-
glect the Huctuation one-loop correction in the ordered
phase for Aq/r~~z (& r or equivalently p,,~ )) 1/l4~s. For
the disordered phase this is true for Aq/v~~2 &( w which
corresponds to p,~ )) 1/l ~s. We conclude than that in
the region of Eq. (4.9) the fluctuation effects of vertex Aq

is negligible. The contribution of A2 to the Dyson equa-
tion is weaker than that of Aq and can also be neglected
[6]

B. The region f & f,

(4.1O)

In the ordered phase we can neglect this diagram for

p kp 1((r or —w &)r ~s/7
' (4.11)

The Landau expansion breaks down for r1/l, so-
that the mean field estimates for the ordered phase are
accurate in the region

1 1
s/7 (( (4.12)

In this region the one-loop contribution of the vertices Aq

and A2 can also be neglected as shown in [6].
It is hard to predict at this point what happens with

the order of the transition and the exact transition tem-
perature when the diagram of Fig. 2 starts contributing
to the Dyson equation because this contribution has a
negative sign and starts destabilizing both the ordered
and the disordered. phase. Although a region of temper-
atures exists where the one-loop correction coming from
the vertex p is much larger then the equivalent two-loop
contribution, a more careful study is required due to the
destabilization of both the ordered and disordered phase
mentioned above. This question will be addressed in a
diQ'erent work. In conclusion, we cannot describe the
transition for f & f„,but we have proven its existence.

In the region f & f„we have a continuous transition
predicted by mean Geld where the stabilizing term in the
&ee energy is a positive efFective cubic term. However,
the stabilization with respect to Huctuations is due to the
vertex Aq as in the symmetric case studied in [6]. This
situation is quite difFerent &om the traditional Landau
first order transition in the presence of a cubic term. The
mass in the ordered phase on the mean field level is r
(—v) l as in the symmetric case [6] and mo rl. —

The diagram of Fig. 2 for the disordered phase is scal-
ing as p, /v~~2 and can be neglected from the Dyson equa-
tion for

We have discussed the mean Geld theory and the region
of its validity for the efFective Hamiltonian of a random
heteropolymer of two kinds of monomers that exibit an
energetic tendency for phase separation. We introduce
a correlation length / along the sequence corresponding
to an average homopolymeric block length, where the
model assumes a random distribution of these blocks.
In the present work we have investigated the complete
Hamiltonian including nonsymmetric compositions, i.e. ,
cases where the total amount of one kind of monomer is
larger than the total amount of the other kind, where the
cubic term appears in the effective Landau Hamiltonian.

The appearance of cubic terms in the effective Hamil-
tonian induces some unusual changes in the behavior of
the system even on the level of mean Geld. In the usual
Landau Hamiltonian with a cubic term and an ideal gas
(Ising) fourth order vertex, the presence of a cubic term
results in a first order transition observed on the level
of mean field, at positive temperature w. In the efFec-
tive Hamiltonian derived in the Appendix and analyzed
in the present work we found two composition regions
where the system exibits difFerent behavior.

In the region f & f„,mean field theory predicts a first
order transition of the Landau type &om the disordered
phase to a bcc mesophase. This transition is analogous
to the corresponding microphase separation in diblock or
periodic multiblock copolymers [7]. By examining the
efFect of Huctuations we defined the composition region
in which mean Geld adequately describes the transition.

In the region f & f„ the transition is predicted by
mean field to be a third order continuous transition. The
situation at f = 1/2 has been investigated before [6] and
a complete Huctuational analysis has shown that Huctu-
ations induce a weak Grst order transition of the Bra-
zovskii type. There are, however, certain qualitative dif-
ferences between the heteropolymeric system examined
in [6] and the Brazovskii Hamiltonian. The most impor-
tant of these difFerences is the temperature dependence
of the microdomain size in the heteropolymeric case. For
f„&f & 1/2, the presence of the cubic term does not
provide, in mean Geld, a Grst order transition as it hap-
pens in the Landau or in the Brazovskii system. The
Huctuation efFects of the three-point function are, there-
fore, very serious and shold be taken into account in a
difFerent work.

The nonsymmetric case was previously studied in [2].
There, although it was mentioned that the subdominant
terms were necessary to determine the nature of the tran-
sition, the authors suggested that the cubic term in the
Landau Hamiltonian was very small and the difFerence in
the free energy of the various symmetries would be unable
to demonstrate a preference for a particular long-range
mesophase. Consequently it was speculated that this de-
generacy may allow for a phase with structures without
long-range order which is called disordered micro@hase.
Our calculation here shows that the cubic term is of or-
der 1/l as opposed to 1/l predicted in [2] and the free
energy of the bcc (body centered cubic) phase is lower.

In the present work we investigated a model of corre-
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lated sequences where the correlations decay exponential.
If we consider a model where we have homopolymeric
blocks of Gxed length M that are randomly connected to
each other we can repeat the calculation of the effective
Hamiltonian. In that case we will Gnd that the coefB-
cients in the free energy are p 1/M, Aq 1/M, and
A2 1/M so that M plays the same role as the average
homopolymeric segment / in the model examined in the
present work. The same qualitative conclusions will then
hold, but the numerical values of the coeKcients will vary
and the value of the critical composition will be different.

Before concluding this discussion it is interesting to
mention a different aspect of heteropolymers concerning
the effects of quenched disorder in these systems [13,14].
Early studies showed that &ustration differentiates the
&ee energies of the low-energy conformations and cre-
ates a strong thermodynamic preference for a few of them
[16]. In particular it was shown that the energy spectrum
of random heteropolymers is accurately described by the
random energy model [15] and there is a phase transi-
tion into the so-called frozen state where the number of
dominant conformations is of order unity and the confor-
mation is frozen to microscopic scale [16,17].

The temperature for this transition is higher for more
heterogeneous systems. However, we were able to show
[14] that, even in copolymers where the chain consists
of only two kinds of monomers, the frustration induced
by polymeric bonds is strong enough to allow a similar
freezing transition when the chain is stiff.

In the correlated model we examined here, the het-
eropolymeric chains, which consists of significantly long
homopolymeric segments, can be considered as flexible
and according to our previous work [14] the freezing tran-
sition mentioned above can be suppressed. Therefore, a
regime is defined where the microphase separation transi-
tion study is meaningful and independent of the &eezing
transition.

In this work we have estimated the region in which
mean Geld theory is correct and showed that there exists
an ordered phase with bcc structure immediately below
the disordered phase. The transition order and transi-
tion temperature changes due to fluctuations for the case
f ) f„raneow much more difficult to handle since they
are influencing a continuous transition as opposed to the
traditional first order one. The contribution of the three-
point vertex to the Dyson equation for both the ordered

I

and disordered phase reduces the total mass and destabi-
lizes both the ordered and disordered phase, so that the
Brazovskii analysis no longer applies. This is an open
question to be addressed in the future.

The dynamics of this system is another open prob-
lem with many unresolved questions [18,19], that has not
received as much attention as the thermodynamics and
should be addressed in future studies.

APPENDIX A: DERIVATION OF THE LANDAU
FREE ENERGY

In this Appendix we calculate the Landau effective
Hamiltonian for the random copolymer model with short-
range sequence correlations deGned in Sec. II. We follow
the cumulant method introduced in [2] avoiding the use of
replicas [1,9,10] since the order parameter that describes
the microphase separation transition is a one-replica or-
der parameter and the use of cumulants gives equivalent
results in the study of the microphase separation transi-
tion. Here we recover the subdominant terms that were
neglected in [2]. These terms, as explained in the text,
are essential for our analysis.

The partition function is

Z = b'~ ) h(r; —R) —1
~

(
)

(A1)

The average ( )qh denotes the thermal average over
all conformations, taking into account that successive
monomers are connected by polymeric bonds according
to the elastic term introduced in Eq. (2.3). The density is
Gxed to unity by the b-function constraint. The interac-
tion potential is taken approximately as a b function. A
gradient term related to the surface tension can be added
as a correction to this approximation.

The order parameter of the system related to the differ-
ence between the densities of the two kinds of monomers
is given in Eq. (2.4). In order to express the free energy
in terms of the order parameter we rewrite the partition
function

g= QmRe ~ "~ ~~~ 5 br,. —R —1 b — obr, —R —mR
)

'Vm R e ~ " VJp R VJ R exp i dR Jp+ J m + G Jp J

with
I

Addition of constants to the &ee energy are not impor-
tant and we can introduce new variables

1+d —5 r;d(r; —H)] ) th

dg(H) = dd, (H) —V ' f dHdy(H),

(8) = d (H) —V '/dHJ (R).
(A4)
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Then we average the &ee energy with respect to disorder
and get

and we calculate the thermal conformational averages
and the disorder averages. By using the correlators given
in Eqs. (2.5) we obtain

(G[J4»J ]) = 2(('y) i) + 2((' ) i)

+~, ((") ),+ 2(('~"-) )..
+~, (((e' )~i)..—3((&' )ti,),)

with

ep ———i dRJy R b r; —R,

(A5)

1(( 2) ) ) J@(k)Jy( —k)

k+0

1(( 2) ) ~ J (k)J (—k)

where C2 ——f(1 —f)

(AS)

(A9)

= —(i/2) f dRJ (R) ) o;b(r; —R).

We introduce the Fourier transform

J(k) = dKJ(K)e'"
V

(A6)

(A7)

k1kg QO

J (ki) J (k2) J (—ki —k2)
)

(a k + 1/l) (a k2 + 1/l)

where Cs ——(1 —2f).

1 2 zC2N . Jy(ki) J (k2) J (—ki —k2) l 2 1

(a'/k, + k,
f

+ 1/I) a'k' (a'k'+ 1/l) y

(All)

~, ((& )th). = ~ ).
k1,ka, k3+0

J (ki) J (k2) J (ks) J (—ki —k2 —ks)

Q2

(a2k +. 1/l)(a2~ki + k2 + ks~2+ 1/l)a2~ki + k2~2

|"2C,2
(a'k', + 1/l) (a'(ki + k2 + k ~2 + 1/l) (a'~k, + k ~' + 1/l)
K C2 J~(ki) J~(—ki) J~(kg) J~(—k2)

(a k, + 1/l)(a k + 1/l)
(A12)

C22V J (ki) J-(— i)J-( 2)J-(—k2)
k~,k~+0

N 1 1
X

2 + 2 2 2 +
(a2ki + 1/l)(a k + 1/l) (a k + 1/l) a (ki + k2) (a k + 1/l)(a2k2+ 1/l)a2(ki + k2)

(A13)

In the calculation of the quartic terms we have eliminated terms that contribute to the Anal &ee energy in the form

) J (ki) J (—ki) J (k2)J (—k2)
k1,k2 QO

because these terms are not important for k&2 (( 1/l.
By taking the mean field equation hG/h Jy = 0 we obtain

(A14)
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iC2 . J (k2) J (—ki —k2)
(a [ki + k2[2 + 1/l) 2(a k + 1/l)

kg QO

(A15)

By substitution of this into the total equation for G[J4„J ] we have complete cancelation of the fifth term of Eq.
(A5). Then by taking the znean field equation for the total free energy hI" /b J = 0 we obtain

J (k) = (o, k + 1/l) — ) m(k2)m(k —k2)
2 8lC22 V ~ ~), , +, ]

1 — '
~ ) m(k, )m(k, )m( —1 —k, —k, ).

i .m(k)m(k, )m(-k, ) i ( C.')
(A16)

In the calculation of Eq. (A16) we have taken (a2k + 1/l) 1/l in the terms that contribute to the Hamiltonian in
higher than quadratic order. This assumption corresponds to the case where the scales of phase separation of interest
are much larger than the coil size of a block of sequence length /, i.e., microscopic scales. This assumption is anally
verified by the predicted scale. We keep the k term to the quadratic order because the term 1/l is absorbed into the
parameter 7 that shows deviation &om the mean 6eld transition temperature and the remaining k term generates
a surface tensionlike eKect due to polymeric bonds so that this term does not depend on the arbitrary scale of the
interaction potential. It is interesting to note that this polymeric terin does not appear in uncorrelated sequences [1].

In the above calculations the sums over indices along the sequence were taken as integrals. This approximation is
good for correlated sequences with L &) 1 considered here but the sums should be considered in the calculation of the
uncorrelated case otherwise important terms are missed.

By substitution of Eq. (A16) and collecting all terms in the &ee energy we take

m(ki)m(k2)m( —ki —k2)

m(ki) m(k2) m(ks) m( —ki —k2 —ks) (A17)

'8 = —) (c k +~)m(k)m( —k) —V ~ p, )
'k~o k1,kg QO

m(ki) m( —ki) m(k2) m( —k2)+V A& +V A2

k1,k2 +0 1+ 2 k1,kg, ks

with

2= a
2C2'

1 C3
~, +2X,

5C,' l
16lC2 l

+ 4C' (A18)

with C2 ——f(1 —f) and Cs ——1 —2f
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