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Dynamics of premelted films: Frost heave in a capillary
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Due either to van der Waals or to short range interactions, some materials will interfacially
premelt against a foreign substrate. We present a theoretical study of this phenomenon for a
situation in which the material is confined within a deformable capillary tube. At a temperature
below the bulk melting transition an annulus of premelted liquid separates the solid from the capillary
walls. For an isothermal capillary, at finite reduced temperature, the film is of uniform thickness
and is static. On imposition of an axial temperature gradient the thickness of the film varies with
position along the axis. A thermomolecular pressure gradient transports Quid towards regions of
colder temperatures, where it solidifies and deforms the confining capillary. For the case of van der
Waals interactions we formulate a mathematical model and solve it numerically and by matched
asymptotic expansions. The main result is the temporal and spatial deformation of the capillary
tube; a measurable quantity. In the case of a transient thermal field, we find that the deformation of
the capillary is small and that it is uniform over most of its length. For a steady thermal field, large
deformation occurs in a region of small reduced temperature and grows towards the cold end of the
capillary. We focus on ice monocrystals, and oKer our theory as a model for frost-heave phenomena,
with the advantage of having exposed the essential physics of the problem in the absence of impurity
and curvature efFects. The experiments conducted by Wilen and Dash [Bull. Am. Phys. Soc. 88,
747 (1993); Phys. Rev. Lett. (to be published)] provide information that is unavailable using
equilibrium techniques, and form the relevant test of this theoretical approach.

PACS number(s): 68.45.Gd, 68.55.Jk, 68.35.Rh

I. INTRODUCTION

A. Statics

The interface between a foreign substrate and a solid,
or a grain boundary between two crystals, may be wet-
ted by a thin liquid film formed from the solid. When
the film persists at temperatures below the bulk melting
transition of the solid, the phenomenon is termed inter-
facial melting, and it is theoretically analogous to other
wetting transitions [1,2]. The problem holds the atten-
tion of condensed matter scientists both because of its
basic significance as a surface phase transition, and for
its broad technical applicability, biological relevance, and
environmental consequences [3].

From the perspective of physical adsorption, wetting
on a planar, nonreactive substrate has a well developed
theoretical foundation [1]. There is active interest in the
adsorption of films and/or the wetting of binary liquid
mixtures on substrates with nonplanar geometries such
as in wedges [4] and pores [5,6). While the theoretical
techniques vary from microscopic to macroscopic, such
studies focus on understanding states which character-
ize thermodynamic equilibrium. Examples of the results
of such studies include the thickness and variation of the
film density normal to an interface, the excess coverage in
a wedge, and the domain geometries of phase-separated
two-component fIuids, and how these vary with the inten-

sive parameters and the interfacial interaction potentials.
When the film in question has a density that departs sig-
nificantly from that of the bulk fIuid, due to confining
effects, say, then microscopic treatments are necessary.
Dietrich [7] reviews the concept of an effective interface
potential and its application to the formation of thin one-
and two-component films, and Evans [5] gives a thorough
review of the equilibrium properties of one-component
fIuids confined in idealized slits and pores.

The extension of a region of coexistence to tempera-
tures below bulk equilibrium indicates the presence of a
thermomolecular pressure in a material [8]. As a result,
interfacial melting can occur. Experimental evidence has
been found for He in Vycor glass [3], for ice in graphite
powder and exfoliated graphite crystals [9], for ice in
polyethylene and silica powders and mineral soils [10],
and at an ice-glass interface [12]. Finally, measurements
of wire regelation (the motion of wires through ice) at low
temperatures have provided indirect evidence of a fIuid
film at the ice-wire interface [13(a)].

Since we are not focusing on solid-vapor or solid-solid
interfaces we note evidence for premelting in these sys-
tems only in passing. In the former case, metals and
rare gases exhibit surface melting [8] and liquid layers
have been observed at the free ice surface [15] and are
consistent with incomplete surface melting, wherein the
liquid attains a finite thickness at the bulk transition.
In the case of grain boundaries, lattice-gas models have
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predicted disordered phases [16], where, well below the
bulk melting point T, there is a gradual but clearly
deGned transition in the structure and thermodynamic
properties of the boundary. Similar models of a tilt grain
boundary find that the interface is unstable to the intru-
sion of a solid of an intermediate orientation [17], and
molecular dynamics calculations of I.ennard-Jones solids
[18] exhibit an orientation dependence of grain boundary
disorder.

Flexible Capillary

Liquid Solid

Cold Ring

Liquid

(a)

H. Dynamics

In this paper we explore the dynamical eÃects associ-
ated with thermolecular pressure gradients acting on pre-
melted films. Both microscopic and macroscopic theory
for the spreading of liquids on solids have a rich literature
[19]. Particularly relevant to our study is the spreading
of a wetting layer under the inHuence of a gradient in the
disjoining pressure [19]. For a liquid-vapor system, the
nongradient case of wetting inside a capillary has been
treated [20], and has a correspondence to the problem of
wetting on a cylindrical fiber [19(c)]. Although dynami-
cal studies concerning premelted films are rare, the rela-
tion between thermomolecular pressure in unfrozen water
and frost-heave phenomena has been discussed from sev-
eral perspectives [11,21,22]. Other ice studies include one
under isothermal conditions [23], which required the in-
troduction of an anisotropic pressure tensor through the
film, and a continuum model for frost heave in an ice-
water-particle mixture requiring parametrization of bulk
hydraulic permeabilities [13(b)]. The latter study con-
tains many of the essential physical ingredients of the
heave mechanism.

In what follows we consider only unretarded van der
Waals interactions, and explore the dynamical conse-
quences of imposing a temperature gradient on a con-
Gned premelted Glm. For the analysis proper we digress
from the commonly studied planar situation and examine
behavior in an idealized geometry, viz. , a single cylindri-
cal pore or capillary. The capillary is at a temperature
below the bulk melting transition of the material, and
a thin film separates the solid from the capillary walls
(Fig. 1). On imposition of an axial temperature gradi-
ent, gradients in the film thickness and thermomolecular
pressure develop. This allows us to investigate relatively
unexplored dynamics in a simple geometry. Moreover,
by studying a conGned Glm, we avoid potential problems
associated with a free surface [7]. A primary motivation
of our study is to form a theoretical framework within
which the experiments of Wilen and Dash [21] can be
interpreted.

In the next section we review the physics of interfa-
cial premelting and thermomolecular pressure. We then
develop a simple model of solidification in a capillary
tube that includes efI'ects of interfacial premelting, and
solve two, experimentally achievable, initial value prob-
lems. For the case of a transient thermal Geld, we solve
the equations approximately by the method of matched
asymptotics and check the results numerically. We then
solve the case of a steady thermal Geld and find a marked
change in the deformation behavior. We conclude with

See 1(c)

Soli d

(b)
Liquid

T*=Tm

x=O

T*=Tf & Tni

x=x (t)
T*=T

X)

d(x„,t)= rz(x, ,t)-r, (x, ,t)

xz

I(

d(x Volume
Flux —d ~

So lid
(c)

FIG. l. A schematic of the capillary gedanken experiment,
which is patterned after the experiments of Wilen and Dash
[21]. In (a) we display a cross section of the entire system
which consists of a Bexible capillary tube filled with the ma-
terial of interest centered on a cold ring. The walls of the
tube (with the exception of the small region adjacent to the
ring) are insulated so that only axial heat currents are al-
lowed. Initially we envisage the system to consist of solid
and liquid in coexistence at T' = T so that we must have

Ty ——T . The liquid region is allowed to communicate with
a reservoir which has independent temperature and pressure
control. The length of the capillary is orders of magnitude
greater than its diameter. (b) We take the cold ring to be
a plane of symmetry and begin an experiment by quench-
ing it to Ty ( T . This establishes a temperature gradi-
ent across the solid which drives it into the isothermal melt.
The radius of the solid finger is rq and that of the tube is
r2. At a given temperature the interfacially melted film has
thickness r2 —rq ——d = At„. The position of the moving
"bulk" interface 2: (t) is unknown in the problem. (c) The
imposed temperature gradient establishes a thermomolecular
pressure gradient (see text) which drives a lubrication Iiow in
the region between the solid and the membrane with a vol-
ume Hux Q oc d . Material in excess of the thickness given
by d = At„solidifies and the membrane is distorted in a
manner to be determined.
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a discussion of the results, their experimental basis, and
their various applications.

II. PREMELTING AND THERMOMOLECULAR
PRESSURE

The focus here is on the interface between a solid
and a nonreactive, uncorrugated substrate. When ask-
ing whether or not a layer of melt intervenes between the
solid and the substrate several approaches to the problem
have proved useful. One approach uses the full frequency
dependent theory of dispersion forces to find the thick-
ness d of the layer that minimizes the excess free energy at
a fixed temperature [14]. In such an approach, the p's are
the interfacial free energies per unit area of the solid-wall
(siU), solid-liquid (sE), and liquid-wall (Au) boundaries,
with implicit reference to the crystallographic orienta-
tions present at an interface. The excess free energy is
then written as p, ~ + pr + E(d), where E(d) is the f're-

quency dependent excess free energy associated with the
layer. Complete interfacial melting is indicated by a di-
vergence of d as the free energy minimum is approached
where p, = p, g +pg . Another approach is based on the
notion that, if the interface is wetted by the liquid phase,
at temperatures below the bulk melting point T then
the free energy of the wet system is lower than that of the
dry system [3,8,11]. Thus, if the interface were initially
dry at small reduced temperature t„= (T —T*)/T
(T* is the actual temperature), the system's free energy
could be lowered by converting a layer of solid to liquid.
One deposits a layer of thickness d and then minimizes
the system's mean-field free energy: equilibrium comes as
a balance between interfacial energies, which act to de-
crease the total &ee energy with increasing d, and bulk
free energies which assess a penalty for the maintenance
of a supercooled liquid. For thin films at small t„, the
penalty is not prohibitive, and the film persists. Com-
plete interfacial melting is indicated by a divergence of
d as T is approached &om below. The form of the
divergence (e.g. , power law or logarithmic) depends on
the basic interactions in the materials. While these and
other approaches difFer in detail (e.g. , interparticle inter-
action potentials), they all agree that on surfaces of many
solids thin liquid Alms are thermodynamically stable be-
low their bulk melting temperatures.

To study the dynamics of these films, we take a modi-
fied view of the second approach above. If the solid-wall
interface is wetted by a macroscopic layer of the melt
(M) of thickness d at temperature T', the mean-field
free energy of the system is composed of bulk and sur-
face terms. The total grand potential is

0 = P~V~ —P.V. +—Z'(d),

[1]). At t„) 0, there is an efFective interaction be-
tween the two interfaces, which will depend on their sep-
aration. The function f (d) represents the algebraic de-
cay due to van der Waals interactions between a film of
thickness d and the two other materials which it sepa-
rates: f (d) = 1 —( —) +, where 0 is on the order of
a molecular diameter and o. = 3 for nonretarded and
o. = 4 for retarded dispersion forces. Thus, Z(d) dis-
plays the asymptotic behavior of the thickness depen-
dent excess Helmholtz free energy per unit area from the
full frequency dependent dispersion theory in the case
where complete surface melting occurs [14,24]. In com-
plete interfacial melting the dry interface is more costly
than the wet interface, so Lp & 0. The minimum of
0 occurs at fixed temperature and chemical potential,
p~(T*,P~) = p, , (T*,P, ) = p, thus for fixed total vol-
ume the minimization with respect to d occurs when the
pressure difFerence between the melt layer and the solid
is

(2)

Hence, the pressure is uniform in each phase, but the
interfacial term is responsible for a pressure difFerence
between the melted layer and the bulk solid, which is
known in the context of wetting as the disjoining pres-
sure [19]. The pressure in the melted layer cannot be
directly measured in equilibrium. Rather, the difFerence
expressed in Eq. (2) represents the tendency for the in-
terfaces to repel; an efFect realized dynamically.

The essential qualitative features of frost heave can
be realized directly from Eq. (2), which becomes P~ =
P, + 2Lpo d for nonretarded interactions. We imag-
ine maintaining P, at some fixed value. By assumption,
the film thickness increases with temperature, so that the
pressure in the film, P~, must also increase with tem-
perature. Hence, on imposition of a temperature gradient
parallel to the interface, premelted liquid will be driven
along the interface from high to low temperature where
it eventually freezes. Complete interfacial melting oc-
curs at T* = T, and the film thickness diverges, so that
P~ ——P, = P, where P is the pressure in a reservior
which is in contact with the layer. To study the detailed
dynamics of interfacially melted films, we must derive a
number of additional thermodynamic results.

We are interested in the region of the phase diagram
where the solid is the stable bulk phase. Expanding the
chemical potential of a region j about (T,P ) to first
order [25] and using the Gibbs-Duhem relationship yields

p, (T*,P~) = p, (T,P ) —si(T.* —T )
(P, —P )

P

where P and V denote pressure and volume, and the
interfacial term Z(d) captures the free energy benefit
(decrease) of increasing the film thickness. We write
Z(d) = [Apf(d) +p,~]A,~, where Ap = p, g+pg
and p, is the nonequilibrium measured value of the
solid-wall interfacial free energy (see Appendix and Ref.

where 8~ is the entropy per unit mass. The intensivity of
chemical potential requires that in thermodynamic equi-
librium the chemical potential of the melted layer is equal
to that of the solid,
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p (T,P ) —p~(T, P~) Pm pgg~tp ~

(P. —P )= —q t„+ ( M 7Tl )
O (4)

P~ —P, = pIq t—, —(1 —ps/p, )(P, —P ) (5)

where q is the latent heat of fusion per molecule. As
has been pointed out previously [ll], on considering the
density of the melted region to be equivalent to the bulk
liquid density (p~ = pg), one can express the pressure
difFerence P~ —P, as a universal thermodynamic func-
tion, independent of the interaction potential. Rewriting
Eq. (4) we obtain

Since the pressure decreases for decreasing temperature,
fluid flows towards lower temperatures. The pressure dif-
ference or thermomolecular pressure given by Eq. (8) is
negative and can be viewed as a shift of the chemical
potential of the film Rom the reference state defined by
the reservoir [3,11]. Hence transport of liquid realized by
imposing a temperature gradient reflects the gradient in
chemical potential.

Studying the case in which there is flow in a confined
premelted film requires that the overburden pressure is
greater than P, but less than the maximum frost-heave
pressure given by Eq. (6). This general condition follows
from Eq. (4):

When the pressure in the liquid layer is constant, equal
to the reservoir pressure P, a dynamic equilibrium is
established and Eq. (5) provides

P~ —P = pgq t,—+ (P,——P )
ps

(9)

P, —P =pq t„. (6)

For thin metal films, where charge fluctuations are
screened by the film conductivity, the resulting short
range potential leads to an exponential behavior 8f /Bd oc

exp( —cd), where c is a constant. This provides loga-
rithmic temperature dependence, d oc~ lnt„~ [8]. Other
types of interactions lead to similarly specific tempera-
ture dependences. To provide some intuition we note
that Gilpin's data [13(a)] for ice against various metals
are consistent with a film thickness of about 35 A. at
T* = —1 C, and Wilen and Dash's data [21] for ice
against a plastic are consistent with films this thick when
T* & —0.025 C.

When the solid is in equilibrium with the reservoir, one
can determine the pressure gradient that drives the Bow
in the liquid layer by setting P, = P

Thus, in equilibrium, the pressure builds up to a value
proportional to t„. For example, this pressure in water is
ll atm C and in Ar 5.7 atm C, and values for other
materials have been tabulated elsewhere [3,11]. In porous
media, this is referred to as the maximum frost heave-
pressure, which is the maximum pressure that can build
up as a result of the flow of unfrozen liquid to the freezing
front [ll]. When P, reaches this value, opposed by an
equal overburden pressure from the wall, the flow ceases.
When the wall exerts no overburden pressure, fluid Bows
from the reservoir through the thin film, and towards
the solid-liquid interface, where it solidifies to heave or
distort the wall. Note that, in the case of water, it is not
the pressure associated with volumetric expansion during
the phase change that creates the frost-heave pressure, as
this could be taken up by the reservoir.

Combining Eqs. (2), (5), and (6) yields an expression
for the temperature dependence of d that depends on
the nature of the intermolecular forces. For unretarded
(o. = 3) van der Waals forces, the dependence is a well
known power law [2,8] in the reduced temperature:

Thus, as stated above, a temperature gradient along the
interface creates a thermomolecular pressure gradient [11]
which drives flow in the premelted film. This is analogous
to a gradient in the disjoining pressure along a wetting
substrate [19]. Next we describe our study of the dynam-
ics of this film in a confined geometry.

III. SOLIDIFICATION IN A CAPILLARY TUBE

The thickness of an interfacially premelted layer is uni-
form in isothermal systems. Hence direct experimental
searches for premelting have focused on probing isother-
mal systems for liquid fraction. Here, we are motivated
by the experiments of Wilen and Dash [21] on pure H20
ice, in which a temperature gradient is imposed paral-
lel to the premelted interface and the subsequent dy-
namics is probed by interference microscopy. This novel
approach has the advantage of exposing the essential
physics of the problem in the absence of impurity and cur-
vature effects [9], which complicate the analysis. Their
apparatus is geometrically more complicated than that
we consider here, and an explicit comparison is the sub-
ject of a future presentation. We consider a flexible cap-
illary tube that is insulated around its diameter (with
the exception of the small region in the center), but can
conduct heat axially (Fig. 1). The tube is centered on
a cold ring and filled with a pure liquid. Note that we
eventually study H~O ice, but our analysis is general and
requires only that the material in question interfacially
premelts in the mean-field sense outlined above. If the
system is maintained at a uniform undercooling t„, then
the capillary is filled with the solid phase surrounded by
a thin annular film of thickness given by Eq. (7). The
film is in contact with a bulk reservoir at T,P so there
is an infinite supply of the liquid phase available to the
annular region.

Consider an initial state that is liquid and isothermal
at temperature T . An experiment begins by cooling the
middle of the cold ring to a value Ty & T so that the
vertical solid-liquid interface at x (t) grows axially along
the capillary (Fig. 1). The approach to local phase equi-
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librium is assumed to be very rapid relative to changes
in the temperature, so at each position 0 & x & x
the temperature T*(x,t) determines the film thickness
d(x, t) = r2(x, t) —ri(x, t) according to Eq. (7). The
temperature gradient is responsible for an axisymmetric
thermomolecular pressure gradient which, according to
Eq. (9), is given by

at T, any gradient causes the bulk solid to grow at the
expense of the liquid. . Thus we have a type of Stefan prob-
lem [27] which is coupled to the mass transport through
the thin film via Eq. (15). Heat is conducted along the
solid and latent heat is released as liquid in the thin film
solidifies. Hence conservation of thermal energy gives

~P PlQ ~T +P g~
Tm ps

(io)
OgT = KB T + —— BgP2,

cp~o

—0 Pg
U(r) = (r —ri)(r2 —r),

2rj

in the limit d (( ri [26], where rI is the dynamic viscosity
of the bulk liquid. The mass Hux Q is given by

K pgB~Pgdr pg27rr U(r) = —— P2d
6

(12)

Hence there is flow along the thin film, and liquid ma-
terial in excess of the equilibrium thickness [Eq. (7)] at
a given local undercooling must solidify, increase the ra-
dius of the solid, and thereby increase the capillary radius
r2(x). Mass conservation requires that

Oi(7rr2 ) +0 Q = 0,

Note we have written P~ ——Pg since we are treating
the film as bulk liquid. This pressure gradient drives a
lubrication How in the thin film U(r) given approximately
by

T —Tf (x = 0),

where Ty is an experimental control. With regard to the
thin film flow, x = 0 is a symmetry plane at which the
liquid volume Hux Q must vanish, and so from Eq. (15)
we have that

(x = 0).

At time t the bulk solid-liquid interface is located at x =
x (t) where the temperature is given by

where cz and r are the specific heat at constant pressure
and the thermal diffusivity of the solid. We use these
values because, in the region 0 & x & x, the volume
fraction is dominated by the solid and so it will carry
almost all of the heat.

The governing equations given above form a system of
coupled, partial differential equations, which require the
following boundary and auxiliary conditions. At the cold
ring x = 0 we have

where t denotes time and Q is the volume flux, which we
now write explicitly using Eq. (10) as [x = x-(t)1. (i9)

Q =
I

BP, —p—gq Bgt
r2d' ('re
6~ qp.

*' (14)
Since there is no ice within the dispersion force range of
the membrane, there is no deformation there, which gives

The pressure at each point x in the solid is opposed by
the restoring force of the capillary membrane. For sim-
plicity, we assume that the capillary walls only exert a
hoop stress, which is a good approximation if the defor-
mation varies slowly with axial distance. In addition, we
assume linear elasticity,

P, = k(r2 —rp),

where k is a constant, and ro is the undeformed radius
of the capillary tube. Equations (13) and (14) can be
combined to yield an equation for the capillary radius
T2 )

2 —&0=0 (2o)

The position of the interface is determined by solving the
field equations and boundary conditions subject to the
usual Stefan condition expressing conservation of heat,

rB~T* = Bgxm
Cp

I.
= * (t)]. (21)

Finally, at x = x (t), condition (19), on the temperature
at the bulk phase boundary, introduces a singularity in
Eq. (15), which implies an infinite volume Hux in the
film unless

Bgpg—
12@ps Tm

p'q- (T —T') = o, (is)

which depends solely on the temperature T*.
On cooling the cold ring, a temperature gradient is es-

tablished across the solid. Since the melt region is held

This is not an imposed boundary condition but has been
determined as a necessary condition on the solution of
the equations.

We are chiefly concerned with the nonretarded regime,
but we note several phenomena that are of interest as
x i x (Fig. 1). First, as x increases, one will en-
counter a point, say x „,where retardation may control
the film thickness, and the retarded power law will be-
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come relevant. Second, as x increases further, Gibbs-
Thomson effects will inhuence the phase boundary ge-
ometry; the solid-liquid interface is out of the dispersion
force range of the membrane. Finally, the lubrication
approximation will break down in the same subdomain,
Sx = (x —x „)/x « l. We will find that these ef-
fects do not alter the essential features of our analysis,
but we will pursue some of their implications in future
publications.

IV. SIMILAR.ITY S(3LUTION:
TR,ANSIENT THER.MAL FIELD

We fIrst consider the capillary to be infinite in the z di-
rection, so since there is no externally imposed time scale
Eqs. (15) and (16) and the associated boundary and aux-
iliary conditions admit a similarity solution. The scalings
for the capillary displacement and temperature are cho-
sen as follows. Balancing the second and third terms of
Eq. (15) suggests r2 —ro scales with p, q AT/vrkT
where AT = T —Tf is an appropriate scale for tem-
perature differences in the system. The time evolution
of the system is diffusive in character, which leads to the
similarity variable ( = z/2~ict. The similarity solution
of our dimensionless field equations depends solely on (
and can be written as

r2 —ro = pa(()

and

T' = —2S( (& =&-) (29)

where Eq. (29) is the Stefan condition. The singularity
in Eq. (24) when T = 0 (at ( = ( ) necessitates the
condition

4 =&-).

We estimate an appropriate magnitude for the dimen-
sionless parameter e = pt7rkAT /12vrjp, &T as follows.
We focus on the ice-water system and use pg/p, =1.091,
T~ =273.16K, K=1.2x10 m s, g=1.37x10
kg/m s, and A = 1.57 x 10 m, the latter deter-
mined from a fit of Gilpin's data [13(a)] in the tem-
perature range —0.01 & T* & —10'C using the van
der Waals exponent [8(c)]. An experimenter has some
freedom to choose AT and k. The temperature scale
AT will typically be in the range 1—10 K. The value of
A: is determined by the material forming the capillary
tube and the thickness of its walls, and should be chosen
small enough to allow measurement of the wall displace-
ment. If the diameter of the tube is 1 mm, say, then
a 10' displacement (i.e., 100 pm) is easily detectable
using optical techniques. The maximum displacement
is that which gives the maximum frost-heave pressure
P + p, q t„=mk(r2 —ro). Therefore, for fiow to persist
throughout the domain 0 & x & x, k should be chosen
to be less than about 3 x 10 Pa m . This value of A:

gives an upper bound to e of about 10 . Since e (& 1, we
seek an asymptotic solution of the equations as follows.

T —T* = AT T((), (23)

where AT = T —Tf and P = p, q AT/7rkT is a length
scale characteristic of the deformation of the wall. It is
the product of the thermomolecular pressure coeQcient
p, q /T, which is solely due to the properties of the ma-
terial, and an experimental parameter which is the ratio
of the thermal drive for the thermomolecular pressure
AT and the strength of the capillary k.

With these scalings Eqs. (15) and (16) can be written
in dimensionless form as follows:

Solution by matched asymptotic expansions

The outer' aolution

To" = 2(To, — (31)

We proceed by seeking solutions to the leading-order
equations obtained by setting e = 0 in Eqs. (24) and
(25). This gives

—2(T' = T" + 28(7Z', (25)

(& = 0), (26)

((= o), (27)

where the primes denote differentiation with respect
to (. The dimensionless parameters are
pr7rkAT /12~gp, AT, with A = As as defined by Eq. (7),
and 8 = 2q P/c„ATro = 2SP/ro, with S = q /c„AT
being the usual Stefan number. The symmetry plane
and the "bulk" phase boundary-are located at ( = 0 and
( = (, respectively, so that boundary conditions (17)—
(21) become

Bo =0.

er
(33)

with

~sr( e~-erf( = S

[27]. Equation (31) has the solution

Ro —Ro (const),

(34)

(35)

Equation (31) satisfies all the thermal boundary condi-
tions (26), (28), and (29). The solution is simply that of
the classical Stefan problem, namely,

4 =(-) (28) which satisfies neither the boundary condition (27) nor
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the singularity condition (30). The perturbation e -+ 0
is a singular perturbation of Eq. (24). Physically, the
leading-order solution does not capture behavior in re-
gions where the gradients are large. To proceed, we re-
quire boundary layers at both ends of the domain, and
we shall ultimately determine Bp by matching with the
boundary-layer solutions [28].

The solution of Eq. (42) is

Go = (I —e~ erfc(), (46)

where we have used the solution to Eq. (43) to show that,
in this boundary layer, Ho ——(, i.e. , that the temperature
is appoximately linear. From Eq. (46), we see that

Boundar'y layer near g = 0
Go +0(( ) as (-+ oo,

2
(47)

In this region we require that B' T' = O(1) and that
both sides of Eq. (24) balance, which suggests introduc-
ing the rescaling AS+

2
(48)

which shows that the constant inferred from Eq. (35) has
the value

B = e'i I"(g). (36)

Proceeding as in the outer region, the leading-order equa-
tion for the boundary layer becomes

—2gFp = Fo",

which is subject to the boundary and matching condi-
tions

A. composite sotution

At this stage we can form a uniformly valid asymptotic
solution [28]

R~ ——Bo+ Fo+ Gp —lim Fp —hm t p,
'g ~CXO /moo

which gives

(q=o), (38)

(rI -+ oo).

The leading-order inner solution is thus

er fc7/
0 o+ x erfc

1 —exp
i ( (( —()

2S(-(('- —0 i

)
(50)

Since Iio ——O(1), Eq. (40) or, equivalently, the matching
condition (39), shows that Re —O(e'~ ).

8. Boundary layer near (r = (r

V'2S ( (( —(),
T = e'i V'2SH(().

B = e'~ 42S G((),
(41)

The leading-order equations in this boundary layer are
then

which are subject to the boundary conditions

(43)

p=IIo=o ap =Co =1 K =o) (44)

G', ~0 (( -+ oo). (45)

In this region we seek the same balances as previously,
namely, that R' T' and that the two sides of Eq. (24)
must balance. However, since T is also small in this re-
gion it must be rescaled along with B and (. We are led
to the following scaled variables:

where ( is determined as the root of Eq. (34). The
first and third terms are the boundary layers near ( = 0
and (, and the second (constant) term represents the
"outer" solution which is the middle region in I"ig. 2
where the deformation is uniform. This solution, shown
in Fig. 2(b), is universal in that it has the same form
for all values of dimensional time and space [within the
domain 0 ( x ( z (t)].

A comparison between the composite solution and
a numerical solution of the full similarity equations is
shown in Fig. 2(a) for a value of e = 0.1. The agreement
is very good, and it will be even better for smaller values
of e. Thus the composite expansion provides an excellent
approximation for practical use.

In Fig. 2(c), we show the composite solution for e =
10, plotted as a function of distance for various times.
This figure is representative of what would be seen in a
typical experiment. Note that a finger of ice appears to
push into the capillary, forcing it open at the nose. Of
course, the ice is not being pushed, and. the actual mech-
anism of heave is as follows. During the time scale of
deformation the temperature gradient is approximately
uniform along the tube, which implies that the thermo-
molecular pressure gradient is almost uniform. However,
the premelted film is thickest near the nose, where the
undercooling is lowest, and decays over a short distance
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hence, the thermomolecular pressure gradient were large
everywhere.

It is important to note that the displacement R
O(e ~ ) && 1 during the transient phase of an experiment,
which is described by the similarity solution presented in
this section. In a finite-sized experiment, the ice can stop
advancing and the temperature field can become steady,
but capillary How will continue until the displacement of
the wall provides sufIicient elastic pressure to counteract
the thermomolecular pressure. We analyze this situation
in the next section.

0.3

(b)
V. SIMILARITY SOLUTION:

CONSTANT TEMPEB.ATUB.E C RADIENT

0.2

0.1

0.0 L

0.0

0-2
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We now analyze the capillary deformation for a case
in which the temperature gradient is held at a constant
value g. We choose coordinates such that the bulk solid-
liquid interface is located at the fixed position z = 0
and x increases towards the cold ring. This allows a
simple representation of the temperature field as T*(x) =
T —gx, and Eq. (15) for mass conservation becomes

R(P,)

0,030

0.020

0.010
10

(c)

pgnkAT 1,/ p, g gi,
t ~2 a-

I

& —~. — —
i

=0

(51)

This equation also admits a similarity solution but with
a diB'erent variable q = z/8, where

0.000
0.2 0.6 0,8

x (cm)
1.0 1.2 (~kAT

(52)

FIG. 2. (a) A comparison between the composite solution
of dimensionless (universal) similarity solution for wall dis-
placement B as a function of the dimensionless similarity
variable (, with a transient thermal field, Eq. (50), and a
numerical solution for c = 0.1. The material is pure 820 ice,
and the thermal properties are commonly available. (b) The
composite solution for R as a function of ( for three values
of the parameter e. Note that, when e is small, the wall dis-
placement is almost uniform along; the capillary, and that by
the scaling of the deformation [Eq. (23)j, R increases with

(c) The composite solution for e =10 as a function of
position at t =1, 10, and 100 min.

The similarity solution for capillary deformation is given
by

r2 —tp = Rg(g) with 8 p.g &

vrI T

The length scale 'R is time dependent and expresses the
eKect of the driving force and the capillary strength on
the deformation at a given time.

The dimensionless, ordinary difI'erential equation for
the capillary deformation, derived from Eq. {51),is

(54)

8 = O(e ~ ) towards the cold ring. Hence there is a large
Bow of water in the film near the nose, which freezes to
cause heave. Away from the nose, due to the smallness
of the van der Waals coeKcient A, the film How is weak
and there is little further heave. Thus the displacement
of the capillary wall is approximately uniform away from
the nose. The volume Q.ux that drives the deformation
decreases at a rate that scales with the rate of motion
of the bulk interface (oc t ~ ). Hence the deformed re-
gion of the capillary maintains the same shape as the
solid finger grows down the tube. The larger displace-
ment near the center of the capillary is a remnant from
the initial moments when the temperature gradient and,

where the primes denote diBerentiation with respect to q.
Solutions to Eq. (54) are required to satisfy the boundary
and auxiliary conditions

g=0 g = 1

and

gm0 {q m oo). (56)

Equation (54) was solved using a numerical shooting
method in which the curvature g" at q = 0 was varied un-
til the boundary condition (56) was satisfied. The (uni-
versal) similarity solution is plotted in Fig. 3(a), and the
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liquid interface as Q/k increases.
The qualitative features of this solution w't's so u ion, wit a local

maximum in the deformation near the bulk interface, are

and Dash [21]. In their ex, uren eir experiments, the temperature
gra ient is fixed. The essential d'8 bi erence etween our
steady state anal sis any ~ their experiment concerns the
geometry of the membrane. Thee essentia similarity, and

at w ich dom'n dominates the comparison, is that the driv-

gra ient is the same.

VI. DISCUSSION

We have studied thehe &asic mechanisms associated with

force of t
the transport of interfacially premelted Glms d thmsun ert e

e of t ermomolecular pressure d t
p e mo e of solidiGcation inside a capillary tube. Our
analysis is valid for any material that undea un ergoes inter-

preme ing in the mean-field sense outlined, which

f t
includes nonretarded van der Wa 1 fer aa s orces, and other ef-
ects w ich result in a

inE . 7.
t power law dependence like th ta

q. . Interactions which are stro th dronger an van der
aa s may still be modeled as we have done, but by vary-

ing the strength through the coeKcient A. B i
pera ure gradient parallel to the premelted interface,

a thermomolecular pressure gr d' t da ien rives unfrozen liq-
uid towards lower temperature M t

~ 0 e

es. a eria in excess of the
a any position along theequilibrium thickness [Eq. (7)] at an o '

in er ace so idifies anin d fi and the membrane conGning the Buid
layer distorts. We have derived a d 1 d han so ve t e relevant

e equations for transient and stead t t ty s a e empera-
ure gra ients. The latter solution is relevant to, and in



J. S. WETTLAUFER AND M. G. %'ORSTER

qualitative agreement with, experiments using pure H20
ice [21]. We find a marked distinction between the shapes
of membrane deformation in the two cases. In the tran-
sient case there is primary deformation in a thin bound-
ary near the bulk solid-liquid interface which relaxes to
a small constant value at low temperatures. In the fixed
gradient case most of the deformation occurs near the
bulk solid-liquid interface and creates the bulge shown
in Fig. 3, which migrates away from the bulk interface
at a rate proportional to t ~ . The simple model we
have studied elucidates some of the underlying dynamics
of frost-heave phenomena in model porous media and in
natural soils.

As the temperature is lowered the liquid layer thins, its
entropy density decreases, and this results in a solid-like
ordering in the film. Therefore, two important effects oc-
cur at low temperatures: the viscosity increases relative
to the bulk value, and the continuum approximation be-
gins to break down. An experimental deduction of the
film thickness requires an estimation of the viscosity [21];
hence we have a unique, although indirect, opportunity
to study proximity induced ordering adjacent to inter-
faces in terms of dynamical quantities. New microscopic
and semimicroscopic models of Quid viscosity can then
be tested. Another issue of proximity concerns the role
of corrugations in wetting and surface melting, which has
been investigated in static cases [29]. Dynamic aspects
of these problems may be addressed using a geometri-
cally disordered capillary. In addition, proximity effects
in quantum systems, such as helium, might be examined
in a qualitatively similar manner.

There are two situations of great practical importance
where our analysis may be of use: geophysical and bi-
ological. Since frost heave is responsible for damage to
engineered structures, the breakdown of rock [30], and for
the creation of regular geomorphological features [3,11],
we anticipate that our "local" dynamics could be brought
to bear on porous media problems. Although curvature
and impurity effects may dominate the dynamics, water
transport along veins between crystal grains, grain coars-
ening, and the ablation of glacier ice are situations that
are also related to our study [31].

The dynamical concepts we have presented may help
in understanding the freezing of biological cells, either for
tissue preservation, medical treatment, food science, or
fish biology. Both phase change problems involving ice
and ordering of water at membrane walls have been ac-
tively studied (e.g. , [32]). If frozen in a transient thermal
Beld our results suggest small uniform deformation, but
the steady field will eventually create large deformations
which may not be reversible. Hence &ost-heave damage
can be minimized in a transient thermal field.

Finally, it is generally not appreciated that in most
cases filins are formed under conditions out of equilib-
rium. Since the thermomolecular pressure gradient is
only present in a temperature gradient, this approach
provides information not available in isothermal experi-
ments. The correspondence between the liquid-gas sys-
tem and magnetic systems (e.g. , [1]) suggests a poten-
tial link between the present analysis and the dynam-
ics of systems with long range interactions whose critical

behavior can be described by mean-field theory. Our
approach should be useful in the study of (a) the dy-
namics of thin films wherein one interface is free, e.g. ,

surface melting or gas-liquid wetting on a substrate and
(b) shape transitions during phase separation of a binary
liquid [6(a)] in a pore. Thus thermomolecular pressure
and the associated transport offer a tool for fundamental
physics research on a variety of systems and provide new
insights on problems of practical importance.
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APPENDIX

We collect here a number of the similarities between
the interfacial thermodynamics presented in Sec. II, and
the approaches which are more common to those used
in wetting phenomena. The point is to show that differ-
ent approaches are related in a straightforward manner.
More complete, albeit different treatments are given by
Schick [1] and Israelachvili [24], and the dynamics of wet-
ting is treated by deGennes, and Leger and 3oanny [19].

We begin by showing how the form of the interfacial
term appearing in Eq. (1) arises from a simple treatment.
Considering only nonretarded van der Waals interactions,
Israelachvili [24] shows that the interfacial energy of an
isolated interface, p, is half the adhesion energy 24
where A is the Hamaker constant and o.

, as in our treat-
ment, is of order a molecular diameter. We can derive
our expression by generalizing his argument to consider
two interfaces separating different materials a distance d
apart. The total interfacial free energy per unit area is

A, g AgT=
24~0 2 24~0 2+ (A1)

Asdmoo,

A,g+ Ag
IT +

2
= +8' + pg~~24+02

IT ~ QsE + +Au 2
= Qsm~12'7T 0

I~ = b,pf(d)+~,

where p, is the nonequilibrium quantity that we mould
measure if we could bring the wall up to the solid without
the formation of a melt layer. By definition, Ap = p, g +

, so that i2
——o Ap, and hence we obtain



DYNAMICS OF PREMELTED FILMS: FROST HEAVE IN A. . . 4689

which is our X(d) per unit area. Schick [I] derives the
quantity analogous to p, for the vapor-liquid-wall sys-
tem as an integral equation over the interaction poten-
tials, and also shows that the equilibrium wall-vapor co-
ef5cient p „can never exceed the sum of the wall-liquid
and liquid-vapor coefBcients, p g + pg„. If a measured
quantity does so, then it is analogous to p, above, and
represents the nonequilibrium value. This, of course, is
directly relevant to the wetting of volatile and nonvolatile
liquids on substrates. In the latter sytems, the "dry" in-
terfacial coefFicient is, in principle, a measurable quan-
tity, but in all of these cases Ap is a measure of the drive
toward equilibrium, and hence Z(d) is an eII'ective inter-

facial interaction. Therefore the total interfacial energy
can be viewed as a perturbation of the surface free en-
ergies with the film thickness dependence given by f(d)
Finally, the so-called spreading parameter S of de Gennes
[19] is just —Ap. (S is not to be confused with the Stefan
number used in Sec. IV.)

As shown above, ' = 0 Lp, so that one can rewrite
the thermodynamic results of Sec. II in equally useful
forms using these substitutions:
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