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We develop a weakly nonlinear morphological stability analysis for a sphere growing from its pure un-

dercooled melt. For a sphere perturbed by a specific planform {a single spherical harmonic) we perform
an expansion in the planform amplitude, A, to calculate the nonlinear critical radius (above which the
chosen planform will be unstable for finite A), to lowest order in A, by setting the normal velocity corre-
sponding to the fundamental perturbing mode to zero. We study the nonlinear critical radius as a func-
tion of the amplitude to identify the various bifurcations, which are transcritical (requiring an expansion
to second order in A) for planforms generating physically distinct shapes for positive and negative am-

plitudes, and subcritical or supercritical (requiring an expansion to third order in A) for planforms for
which the positive and negative amplitude shapes are related by rotation or translation. Bifurcations
that are not transcritical are subcritical, except for a few harmonics of lower order or extreme ratios of
the thermal conductivity in the solid to that in the liquid. We also treat the anomalous case of a pertur-
bation by a first-order spherical harmonic (which is neutrally stable according to the linear theory, corre-
sponding to a translation without any shape change) and observe that the second harmonic becomes un-

stable before the perturbing mode itself.

PACS number(s): 64.70.Dv, 61.50.Cj, 61.50.Jr, 02.30.Mv

I. INTRQDUCTIQN

In this paper we consider the free growth of an initially
spherical crystal from its pure undercooled melt, subject
to the quasistationary approximation. The process of
crystallization from the melt is a first-order phase trans-
formation from a liquid to a solid. Such a phase transfor-
mation is always associated with the release of latent
heat, which is conducted away into both the solid and the
liquid as crystallization continues. For simplicity, we as-
sume isotropy of all crystalline properties including sur-
face tension. A mathematical description of this problem
involves solving the Fourier equation for the thermal
fields in the solid and the liquid phases, subject to the
boundary conditions of heat conservation, continuity of
temperature, and the Gibbs-Thomson equation at the
solid-liquid interface. The stability of the interface is in-
vestigated analytically by perturbation theory.

The linear stability analysis of a growing spherical
crystal from its pure undercooled melt was performed by
Mullins and Sekerka [1], in which they established a cri-
terion for the onset of instability for an arbitrary pertur-
bation. A similar analysis was applied by Mullins and
Sekerka to investigate the stability of a planar interface
during directional solidification of a dilute binary alloy
[2]. A weakly nonlinear analysis was developed for hy-
drodynamic stability [3] and applied by Wollkind and
Segel [4] to the morphological stability of a planar inter-
face. Since then, some excellent review articles [5—16]
and a large number of research papers have been pub-
lished on this subject. The weakly nonlinear analysis of a

II. UNDERLYING PHYSICS AND MQDKL

We consider the thermal problem of a sphere growing
from its pure undercooled melt. In the quasistationary
approximation [1,15], the nondimensional governing
equation and boundary conditions for thermal diffusion
in the solid phase and the liquid phase may be written in
the form

V' UL =0,
V' U, =O

(2.1)

(2.2)

in the bulk solid and the liquid, respectively. At the
solid-liquid interface

(2.3)

(2.4)

where U = —UL +PUs, P is the ratio of thermal conduc-
tivity in the solid phase to that in the liquid phase, and

two-dimensional circular geometry was performed by
Brush, Sekerka, and McFadden [17], who carried out an
expansion to third order in the perturbing amplitude.
They found that, in most cases, the system has small am-
plitude stable solutions (subcritical bifurcations).

In our work, we extend the work of Brush, Sekerka,
and McFadden [17] to three-dimensional shapes to bring
both principal radii of curvature into play. The three-
dimensional problem shows some important features that
are absent in the two-dimensional case.
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UL —+0 as r~~ . (2.5)

The choice of dimensionless variables is similar to that of
previous work [18,17] where lengths are scaled by the nu-
cleation radius R*=2TMy/LD(TM —T„) and time by
r=(R ) /a&S, where y is the surface tension, TM is the
melting temperature, T„ is the far field temperature, Lo
is the latent heat, and aL is the thermal difFusivity in the
liquid phase. The dimensionless under cooling
S =pLCI (TM —T„)/L0 and we also use the dimension-
less temperature fields Us I = ( Ts I —T„)/( TM —T„),
where pL and CL are the density and the heat capacity of
the liquid phase, respectively, and T5 L are the respective
temperature fields in the solid and the liquid.

appear as follows.
Order e . The differential equations are

, aULO
r =0,

q2 3r 3r

a, ~Uso
r =0

I 2 Br Br

and the interface boundary conditions are

1
U =1-

LO
0

1
Uso= &

0

(3.1 1)

(3.12)

(3.13)

(3.14)

III. PERTURBATION EXPANSION

r( 8$)=R + AH( (8,P),
where

(3.1)

We examine the behavior of a perturbed spherical crys-
tal to the third order in a small parameter e, to be defined
later. Thus, at a particular instant of time, we consider a
perturbed interface of the form

aUo

Bp
VNO ' (3.15)

V UL„=O,

V U5„=0

and the boundary conditions are

(3.16)

(3.17)

Order e", n = 1,2, 3. The differential equations are

and

R =Ro+eR, +e R2+e R3,
E~1+6 ~2+E ~3

(3.2)

(3.3)

UL„+ Z„—
aI'

~ Uso Zn+
Br R 02

Q Z„ =I
0

Q Z„
2R

=I
0

(3.18)

(3.19)

(3.4)
Y&0(8) for m =0

Hi (8,$)= .
[Y, (8,$)+ Y&* (8,$)] for m%0,

OU„a'U,
Zn VNn IUn

Bp' Qy
(3.20)

r(8, $)=RD+eZ, +e Zz+e Z3,
where

(3.5)

Z;(8,$)=R;+ A;H& (8,$) for i =1,2, 3 .

Similarly we expand the temperature fields

ULO+ ~UL1+ ~ UL2+ ~ UL3 7

U5= U50+eU51+e U52+e U53,

the curvature,

(3.6)

(3.7)

(3.8)

where the Yl are the familiar spherical harmonics of
quantum mechanics [19]. We can choose a definite phase
for H& because any other phase would amount to a
different choice of origin for P, which is physically
insignificant. For later convenience, we also write Eq.
(3.1) in the form

where the I's on the right-hand sides denote inhomogene-
ous terms that are zero for n =1, but otherwise compli-
cated functions of the solutions at lower order. The inho-
mogeneous terms that contribute to our results are given
in Appendix A.

There appear to be several ways to choose the expan-
sion parameter e because it was only introduced in a for-
mal way. Thus, in Eq. (3.3), only the products of e or its
powers with expansion coefficients can have physical
significance, so a certain degree of arbitrariness exists. A
very convenient choice is to set e= 3, the perturbation
amplitude [which amounts to setting A i

= 1 and
Az= A3=0 in Eq. (3.3)]. This is a perfectly general
choice and does not restrict the calculation in any way
[20].

IV, PERTURBATION BY Y2I p( 0)
(AXIALLY SYMMETRIC HARMONICS

OF EVEN ORDER)

K =TO+ eK1+e K2+ e K3, (3.9)
A. Zeroth-order solution

and the radial growth speed

~N ~NO+ ~ +N1+ ~ ~N2+ ~ ~N3 (3.10)

Explicit values of the K, in the curvature expansion are
given in Appendix A. The differential equations and the
interfacial boundary conditions at each order of e then

Ro
UL0(r) =

r
(4.1)

The solutions to Eqs. (3.11) and (3.12) subject to the
boundary conditions Eqs. (3.13)—(3.1S) are radially sym-
metric and readily found to be
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R0 —1
US0=

0

0
—I

VNO
R0

(4.2)

(4.3)

in Eq. (4.11), which now represents three homogeneous
equations in two unknowns aL'1 and o,'s'1'. Therefore, non-
trivial solutions for o.L", and us", exist only if the deter-
minant of the above matrix vanishes, a condition which
upon simplification yields the well known results of Mul-
lins and Sekerka [1]for the radius Ro in terms of P and I:

B. First-order solution R()(P, 2I) =1+(/+1)(2l +2Pl +1) . (4.13)

Trial solutions to Eqs. (3.16) and (3.17), subject to the
boundary conditions Eqs. (3.18)—(3.20), can be written in
the form

(0) (1)

Us. )(r g 0)= + 21+1 Y2lo(g)
I"

y

Usl(r g 4) asl +asl Y2I 0(g)

~m(g (t ) = &xi'+ 1'I'v')'Y21, 0(g»

Z) (g, $)=R
1 + Y2I ()(g),

(4.4)

(4.5)

(4.6)

(4.7)

where aL1,uL1 &S1 &s1 VN1, VN1, and R1 are yet un-(0) (1) (0) (1) (0) (1)

determined coefficients. To find them, we substitute the
trial solutions into Eqs. (3.18)—(3.20). The resulting set
of six equations can be split into two sets of three equa-
tions each, one set being proportional to Y2I 0(g) and the
other set independent of it. The equations independent of
Y2i, o(g) give

R, R() —l (2l + 1)

R
—2l + 1 21+ 1

(4.14)

US1(r g p): + r Y2I()(g) (4 15)
1 —l(2l +1)

R 2l+2

R i(2 —R() )
VN1 R30

(4.16)

Zl (g 4') R 1+ Y2I, O(g) (4.17)

and of the seven unknown coefficients we started out
with, R1 still remains undetermined.

C. Second-order solution

This is called the critical radius since any sphere with ra-
dius greater than R0 will be unstable according to the
linear theory.

Therefore, the complete first-order solution is

+L1 1

~(0)—R1
&S1

0

R, (2—R() )
V(0)

N1
0

(4.8)

(4.9)

(4.10)

The interface boundary conditions are inhomogeneous
and involve spherical harmonics and their squares,
which, owing to the completeness of the harmonic func-
tions, can be expanded in terms of them. Such an expan-
sion, in general, would be an infinite series, but group
theoretical considerations reduce it to a finite series, as is
well known in quantum mechanics. Therefore,

Note that VN,
' is just R, times BVN0/BR0, as expected.

The other set of equations, after elimination of the com-
mon factor Y2I 0( g), can be written in matrix form:

21

Y210(g) 2I 0(g) 2 C21 Y2i 0(g&0)
i=0

(4.18)

R
—(2l + 1)
0

0 R 21
0

l (2l + 1)—R()

R0
1(2l + 1)—1

R0
2lI —I(0)+ pl(2i)Y (g y) (4.19)

where the C2,. are related to the Clebsch-Gordan
coefficients [19]and are given in Appendix B.

For our purposes, it is convenient to write the inhomo-
geneous terms in Eqs. (3.18)—(3.20) in the form

P2IR"-'
R 21+2 0

0

—2(R() —1)

Ro where the coefficients I are given in Appendix B, and take
the trial solutions to Eqs. (3.16) and (3.17) as follows:

(1)
QL1

X aS1(1)
0

(4.11)

~(0) 2l ~(2i)

p
2i+1

21

Us2(r, g, y)=as2'+ y as2'r 'Y2, 0(g, y),

(4.20)

(4.21)

At the onset of instability, the component of normal ve-
locity proportional to the fundamental mode of perturba-
tion is zero to all orders. Thus, for the first-order solu-
tion, the velocity component proportional to Y210(g)
must vanish and so we set

21

~+2(g 4)= &iA''+ X &iA'Y2, 0(g 0» (4.22)

(4.23)

VN1 (4.12)
As before, the trial solutions are substituted into the
boundary condition Eqs. (3.18)—(3.20) and coefficients of
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the same spherical harmonic on opposite sides of each
equation are equated to give

L2=IL2R0+R(0)—(0)

u' =I' '+ R2
S2 S2

0

R,(2 —R, )

R0 R0

and

4

0

Ro —-65.0
)=I.5

4

2

0

Ra =33.56
(=0.19

(2i) I(2i)R 2i + 1
~L2 L2 0

(»)
(2i) IS2
S2 R2i

0

(z;) (2i + 1) &(2, ) + I 2i &(2!) /{2()
N2 R L2 R S2 U2

(4.24)

(4.25)

(4.26)

-2

62 64 66 68
R

33.54 33.58

for i from 1 to 21. For IXI, all the I( ') terms are com-
pletely known and Eqs. (4.24)—(4.26) uniquely determine
the coefficients aLz', as2', and VN2'. For i =l the mar-
ginal stability condition requires

y(2I) 0N2

FIG. 1. Perturbation amplitude A as a function of radius R,
for perturbation by Y60(0), for two different values of P. The
straight line plot indicates that the bifurcation is transcritical.
Since P6=0. 1967, the slope is positive for P &P6 and negative
for P&P6.

and so Eq. (4.26) with I substituted for i provides us with
the solvability condition

values of I, 13& attains a limiting value

P'= limP(= —,
'

I~ oo
(4.31)

(21+1)~(2() + p2I (~() ~(2() ()L2 R S2 U2
0 0

(4.27) and any P less than —,
' will give positive R, for all values

of I.
The I( " terms in Eq. (4.27) contain the free parameter
R &, which may be solved to yield

R, =[ f3I (1(21+1—) —1]
0.0

p=z.o
0.0

with

—P2I(2l +1)[21(21+1)—1]

+R()1(I +—') —(I +—')(I —2)]2 2 R()(21 —1)
(4.28)
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Going back to Eq. (3.2) and recognizing that our choice
of 3

&

= 1 c4 2
= 2 3

=0 requires e= A, the amplitude of
the perturbation, we have

Oo 0
p=o.s

0.25
)=0.125

R (P, I)=Re(I3,2I)+ AR, (P, I) . (4.29)

A plot (Fig. 1) of R versus 3 will be a straight line pass-
ing through R0 with slope equal to R, . Such a bifurca-
tion is said to be transcritical. If we analyze the expres-
sion for R &, we find that for a given value of the parame-
ter I, R ( is positive if P is below a certain value P(, zero if
P=P&, and negative otherwise (Fig. 2). The value of P,
can be readily found to be

-0.6

IO 20 30
I

-O.2
0

0
0-0.4

op
000

po 0

0.20

0.35

010 - o
op ooooooooooo

0.05

10 20 30
I

(I + ')(21 +31 +1 +2)—
(21+1)(713+41 —21)—1

and a plot of {8( versus I appears in Fig. 3. For large

FIG. 2. R& as a function of the order 1, for perturbation by
an even axially symmetric spherical harmonic. For P &P* (the
bottom right plot) R, is positive for all values of 1 as predicted
by Eq. (4.31).
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but for 1&1 it gives

Ro(g, l) =1+—,'(1+2)(l +Pl +1), (5.6)

0.4 which is in agreement with Eq. (4.13). As before, the
first-order solution is not complete, since R, is unknown,
and we proceed to the second order to find it.

C. Second-order solution

0.0

Q QQQQ oooo g6QO~

8 12 16 20 24 28 32 36 40
l

The second-order interface boundary conditions are in-
homogeneous, The inhomogeneous terms contain the
spherical harmonics, their derivatives, and their prod-
ucts, which can be expanded in a finite series of the
spherical harmonics themselves. Thus, for example,

l

Hi (8$) = g [C212 H~~2 (8$)
j=0

+( 1) C2J o &21 o(0)]
FIG. 3. Critical conductivity ratio Pi as a function of the or-

der I for perturbation by an even axially symmetric spherical
harmonic. The broken hne represents the limiting value 13*=

7

of P& for very large 1.

V. PKRTURBATIQN BY I'i {8, $ } {l & 1 }

%'e now consider the case for general l and m. %'e
want the perturbation to be real, so we use H& (0,$) in-
troduced in Eq. (3.4). We shall treat the case 1=1 in a
subsequent section, since it has some unique features that
will become evident as we proceed. %'e have already
treated the case m =0 and I even in Sec. IV, so we will
only brieAy indicate how it is related to the general case.

A. Zeroth-order solution

+( —1) C2,,oI'2, ,o]
(l)

CXL2+ l+i ~l, m (5.7)

Consequently the inhomogeneous terms can be written
formally as

I=I")+I("Z II1 l, m

l

+ gI ~[C2 ~ H2 ~ +( —1) C2joI'2 o],
j=0

where C2 2, C2 0, I' ', I'", and I' J' are given in Ap-
pendix C. Therefore, the trial solutions are chosen to be

~(o) l ~(2j)QL2 +X, , [C2,;2 H2, , 2

The zeroth-order solution is the same as before and is
given by Eqs. (4.1)—(4.3).

B. First-order solution

I

U„(., e, y) =~,",'+ y ~,"j"'[c„,.H„,.
j=0

+( —1) C2, , oI'2, , o]

UL i(r, e, p) = R, [Ro—1/2(l +1)] Hi (0,$)
g —1+1

'+
l+1

(5.1)

The 6rst-order solution, found by the method of Sec.
IV, is

+~S2~ IIl, m
(l) l

l

v„,(e,y)= v„",'+ y. v„"j'[c„,H„,.
j=0

+( —1) Cz,;oI'2, o]

+ VXZIIl,

(5.8)

(5.9)

Us, (r, e, p) = + i+ r Hi (0,$),[1—I/2(1+1)]
RO R p

R, (2—Ro)

Rp

Z, (8,$)=R, +Hi (8,$)

and the critical radius condition is

(5.3)

(5.4)

Z2=R2 . (5.10)

The coefficients are found by substituting these solutions
in Eqs. (3.18)—(3.20) and equating coefficient of the same
spherical harmonic on either side of the equation. For
m %0 and any 1 or for m =0 and odd 1, the terms in the
sum in Eq. (5.10) do not contain the fundamental mode,
in which case the coefficients of H& (8,$) give

(1 —1) R 1(l +3)
0 +Pl(l/2+ I)+2 . =0 . (5.5)

L2 L2 P 1

&S2=1S2&O &i(l) —(l)

If 1=1, then Eq. (5.5) does not give any critical radius;



%EAKLY NONLINEAR MORPHOLOGICAL INSTABILITY OF A. . . 4613

I+1 a'"
IU2R, =,+2 +pas2tR o

(() — (() ( —i (()

R I+2 (5.11)

In Eq. (5.11) we set V)((t2) =0 (marginal stability for a per-
turbation of finite amplitude) and substitute for II'z, Is'2,
and IU2 from Appendix 8 to get

(1—I)—,'R, [Pl(2l —1)(l+2)+l +3l+4]=0 . (5.12)

Since the expression in the square brackets in Eq. (5.12)
is nonzero, we must have

R, =0 for l&1,
forcing o,'Lz=o.'sz=0. Moreover, if m =0 and I is even,
the sum in Eq. (5.10) does contain the fundamental mode
and Eq. (4.28) is recovered. The coefficients of Hp o give

aL2 R2, agp R2/Rp, V)vi =Rz(2 —Rp)/Rp

The other coefficients are similarly found, leading to the
second-order solution

they will not be needed for evaluating R2. We notice that
in the expansion of HI (8,$) (with nonzero I and m), we
have H& (8,$) as one of the terms, a situation not occur-
ring in the expansion of H( (8,$), and this feature will
enable us to find R 2.

We are now in a position to write the trial solutions for
the third order and, once again, we will write only the
relevant terms. Therefore,

(I)
O'L3

UL3(&, 8, $)=
&+, H( (8,$)+(other terms),I+1

Us3(r, 8, (t))=as3r'H& (8,$)+(other terms),

Vjv3(8, $)= V)(v'3)H& (8,$)+ (other terms),

Z3=R3

and substitution in the interface boundary conditions
[Eqs. (3.18)—(3.20)] gives us, for terms proportional to
H, (8, (t))

R2
Us~(r, 8,$)= + gS2

2 (l+3)
2

R 2j+3
0

[C2j,z H2j, 2m

+( —1) C2 ()F2j()], (5.13)
PlI$3+(l +1)II'3 RQIU3 0 (5.17)

( I) I(l)R I + 1 (I) I(1)R —I
+L3 L3 0 +S3 S3 0

along with a third equation

plR ()
' a's'3+ ( l + 1)aL'3R p V)'v'3 I+3

We set V)(v'3) =0 (marginal stability for a perturbation of
finite amplitude) and get the solvability condition

UL2(r, 8,$)= R2 +g
(1—l)(1+I)

0

n —2j+2 Zj+1RO r

[Czj,2mH2j, 2m

R
pI+3 (I + 1)IL3 p (5.18)

which on substituting for Is3', IL'3, and IU3 from Appen-
dix C and simplification gives

(5.14)

I
+ X VN'I [C2j,2 Hm2j, 2 +m( 1 ) C2j,o ~2j,o ] i

j=0
(5.15)

+( 1) Czj, o Yz ol,
Vjv2(8, $)=Rp(2 Rp)/R p—

R(p, l, m)=Rp(p, l)+A R2(p, l, m) . (5.19)

where I' ' is the same as I'", but with omission of the
terms involving R 2, which has been solved for.

For l%1, Eq. (5.18) gives R2 as a function of P and I,
and going back to Eqs. (3.2) and (3.3) we have

Z2=R2 . (5.16)
A plot of R (p, l, m) versus 2 will be a parabola and the
bifurcation will be subcritical if Rz(p, l, m) is negative

R2 is still unknown, so we must go to the third order. If
/ = 1, we get no information about R, from Eq. (5.12); we
treat this case in Sec. VI.

Ro =)8.5
)=i.o

Ro=)40
p=O.4

D. Third-order solution 2 2

0
The third-order interface boundary conditions are also

inhomogeneous, with the inhomogeneous terms contain-
ing derivatives and cubes of spherical harmonics. As in
second order, they can also be expressed as a finite series
of the harmonics themselves. Thus

I

H(m(8, () ) = g (CD/2 +C2~JO)HI,
j=0
+(other terms),

where the other terms are not given explicitly because

2 -2

4

18.50 18.65 18.80
R

13.96 13.98 3 4.00
R

FIG. 4. Amplitude A as a function of the radius R, for per-
turbation by F3 0(8), for values of P above and below

P, 0=0.4397. The bifurcation is supercritical in the left-hand
plot and subcritical in the right-hand plot. The planar interface
is stable for R & Ro.
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4

Rp =18.5
p=r. o

4

R p =12.5
)=0 ~

0.05

m=0
)=2.0

Q.Q v

m=0
(=0.4

2

-2

2

0

-2

-4

0.0 0
0
0

0-0.05

cc -0.10

-0.15

-0.05
0
0

00

18.5 18.7 18.9
R

12.44 12.48
R

-0.10

3 9 21 33
l

-0.20

3 9 21 33
l

FIG. S. Amplitude 3 as a function of the radius R, for per-
turbation by Y, 2(8,$), for values of P above and below

P, 2=0.2526. The bifurcation is supercritical in the left-hand
plot and subcritical in the right-hand plot. The planar interface
is stable for R (R p.

and supercritical if R2(P, l, m) is positive. Examples are
shown in Fig. 4 for Y3 o and in Fig. 5 for Y3 2. If we set
the right-hand side of Eq. (5.18) equal to zero, we can find
a value of p denoted by p&, for a given l and m, for
which R2 will vanish. Thus, for a given value of I and m,
R2 will change sign as p goes through p& . Figure 6
shows p&, as a function of I and m. Plots of R2 as a
function of the order I appear in Fig. 7. We see that the
bifurcations are subcritical, except for a few small values
of l.
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VI. PERTURBATION BY Yi (8,$)

As is evident from Eq. (5.12), the mode I = 1 must be
treated separately.

A. Zeroth-order solution

FIG. 7. R2 as a function of the order I where l runs through
all the odd integral values from 3 to 39 for m =0 and all the in-
tegral values from 2 to 19 for m&0. The sign of R2 depends on
the relationship of P to P& as shown in Fig. 6. From the plots
we observe that the bifurcation is subcritical, except for small
values of l.

IO 15 20 25 30

The zeroth-order solution is similar to the case of IW 1

and is given by Eqs. (4.1)—(4.3), except we now substitute
R o for R o for reasons that will become clear after we ex-
amine the first-order solution.

p

-5

40

20

B. First-order solution

The first-order solution is obtained easily by substitut-
ing I =1 in Eqs. (5.1)—(5.4) to give

-15

-20 -20
Ri

Usi= = —2Ro

R 1 (RQ —1)
H, (8,$),

r
(6.1)

(6.2)

2 4 6 8 10
l

4 6 8 IO

I

FICx. 6. pI as a function of the order l for three ditferent
values of m. Rz is negative if P lies on the side of Pl indicated
by the arrows. The solid circles correspond to the values of P&

used in Fig. S.

R 1(2—RG)
~N1

Ro

Z, (8,$)=R, +H, (8,$) .

(6.3)

(6.4)

The coefficient of H, (8,$) in the normal velocity V»
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vanishes identically for 1=1. This is unlike the case for
1%1, where this coefficient was set equal to zero to give
an expression for the critical radius. We note that the
coefficient of R1 in V&1 is just the derivative of V&o with
respect to Ro, as expected. The first-order solution in
this case does not provide us with an expression for the
critical radius Ro. The l =1 mode is therefore a neutral-
ly stable mode. This occurs because a perturbation of a
sphere by H, (8,$) is equivalent to a translation, to first
order, without any shape change. Thus, in the first-order
solution we have two unknowns R, and R o and the bar is
used over Ro to distinguish it from its I%1 counterpart.

C. Second-order solution

The second-order solution is

(o)Us2(r, 8,$)= Us2'+
~ [C2 2 H2 2 (8,$)

Ro

RO=7+4P . (6.9)

The important point here is that the second harmonic of
the perturbing mode becomes unstable rather than the
fundamental mode itself. This is contrary to the case for
l&l, where the perturbing mode would become unstable
first. To find the critical radius for which the l =1 mode
will become unstable, we will have to go to the third or-
der. Therefore, at the end of the second order, we have
found an expression for the critical radius and it is the
same as that for the l =2 mode; i.e., the expression for
the critical radius Eq. (6.9) is the same as that obtained
from Eq. (5.6) for /=2. This is because a sphere per-
turbed by l = 1 undergoes a shape change, at second or-
der, that is proportional to that produced by l =2, at first
order.

solution, however, provides us with an opportunity to
find an expression for Ro by setting Vzz, the coefficient of
H2 z (8,$) in the normal velocity, equal to zero. This
gives

+( 1) Coo Y20(8)] (6.5)

(o)

UL2(r, 8,$)= +
2 H, (8,$)

UL2 R1

r

Ro+ [Cz,2~H2, 2~(8 p)
r

+( 1) C20 Y20(8)]

7+4P —R o
VN2(8~0) +N2 +

g [C2,2mH2, 2m (8&4 )
2Ro

(6.6)

+( —1) Ci Y' (8)],
(6.7)

Z2 =R~, (6.8)

where Use', UI2', and V~~ are functions of R2, R, , and
Ro and are given in Appendix D. Once again, the
coefficient of H, (8,$) in the nornial velocity vanishes
identically for l = 1 and does not give us any information
regarding Ri or Ro [see Eq. (5.12)]. The second-order

D. Third-order solution

al.
2 H, (8,$)+(other terms),

r
U~3( r, 8,$ ) =as3rH & (8,$ ) + (other terms),

V&3(8,$)= Vgz'H, (8,$)+(other terms),

Ul 3(r, 8, $)=

Z3 =R3,

(6.10)

(6.11)

(6.12)

(6.13)

where we only indicate the relevant terms. The
coefficients can be found by substituting the trial solu-
tions in the boundary condition Eqs. (3.18)—(3.20). For
V&'3' this gives

The second-order solution leaves R1 and R2 undeter-
mined. Therefore, we must go to third order to try to
determine them. Furthermore, since the mode under
consideration couples with itself at third order, we should
be able to compute the radius above which the perturbing
mode becomes unstable. We begin by writing down the
trial solution for the third-order problem in the form

1

V&'3 = g [13(j +j +j /4 6j —1)+I2—j—(2j+1)]I2 j(j + —,')] —8](—Cz 2 +Cz. o)
Q j=o

1

+ g [4j +2j —2](Cz 2 +C2, 0),R4„, (6.14)

where we notice that the terms involving R1 and R z have
canceled out. Therefore, even the expansion to third or-
der does not determine R, . We can, however, set V~3'

equal to zero in Eq. (6.14) to find the radius above which
the perturbing mode will become unstable. This gives

R, =9+4P . (6.15)

The critical radius R, thus found does not indicate when

the system first becomes unstable, but merely gives the
condition for which the fundamental perturbing mode
will become unstable. The system is already unstable at
this point because the second harmonic starts to grow for
any radius greater than R o =7+4P, as given by Eq. (6.9).

A generalized phase plane analysis [20] for the
coefficient of the second harmonic (Bi~ 2' ) as a function
of the unperturbed radius Ro yields Fig. 8. For our
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present purpose, however, the perturbation is by a single
fundamental mode and so the initial value of Bz 2 is
zero. Thus, only the trajectories that start from the Ro
axis are relevant. An analyses shows for B22 =0 that

0 (2)

Bz z changes sign from positive to negative at
R0=4+2p. Therefore, any trajectory that starts from
the Ro axis beyond that value will result in evolution into
the shaded unstable region. Due to nonlinearity, howev-
er, the normal velocity corresponding to the perturbing
mode contains B2 2 as well as other terms. Consequent-
ly, the normal velocity vanishes at a larger value
Rc=7+4P. Thus, in Fig. 8, only the trajectories that
start beyond Rc=7+4P correspond to growth of the
normal velocity of the l =2 mode. The shaded region of
instability in Fig. 8 is a characteristic of the l = 1 mode
and is absent for any other mode. A typical phase plane
diagram for the l =2 mode for perturbation by Fz is
shown in Fig. 9.

Ro

FIG. 8. Phase plane trajectories for the second harmonic
(l =2 mode) that result from perturbation by Y& . The ordi-
nate is the ratio of 8» to the Clebsch-Gordan coefticient
C& 2 . The critical point is at (1, 2) in these coordinates and the
arrows show the direction of increasing time. P has been chosen
to be 1.5. The broken line represents the neutral stability curve
and cuts the Ro axis at Ro =4+2P=7. Any trajectory starting
beyond this value will result in evolution into the shaded unsta-
ble region.

VH. CONCLUSIONS

An expansion in the perturbation amplitude, A, is per-
formed and the critical radius, to the lowest order in A, is
found by setting the normal velocity corresponding to the
fundamental perturbing mode equal to zero. Depending
on the symmetries of the perturbing mode [21], the fol-
lowing results were obtained.

(i) m =0, 1 even, and 1%0. The critical radius, given by

R, (l,P, A) =Ro(l, /3)+R i(l, /3) A,

1.0

0.5
CD
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CL
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CU

0.0
G$

L
CD
CL

-1.0

10 20

is found by carrying the perturbation expansion in 3 to
second order. This is a transcritical bifurcation and a
manifestation of the fact that for these perturbations, the
shapes corresponding to positive and negative amplitudes
are physically distinct. The governing equations can
therefore depend on the sign of A.

(ii) m =0 and l odd, but 1&1. The critical radius,
given by

R, (l, /3, A) =Ro(l, /3)+R2(l, p) A

is found by carrying out the expansion in 2 to the third
order. The bifurcation is supercritical if R2(l, P) )0 and
subcritical if R2(l, p) (0. In this case the shapes generat-
ed by positive and negative amplitudes are related by sim-
ple rotation (0~8+~) and are not physically distinct.
Therefore the governing equations are independent of the
sign of A.

(iii) m%0 and any l. The critica1 radius is given by

Ro R, (l, m, p, A) =Re(l, /3)+R2(l, m, p) A

FIG. 9. Phase plane trajectories for the amplitude of the I =2
mode that result from perturbation by Yz, shown for p=1.5.
The critical point is at (1,0) and the neutral stability line is the
Ro axis. Beyond Ro{1.5,2)= 13, the magnitude of the perturba-
tion amplitude increases with Ro and with time.

The situation is identical to the preceding case except
that the shapes corresponding to the positive and nega-
tive amplitudes are related by the rotation
(p~p+n. /m).



WEAKLY NONLINEAR MORPHOLOGICAL INSTABILiTY OF A. . . 4617

(iv) The coefficients Ri(l, P), R2(l, P), and R2(l, m, P)
have been calculated. When R2 is relevant, most bifurca-
tions are subcritical, except for a few low values of l and
extremely large P.

(v) The I = l mode. This mode is unique since it is neu-
trally stable in the linear regime, corresponding to a
translation of the sphere with no shape distortion. A
nonlinear analysis showed that the fundamental mode
generates the second harmonic, which becomes unstable
at second order for R )Ro=7+4P, before the funda-
mental mode itself. In other words, a sphere perturbed
by the / = 1 mode is actually an ellipsoid, to second order.
The fundamental mode itself becomes unstable at
R, =9+4@. To find the bifurcation parameter one would
have to carry out the perturbation expansions to fourth
or higher order in A.

In three dimensions, we conclude that the nature of the
bifurcations depends on the symmetry of the specific
planform, which has great variability for the perturbing
spherical harmonics because there are two rotational de-
grees of freedom. In two dimensions [17], by contrast,
there is only one degree of rotational freedom, so no
transcritical bifurcations are found. We emphasize that
our nonlinear results correspond to the instantaneous
condition of no growth of a given planform and represent
an attempt at applying the weakly nonlinear stability
analysis to three-dimensional shapes with nonsteady un-
perturbed states. As in the two-dimensional case, we get
mostly subcritical bifurcations. It has been suggested by
Mullins [22] that the reason one gets supercritical bifur-
cations for small values of l and high values of the
thermal conductivity ratio P is because of nonlinear
effects associated with heat Aow in the solid as opposed to
the liquid. So far, we have not found a way to give a sim-
ple quantitative explanation along these lines.

Aside from theoretical interest, these results form a
nontrivial test bed for the extension of numerical algo-
rithms to the calculation in three dimensions of the shape
evolutions beyond morphological instability. Moreover,
the behavior of specific planforms would be expected to
be inAuenced strongly by the anisotropy of surface ten-
sion and/or interface kinetics as in unidirectional
solidification [23]. If it can be shown that the character
of nonlinear evolution can be correlated with the nature
of the bifurcation, it might be possible to predict certain
aspects of pattern formation for free growth in three di-
mensions. It might also be possible to apply the methods
developed herein to study a sphere perturbed by Kubic
harmonics in an effort to understand the morphology of
the dendrite tips observed during the growth of transpar-
ent cubic materials [24—28].
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APPENDIX 8
From Eq. (4.18)

21

~2l, o(8) ~2l, o(8) X C2j ~2j,o(8&0)
j=0

where

3 1Z1

Ro

(41+1)(41+ 1)(4j + 1)
2J 4m

2l 2l 2j 2l 2l 2j
0 0 0 0 0 0

where we have used the Wigner 3j symbols [19]. The inhomogeneous terms for Sec. IV are

IL2' = Co[2Rol +1 (21+1)(1—21)],
Ro 4m.

I12"=(R, +C2() [2Rol+1(21+1)(1—21)],
RO

IL2J' = C2) [2Rol +1(21+1)(1—21)),L2 R3 2J

—R
Iq2'= + Co(21+1)(21 +21 —1),

Ro Ro 4'

Iq2" = (1+1)(41 +21 —2)+ C2I(21+ 1)(21 +21 —1),
0 0

Iq2'= C2 (21+1)(21 +21 —1),1

0

R
IU2' = (3—Ro)+ Co[Ro(21 +51 —1)+3—1 (21 +1)(41+3)—4Pl(21 +1 —1)],

0 0

IU2 =
q [Ro(41 +61—1)+6—21(21+1) (1+1)+P21(21—1)(21 +1 —1)]
0

+ C2([Ro(21 +51—1)+3—l(21+1)(41+3)—4Pl(21 +1—1)],
0

IU2 =
~ C2~ [ —(21+1)(21+2) [1(21+1)—Ro]+P21(21 —1)(21 +1—1)—3Ro+3
0

+ [21(21+1)—j(2j+1)][l(21+1)—Ro —Pl(21+1)+P+Ro/2 —0.5] ] .
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The relevant terms for Sec. V are

APPENDIX C

1
2j, 2m

1/2
(2l + 1)(2l + 1)(4j +1) l l 2j

4~ 0 0 0
l l 2j

m m —2m

(2l + 1)(2l + 1)(4j + 1)
2j,O 4m

2j
0 0 0

l l 2j
m —m 0

Ii,' = Ro ——(l+ 1)
l

Iq,' = 1 ——(1 + 1)

I,",' =0

I~'~~ = [Rol —
—,'l(l + 1)(l —1)],

0

I~j'=
3 [Rol —

—,'l(l+1)(l —1)],(2 )

0

RI(0)
S2

0

Iq"2~ = (l +2)(l —1)(l +2),(I)

2R 0

Ig~~' = [—' l (l+3)—1],1

0

R
IU2 = (3 —Ro),

R 40

IU2= Ro(l +31 —2) ——(l+1) (l+2)+6—pl(l —1) (l+2)l

0

Ip/' = pIq", l(l —1)—+IL,'(l + 1)(l +2) 3(RO —1)—2 = 1

0

+ PIsI I~&+ —{l(l+1)—j(2j+1)]
L

L3 R3 0
0

1+ RR4
0
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RQ
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4RQj 0
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=

R3 20

I
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I

+
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IU3 = [
—4Ro —pIs', 'l(l —1)+III",(i +1)(l +2)+6]

0

I I,",~'(2j+1)(2J +2)—pI,",~'2J (2J —1)
«2, ,z +C2, ,o)

0 RO

+ [4Ro 4 ,—'pIq—I)l—(l—1)(l —2) —
—,'lL,'(l +1)(l +2)(l +3)] g (C2~ 2 +C2J o).

RO j=0
I

+
2 (pIs2' IL2 ) g J(2J +1)(C2J,2m+C2jo)

+ [ILt)( —', l+ —,')+pal'1'( —,'l —2) —2(Ro —1)]g [l(l+1)—j(2j+1)](C2.2 +C2 o) .8 j=O

APPENDIX D

Terms corresponding to Sec. VI are

Us2 —3 [(R2Ro R t )+(C0,2mH0, 2m +( 1) Co 0 ~0,o )]

1
+L2 R 2+ — [C0,2mH0, 2m + o, o o, o ]

0

V/2) = [R2Ro(2 Ro)+R f(3 Ro)+(2 Ro) [Co 2 Ho 2 +( 1) Co o Fo o] ]
0
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