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Smectic-C —smectic-I critical point in a liquid crystal mixture:
Static and dynamic thermal behavior
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The theoretically predicted smectic-C (Sm-C) —smectic-I (Sm-I, a tilted hexatic phase) critical point
has been discovered in a racemic mixture of methylbutyl phenyl octylbiphenyl-carboxylate (8SI) and the
octyloxybiphenyl analog (8OSI). High-resolution ac calorimetry and nonadiabatic scanning calorimetry
show an evolution from a first-order Sm-C —Sm-I transition in 8SI to continuous supercritical behavior
in 8OSI (no thermodynamic transition). The critical composition is X, =75, where X is the weight per-
cent 8OSI. The static critical heat capacity C~(T,X=75) is characterized by a critical exponent
x =1.06+0.08 that corresponds to the exponent y due to the path of approach to the critical point.
This is a mean-field value of y rather than the value associated with the new universality class that in-
cludes Sm-C —Sm-I, Sm-C —Sm-C, and Sm- Ad —Sm- A 2 (partial bilayer —bilayer smectic) critical points.
It is proposed that mean-field behavior is observed due to long bare correlation lengths (Ginzburg cri-
terion). Note that C~(T,X) measured along the path X =X, is e6'ectively a susceptibility, like C~ for a
pure Quid near its liquid-gas critical point. Data obtained close to T, show a systematic frequency
dependence, and these C~( T, co) data are discussed in terms of critical slowing down and dynamic scaling
behavior.

PACS number(s): 64.70.Md, 64.60.Fr, 65.20.+w

I. INTRODUCTION

Hexatic liquid crystal phases, which exhibit long-range
bond-orientational (BO) order but only short-range in-
plane positional order, are not yet well understood. In
particular, the universality characteristics of the
smectic-hexatic transition are still unresolved. Studies of
srnectic- A (Sm- A) —hexatic-8 (Hex-B) transitions have
included high-resolution x-ray diffraction [1] and an ex-
tensive series of heat-capacity measurements on bulk and
thin film samples [2—7]. Almost all Sm-A —Hex-B transi-
tions appear to be second order, although in some cases
the C peak is rounded over an interval of 50—200 mK
about the transition temperature. The heat-capacity crit-
ical exponent for a wide variety of bulk compounds and
binary mixtures is in the range 0.50—0.65, which differs
markedly from the three-dimensional (3D) XY value
u= —0.007 that might be expected since the BO order
parameter 4= ~%~exp(i6$) has XY symmetry. Theoreti-
cal models have proposed an important role for coupling
between the hexatic order parameter and herringbone or-
der @=~@~exp(i2p) [8], crystalline order [9], or layer
displacement u [10]. The applicability of these models to
the bulk Sm-3 —Hex-8 transitions is unclear, but a recent
2D simulation of a coupled XY model with hexatic and
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herringbone order [11]yields a new type of phase transi-
tion that appears to be compatible with the critical ex-
ponent a=0.30+0.05 observed for two-layer liquid crys-
tal films [7].

Tilted hexatic phases can also occur on cooling some
tilted smectic-C (Sm-C) materials. In this case, there are
two hexatic structures where long-range BO order is
combined with long-range molecular tilt of the director
with respect to the layer normal —Sm-I (where the tilt is
towards a nearest neighbor) and Sm-F (where the tilt
direction is between two nearest neighbors). The pres-
ence of BO order in Sm-I (Sm-F) does not, however,
change the point group symmetry from that of Sm-C. As
a result, the situation is qualitatively analogous to that
for a liquid-vapor transition in a simple fluid. There can
be either a first-order phase transition between Sm-C and
Sm-I (Sm-F) or no thermodynamic phase transition at all,
but a supercritical evolution of both BO order and tilt in
a single phase that is conventionally called "Sm-C" at
high temperatures and "Sm-I (Sm-F)" at lower tempera-
tures [12,13]. Thus, in some suitable phase diagram there
must exist an isolated critical point. This Sm-C —Sm-I
(Sm-F) critical point is predicted to belong to the same
universality class as Sm- A —Sm- 3 and electric-field-
induced chiral Sm-C* —Sm-C' critical points [13], al-
though mean-field behavior cannot be ruled out if the
data lie outside the Ginzburg critical regime.

The presence of a coupling between the molecular tilt
and the bond-orientation order means that an external
magnetic field can produce a single-domain tilted hexatic
sample. This is crucial for high-resolution x-ray investi-
gations of the nature of Sm-I and Sm-F phases. Detailed
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x-ray [14] and heat-capacity [15] studies have been made
of 8OSI [racemic 4-(2'-methylbutyl) phenyl 4'-(octyloxy)-
bipheny1-4-carboxylate], which exhibits a supercritical
Sm-C —Sm-l evolution. The behavior of the sixfold hex-
atic order parameter C6 and its higher harmonics C6„ in
bulk films at temperatures below the "transition" region
agrees very well with a multicritical scaling relation
developed for a system with basic XY symmetry [9]. The
temperature dependence in the transition region of C6
and the excess heat capacity bC associated with the
growth of hexatic order have been analyzed in terms of a
phenomenological parametric equation of state [15].
However, the appropriateness of this model and the inter-
pretation of the effective C critical exponent 0.47 and
the C6 order parameter exponent 0.077 are not clear. X-
ray [16] and heat-capacity [17] studies have also been
made of TBSA, TB6A, and TB7A [pentyl, hexyl, and
heptyl homologs of terephtal-bis-(4n )-alkylaniline],
which exhibit Sm-C —Sm-F transitions. In all three cases,
this transition is strongly first order, although there are
appreciable pretransitional effects both above and below
the transition temperature.

The goal of the present investigation is to identify the
location of a Sm-C —Sm-I critical point and characterize
the critical behavior associated with heat capacity at that
point. It is clear that a Sm-C —Sm-F critical point will
not be realized in mixtures of TBnA homologs since the
pure compounds all exhibit first-order behavior. Howev-

er, the prospect of a Sm-C —Sm-I critical point in mix-
tures of 8OSI and 8SI (the octylbiphenyl analog of 8OSI)
was very promising. Light scattering studies [18] have
shown that the coupling between BO order and tilt is
smaller by a factor of —10 in 8SI than that in 8OSI.
Thus the effective field due to the tilt that induces finite
BO order in the Sm-C phase is small in 8SI and one
would expect a first-order Sm-C —Sm-I transition.
Indeed, first-order Sm-C —Sm-I transitions have been ob-
served in thin 8SI films [18]. Furthermore, structure and
miscibility studies [19] show that mixtures of 8SI and
8OSI have Sm-C, Sm-I, and plastic crystal Cr-J phases
that are miscible across the entire composition range.
The experimental results given in Sec. II show that there
is a Sm-C —Sm-I critical point at a concentration X, =75,
where X is the weight percent 8OSI. Interesting static
and dynamic critical behavior was observed near T, for
this mixture. The static critical behavior associated with
C„(X„T)and the critical dynamics at very low frequen-
cies are analyzed and discussed in Sec. III. A brief sum-
mary is provided in Sec. IV.

II. EXPERIMENTAL METHOD AND RESULTS

The structural formulas and phase transition sequences
on cooling for racemic 8SI (M=456. 7 g mol ') and
8OSI (M=472. 7 g mol ') are for 8SI (also denoted
+2M4P8BC) [20]

CSH~7~ii ~xi O~wH2~H(CHs( —C2((s

Cryst
3391n
313f

Cr-G
336.2

Cr-J
338.2

Sm-I
342.6

Sm-C
307

Sm-A N I
408 414

and for 8OSI (also denoted +2M4P80BC) [15,20]

C~Hq7~~~ ~pi O~&((z~H(CHs(~2Hg

Cryst Cr EC Cr J Sm I Sm C Sm-A
349m 334 347.8 352.8 405 444
319f

N I
447

All the transition temperature values are in kelvin; both
the melting (m) and freezing (f) points are given for the
rigid crystal denoted as Cryst. The symbols Cr-G, Cr-J,
and Cr-X represent plastic crystal phases; Sm-I is the tilt-
ed hexatic smectic-I phase; Sm-A and Sm-C denote
smectic-A and smectic-C phases; N is the nematic phase
and I is the isotropic phase. Note that the width of the
Sm-C phase is 14.4 K for 8SI and 52.2 K for 8OSI. This
suggests a correlation between the Sm-C width and the
character of the Sm-C —Sm-I transition. The smectic
free energy density contains the term —M(II = —(h 6
+hl2)~0~ (II, where ~8~ is the tilt angle and h6 (hI2) is the
coefficient for a coupling term of sixfold (twelvefold) sym-
metry [18]. Thus the efFective tilt field H —~8~ increases
rapidly with the value of the tilt angle at the Sm-C —Sm-I
transition temperature even if the coupling coefficients do
not vary. When the tilt is well developed (almost saturat-
ed as in 8OSI [18,20]), the value of FI will be large and

I

BO order will develop as a supercritical evolution. When
the tilt is less developed (as in 8SI [19,21]) one would ex-
pect a smaller value of H, which leaves the Sm-C —Sm-I
transition first order.

A partial phase diagram for 8SI plus 8OSI mixtures is
given in Fig. 1. The transition lines have been taken from
Ref. [19]and the Sm-C —Sm-I transition temperatures ob-
tained in the present calorimetric study are shown as
open circles. Samples of 8SI, 8OSI, and mixtures with
X=50,75, 85 w. % 8OSI were studied in detail. Prelimi-
nary measurements were also made on a mixture with
X=60. Since the C~(T) behavior for this sample was
qualitatively very similar to that for X=50, no high den-
sity data were taken and no Cz data are reported for this
X=60 sample.

A small mass of each liquid crystal sample, typically 40
mg, was sealed (under an atmosphere of dry nitrogen gas)
into a silver cell along with a helical coil of gold wire to
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the complex amplitude T„ofthe sample temperature os-
cillation is given by

P„
RC R '+i AC

where C represents the heat capacity of the sample cell.
This quantity can in general be complex and frequency
dependent:

~ ~ ~ (
~ ~ 0' ' C*(co) =C'(co ) i C

—"(co), (2)
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coR C'(co ) C'(co )
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with C'(co) and C"(co) being the real and the imaginary
parts, respectively. Combining Eqs. (1) and (2), one finds

[23]

FIG. 1. Partial phase diagram of 8SI plus 8OSI mixtures; X
is the weight percent 8OSI. The lines are taken from Ref [19]
and the open circles represent Sm-C —Sm-I transition tempera-
tures obtained from the present C~ measurements. Since our
data indicate that the Sm-C —Sm-I critical point (C.P.) lies at
X=75, the dotted line for X)75 merely represents the locus of
extrema in the thermodynamic response functions (maximum

C~ in the present ease). No thermodynamic transition occurs in
this supercritical region.

enhance the thermal conductivity and eliminate any
internal temperature gradients. Some of the data were
obtained on the high-resolution ac calorimeter used pre-
viously at MIT and described elsewhere [22]. Other data
were taken on a new and improved high-resolution
calorimeter that can be operated in the standard ac mode
and also in relaxation modes. This instrument is based
on the design described by Ema et al. [23] and its opera-
tion will be briefly described below. In both modes, the
bath temperature is scanned slowly. In the ac mode, scan
rates of 15—100 mK/h were used near T, for the near-
critical X=75 mixture and somewhat faster rates
(100—200 mK/h) were used near C~(max) for SOSI and
the other mixtures. In the linear-ramp relaxation mode
(nonadiabatic scanning), a scan rate of 1 K/h was used.

A. Automated high-resolution calorimeter

Heat-capacity measurements were made with a compu-
terized calorimeter capable of fully automated operation
in either ac or relaxation modes. The sample (in a sealed
silver cell) is thermally linked to a temperature-controlled
thermal bath partly by support wires and partly by air,
which acts as an exchange gas. This thermal link can be
represented by a thermal resistance R, which is the re-
ciprocal of the thermal conductance A.

In the ac mode, an oscillating heat input P„exp(icot) is
supplied to the sample by a thin resistive heater. The fre-
quency co of the power input is chosen so that co~;„,&&1,
where ~;„, is the relaxation time for thermal diffusion in
the sample cell. Thus the temperature oscillations in-
duced in the sample are slow enough that temperature
gradients in the sample are negligibly small. In this case,

4= ——+arctan
2

1 C"(co)

coR C'( co ) C'(co )
(4)

for the amphtude of the ac temperature oscillation and
the phase shift 4 of T„with respect to P„. Solving
these equations for C'(co) and C"(co) yields

C ( co ) — sin@ — cosp,

C"(co)= cosN—
co f T~~ i

coR
sinP— (6)

for the heating regime and

T ( t) = T~ +5T„exp( —t /~, „,) (7b)

for the cooling regime, where T~ is the constant bath

where @= / —m. /2. In many cases, the heat capacity is a
purely real frequency-independent quantity: C'(co) =C(0)
=C and C"(co)=0. For the usual mode of operation of
an ac calorimeter, co is chosen so that ~RC &&1. In this
limit, the heat capacity is given by the simple expression
C=~P„~/ ~Tco„~. Note that for our calorimeter at the
standard operating frequency coo=0. 196 (32-s period for
T„),P is typically 0.1 —0.2 rad and cos$=0.98 —1. The
use of Eqs. (3)—(6) allows us to analyze data for samples
with a complex frequency-dependent heat capacity using
frequencies lower than those required by the so-called
adiabatic condition coRC»1. This is important since
one must also satisfy the condition co~;„,&&1 in order to
avoid temperature gradients inside the sample near T„
and this sets an upper bound on co for any given cell
design. The value of R needed in Eq. (6) can be deter-
mined accurately from relaxation measurements as de-
scribed below.

In the relaxation mode, conventional operation uses a
dc power supplied to the cell that is a step function. For
a heating run, P is switched from 0 at time t =0 to a con-
stant value Po, whereas the power is switched from Po to
0 for a cooling run. It follows that the cell temperature
T(t) relaxes exponentially [23]

T(t) = T~+b, T [1—exp( —t/ r)]
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for the heating regime with P positive and

T( t ) = T( ~ ) +RP ( r r,„,—) +r,„,RP exp( t /r, „,)—(&b)

for the cooling regime with P negative. The thermal
resistance is given by

R = ( T —T~ ) /Po

and the heat capacity for heating or cooling runs is

P —(T T~ )/R-
C T=

dT dT/dt

(9)

(10)

where P is the power at time t' corresponding to sample
temperature T lying in the interval T~ to T(oo) and
dT/dt is obtained by fitting T(t) data over a short time
interval centered at t'. The advantages of this new ramp
relaxation method, which could best be called nonadia-
batic scanning calorimetry, over the use of a power step
function are (a) much better control of the bath tempera-
ture T~ at a constant value since step increases or de-
creases in P cause large transient disturbances in T~ and
(b) optimal behavior of dT/dt since T varies almost
linearly with t (except for t ) r, and a brief period just
after t =0 and of course regions where the enthalpy H is
an unusually rapid varying function of T due to first-
order phase conversion).

temperature and AT =RPo. The quantity ~„,=RC is
the "external" time constant for heat Row from the sam-
ple to the bath.

In the present experiment, relaxation measurements
were made with the heater power linearly ramped. For a
heating run, P=O for t (0, P=Pt for O~t &t&, and
P=Po=P, t, for t &r, . The initial (r ~0) sample tem-
perature is Tz and the plateau sample temperature is
T( oo )= Tz+RPO for t ))ri. For a cooling run, the
power profile is reversed: P =Po for t & 0, P =Po+Pt
with P negative for 0 ~ t ~ t &, and P =0 for t & t &. In this
case the sample temperature is initially T( ~ ) and has the
Anal value T~. The variation of the cell temperature over
the time regime 0+ t ~ t& is

T(t)= Tii+RP (t —r,„,)+ t,„,RP exp( t/r, „,) —(8a)

served near the maximum in the Sm-C —Sm-I excess
heat-capacity peak. In this case, data were taken at four
frequencies (2coo, coo, coo/3, and coo/9). Since C becomes
complex near its maximum and coRC ))1 does not hold
at the lower frequencies, Eqs. (5) and (6) must be used
along with R values obtained from the relaxation method
to determine C'(co) and C"(co). Details of the C„disper-
sion, i.e., frequency dependence of C, are given for the
near-cr'itical sample with X=75.

Once the heat capacity of the filled cell has been deter-
mined, the specific heat capacity of the sample is given by

ImC~(co) =Csii,d(co)/~ ) (13)

I
I

I
I I I I

8SI

10—

ReC~(co) = [C'„ii,d(co) —C, ,„]/m, (14a)

C~(co)=~C~"(co)~=[[ReC~(co)] +[ImC (co)] ]'~, (14b)

where C'„ii,d(co) and Czii, d(co) are the real and the imagi-
nary heat capacities of the filled cell, C, p&y

is the heat
capacity of the empty cell (a purely real quantity deter-
mined at coo), and m is the mass of liquid crystal sample
in grams. The quantity C, (co) is taken to be C~'(co)~
rather than ReC (co) since C*(co)~ is closer to the static
value C (0) when critical relaxation exists.

The heat capacity of pure 8SI is shown in Fig. 2 over a
13 temperature range that includes Sm-C —Sm-I, Sm-
I—Cr-J, and Cr-J —Cr-6 transitions at 342.38, 338.35,
and 336.70 K, respectively. All three transitions are first
order and the thermal anomalies at the Sm-I —Cr-J and
Cr-J —Cr-6 transitions are quite small, as expected from

B. Heat capacity data

For much of the present work, the heat capacity is a
real, frequency-independent quantity that was measured
only at our standard ac frequency coo=0. 196 under con-
ditions where cooRC&) l. In this case, Eqs. (3) and (4)
reduce to the familiar forms [22]

C& g Cr-J

Sm-I Sm-C

I I I I

tan(@++/2) =tang= I /ci)RC (12a)

335 340

T (K)

or

(12b)

However, for near-critical and super critical samples,
frequency-dependent complex heat capacities were ob-

FIG. 2. Heat capacity of 8SI. Data were obtained at
~O=0. 196 and represent static speci6c heats C~(~=0). The
points marked by a plus symbol are not true heat capacities, but
indicate apparent C~ values obtained in a two-phase coexistence
region. Arrows indicate the very small anomalies at the Sm-
I—Cr-J and Cr-J—Cr-6 transitions.
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I

75
8SI + 8OSI

- weight percent 8OSI given

10—

differential scanning calorimetry runs on 8SI [19] and ac
calorimetry on the Sm-I —Cr-J transition in 8OSI [15].
The data in Fig. 2 were obtained on a slow cooling run
and appreciable hysteresis may occur for the Sm-I —Cr-J
and Cr-J —Cr-6 transitions since the kinetics of these
transitions is reported to be extremely slow [19]. Al-
though there are distinct pretransitional C wings, the
Sm-C —Sm-I transition is quite strongly first order with
five data points observed in a 125-mK-wide coexistence
region. The presence of two-phase coexistence is signaled
by an abrupt increase in the phase angle P and by anoma-
lously large apparent C values [23]. The dashed line in
Fig. 2 represents the background heat capacity C ~ that
would be expected in the absence of the Sm-C —Sm-I
transition.

Heat-capacity data obtained at coo for pure 8OSI and
three mixtures of 8SI plus 8OSI are shown in Fig. 3. The
quantity displayed here is the excess heat capacity
AC =C —C & that is obtained by subtracting a linear
(nearly constant) background heat capacity C s. For the
50% sample, the Sm-C —Sm-I transition is first order
with six anomalous points obtained in a 100-mK-wide
coexistence region centered at 347.20 K on cooling. This
was confirmed by a very slow cooling run at coo/3, which
exhibited 12 anomalous points over the same coexistence
region. Preliminary data (not shown) on a 60% sample
indicated a first-order coexistence region of about 70 mK.
For the three samples with 8OSI weight percent X &75,
there is no indication of two-phase coexistence. In these
samples, the C peaks are smoothly rounded and frequen-

cy dependent near the maximum, as will be described in
detail for the 75% sample. The AC data for pure 8OSI
given in Fig. 3, including the small Sm-I —Cr-J feature
observable at 348.45 K, are in good agreement with those
reported previously [15]. The heat-capacity data shown
in Fig. 3 were all obtained on slow cooling scans with
typical scan rates of —100 mK;/h. The results were
reproducible on heating runs and on repeat cooling runs
with little or no drift in the position T,„of the AC
maxima. No change in the value of T „was observed
over 10 days of X=50 and 75; the T,„drift was —5

mK/day for X=85 and —14 mK/day for X= 100.
In view of the magnitude and sharpness of the AC

peak for the 75% sample, we believe that the critical can-
centration is close to X=75. The heat capacity of this
near-critical sample is shown over a wide temperature
range in Fig. 4, which displays the large C~(coo) peak as-
sociated with the Sm-C —Sm-I critical region and the very
small Sm-I —Cr-J feature at 344.85 K. The background
value C~ z, shown by the dashed line is given by
C~s=2. 34+0.0062(T T, ) in —J K '

g
' units, where

the critical temperature T, =350.393 K is taken to corre-
spond to the position of the C maximum. A plot of
&&~(~)=C&(co)—C~& for temperatures close to T, is

given in Fig. 5 for co=coo, ~o/3, and coo/9. Also shown in
this figure is the AC variation determined from a slow
nonadiabatic scanning (ramp relaxation) run with sample
temperature variations of 18 mK/min near T, . This
value can be compared with the sample's oscillating tem-
perature dependence T during ac measurements at coo/9.
In that case, the linear scanning rate for the average sam-

14 I
I I

I I I I
I I

8SI + 8OSI
75 weight percent 80SI

50 10—
2.4—

~ ~~ ~

~ ~
0
0 ~

~ ~

100
~ ~
0 ~

~ 4

t

344

4—
Cr-3

346

345 350
T (K) 0 ~ I ~ ~ ~ ~ I ~ ~ ~ I I s I

345 350 355
FICx. 3. Excess heat capacity hC~ associated with the Sm-

C —Sm-I transition in SSI plus 8OSI mixtures with weight per-
cent 8OSI concentration X=50, 75, 85, and 100 (pure 8OSI).
The data shown here were all obtained at coo=0. 196 and
represent C~(coo) de6ned by Eq. (14b). As in Fig. 2, points
denoted by a plus sign represent artificial values obtained in a
two-phase coexistence region.

T (K)

FIG. 4. Heat capacity C~(coo) for the near-critical 8SI plus
8OSI mixture with 75 w. % 8OSI. The inset gives an expanded
view of the Sm-I —Cr-J transition region. The dashed line

representing the background heat capacity C» has the empiri-
cal form 2.34+0.0062( T—T, ) in J K '

g
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FIG. 5. Frequency-dependent magnitude Cy(co) =

~
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~
of

the complex heat capacity near T, for the near-critical mixture
with 75 w. %%uo8OSI . AC~=C~(~) —

C~ zwher eC~(co ) isdefined
by Eq. (14b); see the text for details about the nonadiabatic
scanning (relaxation) data.

pie temperature was —0. 17 mK/min and the oscillatory
variation T=coT„cosset had a maximum value coT„of
about 12 mK/min near T, . Thus the "eff'ective frequen-
cy" of the non-adiabatic scanning run is quite compara-
ble to coo/9, which is consistent with the agreement be-
tween data obtained in those two runs. Furthermore, the
non-adiabatic scanning run shows that there is no hidden
latent heat associated with a first-order Sm-C —Srn-I tran-
sition for the 75% mixture.

A frequency dependence for ReC (co) and nonzero
values for ImC (co) are observed over the range—0.35 K & AT & +0.25 K, where hT= T—T, . The
ImC (co) data near T, in the near-critical 75% mixture
are shown in Fig. 6. As expected, ImC (co) is quite small
and limited to temperatures very close to T, for the low
frequency coo/9, but becomes significant over a range of
about T +0 3 K at mo and 2cop. For the quantity
Cy(co) = ~Cy'(co)~, we have observed excellent agreement
among C (co) values for frequencies in the range
coo—cop/9 over the ranges +0.12 K & AT & +0.67 K and—0.79 K ( b, T ( —.023 K (see Fig. 5). Thus C (coo) cor-
responds to the static thermodynamic limiting value
C~(0) except very close to T, . The same conclusion
holds for supercritical samples with X= 85 and 100 (pure
80SI), where frequency-dependent Cy values were ob-
served near the maximum in Cy ( T), but not in the wings
of' the C peak.

III. ANALYSIS AND DISCUSSION

This section is concerned with both the critical
behavior of the static heat capacity for the near-critical

FIG. 6. Temperature dependence of ImC~(co) for the near-
critical mixture with 75 w. Vo 8OSI. This quantity was calculat-
ed from Eqs. (6) and (13). Data are included for 2co0, a frequen-
cy that was not included in the display given in Fig. 5.

75% mixture and the dynamical behavior observed near
T, for that sample.

A. Static critical behavior

The heat capacity of the 75% mixture has been ana-
lyzed over the range from 346.4 to 354.4 K, which corre-
sponds to a maximum reduced temperature
r =

~
T T, ~ /T, of—1.14X 10 . Data obtained at coo were

used far from T„but only data obtained at coo/9 were
used over the ranges T—T, =+0.022 to +0.2 K and
—0.0035 to —0.3 K. To avoid the region of finite-
frequency rounding even at coo/9, we have excluded data
from 350.359 to 356.416 K. Thus the minimum ~ values
are 6.3X10 above T, and 1.0X10 below T, .

Fits were based on the power-law form

C =A 7 (I+D*r '+ . )+B+E(T T, ) (15)—
as the starting point. Due to the path of approach to the
Sm-C —Srn-I critical point, the exponent x is not the usual
o., as described later. VTe will also allow the possibility
that 6& differs from its usual value of 0.5. For conveni-
ence, Eq. (15) will be rewritten as

Cp=A+ir "+A2~r y+A3~r y'+B+E(T T, ), (16a)—
where y is an effective exponent representing x —6,, y' is
a higher-order correction exponent, and Az = A D+

The linear term with slope E arises from the regular (non-
critical) contributions to Cy, whereas the constant
B=8„+B,represents a combination of both regular and
critical contributions. A variety of fits over three ranges
are summarized in Table I. A simple power-law form
(i.e., Az =0 and A3 =0) was used for fits 1, 3, and 5.
This type of fit is very poor for range C, and physically
unreasonable values were obtained in all three fits for the
slope E compared with the value E=0.0062 J K g
shown in Fig. 4. In any case, these three fits indicate that
the critical exponent x must be large (close to 1) and
strongly suggest that correction terms play a very impor-
tant role. Several fits over range C (r,„=1.14X10 )
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TABLE I. Least-squares values of the adjustable parameters for fitting C~ data of the 75% 8OSI sample with Eqs. (16a) and (16b).
Quantities held fixed during a fit are enclosed in square brackets. Range A (96 points) has ~,„=8X 10, range B (171 points) has

&,„=2.3X10,and range C(588 points) has &,„=1.14X10 . w;„values are 6.3X10 ' and —1.0X10 . The units of A I&, A2+,

and B are J K '
g '; the units of E are J K g '. AB=B+—B . A3+ =0 unless otherwise noted. The estimated standard devia-

tion for Cp data points is o.=0.003C~.

Fit Range T, (K) B+ 10 Ai+ Al /Al+ A2+ A2 /A2+

1

2
3
4
5
6
7
8
9

10
11
12
13'
14'
15'

A

B
C
C
C
C
C
C
C
C
C
C
C

350.392
350.391
350.392
350.392
350.389
350.397
350.394
350.393
350.394
350.394
350.394
350.394
350.392
350.391
350.392

2.485
2.340
2.462
2.455
2.316
2.216
1.58
2.455
2.228
2.254
1.948
2.299
2.655
2.501
2.20

[0]—0.374
[o1—0.013
[ol
[o1
[0]
0.307
0.200
0.206
0.200
0.200
0.605
0.350
0.12

0.935
0.942
0.930
0.930
0.876
1.010
0.979
0.871
1.121
1.075

[1]
[ll
[1]
1.057
1.12

x —0.5
0.129

0.501
[0.5]
0.211
[0.5]
[0.5]

x —0.5
0.49

7.90
7.89
8.25
8.33

15.26
1.87
4.27

13.78
0.73
1.24
3.38
2.77
3.98
2.10

0.9+1.7

2.49
2.24
2.51
2.49
2.11
5.54
3.14
2.68
4.06
3.70
3.19
3.61
2.23
2.17
2.8

[0]
[0]
[0]
[o1
[0]
0.018
0.45

[o]
0.020
0.018
0.176
0.014
0.0022
0.0050
0.018

[1]
[1]
[ll

[1]
0.587
0.86

[1]
1.51
1.50
1.13
1.27

10.5
3.97
2.13

0.106
0.663
0.163
0.172
0.034
0.014
0.0075

—0.0165
0.0046
0.0028
0.0021

—0.0016
0.0008

—0.0446
—0.0508

2.1

2.0
2.7
2.7

14.2
4.0
1.7
5.3
2.1

2.0
1.5
2.5
1.0
1.15
1.3

'For these fits A 3*%0;see the text.

were carried out with the conAuent singularity A 2 ~ "
taken into account. Fit 6 is based on 6& =0.5 and there-
fore y =x —0.5, whereas fit 7 allows y to be a free param-
eter. Both fits 6 and 7 give much better g values than fit
5 and still require large x values near 1. Fits with y
comparable to fit 7 can be obtained with the condition
y (0 imposed (yielding y = —0.075 ) or by replacing
A 2 w ~ with A 2 ~in~~. All such fits yield x close to 1 but
give suspicious B and A z /A 2 values. Indeed, examina-
tion of such fits shows that the fitting function is trying to
mimic a step in B with B+&B . Thus we have also
made fits with

(16b)

A justification for B +KB can be based on the presence—x +2hi
in Eq. (15) of terms of the form r ', which become ~
independent (but not the same above and below T, ) if
x =1 and 6,=0.5. Fits 2, 4, and 8 show that allowing
B+%B does not change the value of x, but fit 8 is
significantly better than fit 5 for range C.

It is clear from fits 1-8 that x =1 for the critical ex-
ponent of the leading singularity. A large value for the
critical Srn-C —Sm-I exponent x is supported by fits made
previously on C data for 8OSI. Although 8OSI is super-
critical, one can exclude data for w(5 X 10 (where b C~
is obviously rounded) and a pure power-law fit yields
x =0.80 and A /A + = 1.62 [15].

Fits 9—12 are obtained with Eq. (16b) and the con-
straint A 3

—=0, which corresponds to the first
corrections-to-scaling terms and a step in B that would
arise from second corrections-to-scaling terms if x =1.
All four fits are quite good, even fit 12 in which x and y
are both fixed, although the slope E has a small negative
rather than the expected positive value. The 95%

confidence limits for x evaluated from the I' test were
determined by stepping x through a series of fixed values
for fit 10 and the result is x =1.06+0.08. The quality of
the representation of the data with fit 10 is shown in Fig.
7. It should be noted that the data taken at coo/9 close to
T, may have uncertainties greater than +0.3% of Cz due
to the long acquisition time per point ( —15 min). Note
on the expanded temperature scale plot (upper curve)
that the fit curves agrees well with several data points
close to T, that were excluded from the fit (i.e., the gap
due to rounding could have been reduced to -40 mK).
The rounding of the C peak that is observed could be as-
cribed to either (a) a finite-frequency region where
C~(coo/9) (Cz(0) or (b) evidence that the 75%%uo mixture is

slightly supercritical. In view of the discussion of dynam-
ics in Sec. III B and the narrow temperature range of this
rounding, we feel that any deviation from the true critical
composition will have only minor eFect on the value of
the critical exponent x.

Fits 13—15 represent fits with Eq. (16b) taking A 3 %0.
In these fits one has y'= —0.5, A3 = —2.8+0.16, and
A 3 /A 3+ = —0.010+0.0005 for fit 13, where y

' =x —1.5
with x being fixed at 1; y' =x —1.5 = —0.443,
A 3

——0.005+0.2, and A 3 / A 3+ ———378+18 000 for fit

14; and y' (free)= —0.33+0.16, A3+ =1.03+0.86, and

A3 /A3+ = —1.3+1.6 for fit 15. None of these fits has

physically attractive parameters for the amplitudes of the

3 ~, terms, but they confirm the stability of x to
changes in the fitting function. An examination of
B ff A 3 r +B*+E6T shows that these quantities
are almost constant for fit 15 (B,+s. =2.247 2.287 and—
B ff 1.961 —2.017, but B,+ff varies by 10% for fit 13 and

B,~ varies by 20% for fit 14.
In summary, all the good quality fits to range C (fits 7

and 9—15) are consistent with x =1.06+0.08. The most
physically credible fits are 9—12, which explain deviations
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FIG. 8. lag-log plot of critical heat capacity [C~ —B+
E(T——T, )] versus the reduced temperature v for a mixture

with 75% 8OSI. Fit 10 values of B+=2.254, B =2.048, and
E=0.0028 are used and the leading singular terms A+&v.

given by St 10 are represented by the straight lines. The solid
lines both have slope x = 1.075.

FIG. 7. Fit 10 with Eq. (16b) to the static heat capacity of the
near-critical 75% mixture. The upper curve provides an ex-
panded comparison of C~(coo/9) data and fit 10 for temperatures
near T, (approximately range A, which is marked by arrows).
The data points denoted by close to T, are C~(mo/9) points
that were excluded from the fit. The lower curve corresponds
approximately to range C (346.4-354.4 K). In order to improve
the clarity of the display, only every third data point is plotted
in the wings of the lower curve.

from the leading singularity A
&

~ with a single correc-
tion term (of comparable magnitude above and below T, )

and a step in 8. The importance of these corrections to a
simple power law is demonstrated in Fig. 8. This log-log
plot of [C 8 E(T —T, )—] —versus —~ would yield two
parallel straight lines if a single-power form were ade-
quate over the entire ~ range. The quantity
[Cz 8 E(T T,—)—] is not —sensitive to reasonable
choices of E, but does of course depend on the choice of
8, especially in the large-~ wings. The plot in Fig. 8 is
based on the use of 8 and E values from fit 10. The
crossover from x =1 near T, to a much smaller eftective
power at large ~ is obvious.

One way to represent a strong crossover between two
regimes is to use the Rudnick-Nelson form [24]

C = A ~ ~(1+a ~ ' )"+8 +E(T T,)—

8+ =—8 is imposed, the parameters are T, =350.397 K,
8 =1.979, x =1.139, co=2+0. 13, A )+ =4.3X10
A i /A i+ =5.76, 1/a+=64. 7+3, a+/a =(1/a )/(1/
a+)=0.30, and E=0.0039 with +=3.0. When
8+KB is allowed, the parameters are T, =350.392 K,
8+ =2.38, 68 =0.64, x =1.091, co=1.7+2.2,
A i+ =1.3X10, A, /A,+ =2.35, 1/a+ =26+39,
a+/a =1.30, and E= —0.028 with gv =1.2. Again,
we see that the exponent x lies near 1, but slightly larger.

Defontaines and Prost [13] show that the Sm-C —Sm-I
critical point belongs to a new universality class that is
the same as that for Sm-A —Sm-A critical points [25] and
they give improved estimates for several critical ex-
ponents to first order in E.=6—d, where d is the spatial
dimension (3 in the present case). For the Sm-C —Sm-I
transition, an attractive choice to describe changes in or-
dering is the smectic layer displacement u. If u is defined
with respect to the critical layer thickness d„one finds
that C6 —C6, o-V, u =(d —d, )/d„where C6~ ~f~ is the
intensity of the sixfold x-ray scattering pattern in a hexat-
ic material [13]. The quantity M, = ( V, u ) is the analog
of (p —p, ) in the case of liquid-vapor critical phenome-
na. The critical heat capacity at zero strain is given in
terms of the theoretical thermal scaling field t by

b,C (M, =0)= b, C~(d =d, ) ~ t

(17b) but this quantity is not experimentally accessible from
measurements made at constant composition and con-
stant pressure.

The singular part of the zero-stress critical heat capaci-
ty along a constant pressure path has the following scal-
ing form [25,26]:

where x =(p+0.5') and we have allowed for 8+KB
In the limit where a+a ' ((1, this form yields Eq. (15)
with x =p, 6&= —0.5, D*=cua*, etc. In the opposite
limit where a ~ '~ ))1, one obtains Eq. (15) with
x =p+0.5', 6& =0.5, and a*=co/a*. The present data
do not correspond to either of these asymptotic limits,
but reasonable fits can be achieved with Eq. (17b). If

hC (h t)=A, 'f(A, 't A, 'h), (19)

where h is the scaling field conjugate to the layer

= A*~ " 1+ ~' +8 +E(T T, ), —1

a*
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compression V, u, the critical exponent b, =p+ y, and vi
is the in-plane smectic correlation critical exponent. The
theoretical fields t and h are related to the physical vari-
ables r and b.p"" (chemical potential difference) in a ma-
terial at the critical composition by

(20b)

If the terms involving hp'"' can be neglected in Eqs. (20),
the critical path is a straight line in the (h, t) plane and
one has two limiting regimes for the experimental zero-
stress heat capacity [13,26]

ac(T) It I

r

for lh I
)) Itl (region 1), (21a)

for
I
h

I
«

I
t

I (region 2), (2 lb)

bc (T) (21c)

as the asymptotic form in both region 1 and 2 [26].
There are three possibilities for the experimental ex-

ponent x =1.06+0.08: (a) x =y/b„(b) x=y, and (c)
x =y/(1 —a). The theoretical estimate of y/b, for the
new universality class is 0.47 &y/6 &0.54 [13] and the
best experimental value is 0.45+0.08 [26], whereas
y/5=0. 67 (mean field) and y/b, =0.79 (3D XF and 3D
Ising). Thus x=y/b, is eliminated as a possibility for
any of these universal classes. If the path is in region 2
and the new universality class governs the exponent
values one obtains y=x =1, p=y= 1 (since y/6= —,

'

and b, =p+ y ), a = —1, and v = 1 (due to the scaling
equalities a+2p+y=2 and 2 —a=3v). If the path is
dominated by Fischer renormalization and the new
universality class is pertinent, then y/(1 —a) =x = 1 and
a = —,', P=y = —,', and v= —,'.

The decision about which of the limiting paths is the
proper assignment for measurements at constant X=X,
for a Sm-C —Sm-I system can be greatly assisted by con-
sideration of the variation in the smectic layer thickness
d ( T) obtained from x-ray data:

d(T) =d, +a*r'+e ( T T, ), —(22)

where d, is the layer spacing at the critical point and the
amplitudes a have opposite signs [26]. The critical ex-
ponent is z = 1/5—:P/6 for region 1, z=P for region 2,

where y is the susceptibility exponent, p is the order pa-
rameter exponent, and b, =p+ y. The crossover region, .

where lb I
= Itl, has a finite width that depends on the

specific form of the scaling function f(t, h). Since one
generally expects 6 & 1, the crossover region lies close to
the t axis near the critical point and the asymptotic
behavior close to T, will correspond to region 1 unless h
is quite small along the experimental path. If the terms
involving b,p'"' are not negligible in Eqs. (20), the critical
path is curved close to the critical point [lh I

-r ~" ']
and Fisher renormahzation will occur, yielding

and z=p/(1 —a) if Fisher renormalization occurs. X-
ray studies have not been made on a 8SI plus 8QSI mix-
ture with X=75, but do exist for a closely related Sm-
C —Sm-I critical mixture TB10A + (10)OSI [27]. The ex-
perimental value of the exponent z in that system is
z=0.55+0.06. This result confirms our rejection of re-
gion 1 since for that path x =y/5 and z =p/5, which
requires that x +z =1,whereas experimental x and z sum
to 1.61+0.14.

Thus we need to review the possibility of a path in re-
gion 2 or a Fisher renormalized path. Neither of these
paths is consistent with critical behavior governed by the
new universality class since y/5 =0.5 requires p =y and
therefore x =z, whereas experimentally x =2z. The data
are, however, consistent with a path in region 2 with
mean field-values of the critical exponents: a=0, p= —,',
y=1, and 6=1.5. Furthermore, the scaling field h in a
Sm-C —Sm-I system is like a uniaxial stress conjugate to
the smectic layer thickness [since (d —d, ) /d, ~ C6—C6, ] and it seems reasonable that such a stress axis
wold be roughly normal to the T—X plane. This leads to
the path lying in region 2. Therefore, we conclude that
x =y=1.06+0.08 and z=P=0. 55+0.06. If one disre-
gards the x-ray information on layer thickness d ( T), then
the Sm-Sm universality class could dominate the critical
behavior, but one cannot decide on the basis of C data
alone whether the path is in region 2 or is Fisher normal-
ized.

It may seem strange to claim mean-field AC behavior
when Fig. 4 clearly shows a roughly symmetrical curve
with excess heat capacity above T, as well as below.
However, one must keep in mind that b,c (X„T)along a
path in region 2 is really a thermal probe of a susceptibili-
tylike quantity that is governed by the critical exponent
y. Recall that Cz for a simple Quid near its liquid-gas
critical point varies like ~ ~. Thus Fig. 4 shows a Curie-
Weiss divergence (modified by correction-to-scaling
terms). However, it should be noted that in this Sm-
C-Sm-I situation one does not have the amplitude ratio
expected from Landau mean-field theory for the suscepti-
bility X since X /X+ &0.5 whereas our A, /A i+ )2.
This suggests inverted mean-field behavior, which will be
discussed at the end of this section.

An essential question, is why does the behavior near a
Sm-C —Sm-I critical point exhibit mean-field character in-
stead of the new universality behavior predicted. by
theory and seen near the related Sm-Ad-Sm-A2 critical
point? It seems likely that the explanation can be provid-
ed by the Ginzburg criterion for predicting the width ~„;,
of the critical regime [28]. For r&r,„.„ the system is
dominated by critical Quctuation behavior. For ~& ~„;„
mean-field behavior occurs. Since ~„;,~ (gp), where g'p

is the bare correlation length, the size of the critical re-
gion is very sensitive to the range of correlations in each
particular case. For example, both X—Sm-2 and Sm-
A —Sm-C transitions belongs to the 3D XY universality
class: N Sm Asystems exhi—bit c-ritical behavior since gp
is sinall (typically g„p-—1.5 A, g~~p-—5 A), whereas Sm-
A —Sm-C systems are mean field since gp is large (typical-
ly gp=20 A) [29,30]. We propose that (a) g'p is small for
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Sm- A d
—Sm- A z critica1 systems, which implies a broad

critical reduced temperature regime and critical values of
the exponents, as observed [26], and (b) go is large for
Sm-C —Sm-I critical systems, which would result in a
very small ~„;, and the mean-field exponents. Although
high-resolution x-ray data do not yet exist to confirm this
proposal, it seems reasonable in view of the fact that BO
order and tilt order are coupled in Sm-C —Sm-I systems
and tilt ordering is well established above T„which is
-40 K below the Sm-A —Sm-C transition temperature
for the X, =75 critical sample. There is, however, anoth-
er possible explanation for mean-field behavior near this
Sm-C —Sm-I critical point. It has been shown [25] that
the upper critical dimension for this new universality
class drops to 2.5 when splay-type critical fluctuations are
suppressed by either a magnetic field or a local strain
field. Thus mean-field behavior might arise in poly-
domain samples due to significant residual strains.

In spite of the fact that the Sm-C —Sm-I critical point
occurs deep in the Sm-C phase, the tilt angle 6I is not sa-
turated and temperature independent. The value of (8)
in the Sm-C phase of SQSI films increases over a range of
-3.5 K on cooling toward the Sm-C —Sm-I transition
and then levels off at an essentially constant value for
temperatures in the Sm-I phase [18]. This means that the
"tilt field" H —

~8~ is not constant for T& T„and this
could have a significant effect since the HV = ( h 6

+hi2) 8~ 0' term plays an important role. Indeed, the
deviations between our C~ data and fitting equations (16)
and (17) are small and random for T (T„but are some-
what larger and show systematic trends for T) T, . One
needs an analytic form for fitting data along a path where
the tilt field H varies as a function of reduced tempera-
ture r. Since the tilt angle (8) has a roughly inverted
Landau shape (varies above T, and is approximately con-
stant below T, ), that may explain our "inverted" ampli-
tude ratio 3, /A &+.

The implication of the above discussion is that there
are significant contributions to C that are due to 4—0
coupling. Fluctuations in the bond-orientational order
parameter 4' can drive fluctuations in 0 and these con-
tribute to C (somewhat analogously to the coupling be-
tween the smectic-A order parameter g and the orienta-
tional order 5 near the X—Sm-A transition). Since (8)
is connected with the layer thickness d and the
Defontaines-Prost theory [13] uses V, u = (d —d, ) /d, as
the BQ order parameter, this would seem an attractive
starting point. Note, however, the harmonics of %' play
an important role in the x-ray study of tilted hexatic or-
der [9,14] and there is a difficulty in dealing with harmon-
ics of (II in a theory that makes 4 a scalar.

B. Dynamic behavior near T,

The heat capacity is traditionally considered to be a
static thermodynamic quantity and the values of C ex-
tracted from ac calorimetry at coo=0. 196 (temperature
oscillation frequency 31.25 mHz) are almost always the
static values C (0). However, recent frequency-dependent
measurements on glasses [31,32] have shown that C can

be thought of as a dynamical response function like the
susceptibility. If a system contains slow degrees of free-
dom that relax with a characteristic time constant ~„,
then this will be reflected in the specific heat. In the fre-
quency domain, C*(co) will be a complex quantity whose
real part shows dispersion and whose imaginary part ex-
hibits a peak at frequencies near ~=~+'. In formal
terms, C'(co) can be defined by

C*(co)=C (0)+ I dt e' '(5H(0)5H(t) ),P k T2 y. 0

(23)

F(cor~ )=G(corz )=1 if cow„((l,
F(corz)cc(corz) "+ ~' ' if corz))l,
G(cori' ) ~ (corii )

' if cor~ )&1,

(25a)

(25b)

(25c)

where x is the static critical exponent for AC . See Refs.
[34,35] for further details about the form of dynamic scal-
ing functions. If there is a single Debye relaxation pro-
cess, one has

F(corz)=G(corz)=1/(1+co rz) for all corz . (26)

It is convenient to analyze dynamic response data by
making Cole-Cole plots of ImC~(co) versus ReC~(co), as is
done for the dielectric response in ferroelectric solids and
liquid crystals [36]. Such plots require interpolations of
ReC~(co) and ImC„(co) data values at a set of fixed tem-
peratures. %"e have done this at 10-mK intervals over

where C (0) is the usual static specific heat and
(5H(0)5H(t)) is the time-dependent correlation func-
tion for the total enthalpy where enthalpy fluctuations
are given by 5H(t}=H(t) (H)—. Thus the measure-
ment of C (co) probes the enthalpy relaxation that is
governed by the slow dynamics of the system.

Unlike the case of glasses, we are concerned here with
critical dynamics —the critical slowing down of coopera-
tive ordering phenomena. The theoretical prediction for
order-parameter relaxation is rz —P-r ', where r is
the reduced temperature [33]; this has been confirmed in
mean-field and critical universality systems. The value of
zv is 1 for conventional van Hove critical slowing down
and is greater than 1 for various dynamic universality
classes when critical fluctuations play a dominant role
[33]. Thus one expects dispersion, a frequency depen-
dence of ReC (co), and peak values for ImC (co) to occur
very close to T, for our sample with X=X, if ~~+ be-
comes large (say )0. 1) for our experimental co range.
This behavior is demonstrated by Figs. 5 and 6, where

~

C*(co)
~

=C ii is shown in Fig. 5 instead of ReC (co), but
the dispersion is clear.

In general we expect

C*(co)=C~( ~ )+AC~( ~ )G(corz ) —id C ( ~ )corz

XF(cow~ },
where b, C (ao)=C (0)—C (~). F(corz) and G(corz)
are relaxation functions with limiting behavior for
Auctuation-dominated systems given by
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the range 349.98—350.71 K to obtain 74 "data sets, " and
typical Cole-Cole plots are given in Fig. 9 for five ternper-
atures below T, . When the relaxation has the Debye
form, this display corresponds to a semicircle with Cz(0)
being the large intercept on the real axis and C ( ~ ) be-
ing the small intercept. Deviations from the Debye form
were observed only for the five temperatures T=350.37,
350.38, 350.39, 350.40, and 350.41 K. In these cases one
can use the empirical form C~(co)=C~(~)+AC~(~ )/
[1+(icorz ) ]. The adjustable pz fitting values, which
were found to pz =0.949, 0.921, 0.916, 0.946, and 0.981,
respectively, do not represent very significantly devia-
tions from Debye (pz =1) behavior. Note that C~(~)
does not equal Cz z, a feature that we will return to later.

The relaxation times ~z obtained from Cole-Cole fits
are shown in Fig. 10 and the C (0) and the C (~ ) tem-

FIG. 9. Cole-Cole plots of the real and the imaginary parts of
the heat capacity near T, =350.393 K. The dashed line
represents the variation of C~ & with temperature.

FIG. 11. Temperature dependence of C~(0) and C~(0o ) ex-
tracted from the present ac C~(co) data using Eqs. (24) and (26).
The variation of C~ z =2.34+0.0062(T—T, ) is also shown.

perature dependences are given in Fig. 11. The behavior
of rz as a function of (T T, ) can be—examined in two
ways: (i) fit ~a with a power-law form ro (T T, )

' —and
determine zv or (ii) plot rii vs C~(0) as shown in Fig. 12.
The power-law form provides a good fit if one allows for
a temperature-independent term k

r~ =k +ro (T T)—
The available fitting range is from —1.2 X 10 to
+0.8 X 10 in reduced temperature (roughly range A

for Cz ) and the fitting parameters are k + =2.095s,
k =1.965s, ro =(6.08+2. 17)X10, ro /ro =2.53
+0.50 and zv=0. 95+0.07 with y =1.20. Note that the
value zv=0. 95 is very close to the expected van Hove
value zv=1. The plot given in Fig. 12 makes it clear that
~z is also well described by the empirical form

ra =k*+lC (0), (27b)

where g =1.85 for a fit with k+=1.455 s above T„
k =1.345 s below T„and the coefficient I=0.314 has
the same value above and below T, .

4—

2
349.9

I i

350.2 350.5
T (

350.8

FIG. 10. Relaxation time w& associated with the Sm-C —Sm-I
critical point in the 8SI plus 8OSI mixture with X=75. Two
typical error bars are shown to indicate the uncertainties in ex-
tracting ~& values from our ac heat capacity data. The smooth
curve represents a fit with Eq. (27a) using parameter values
given in the text.

2
2 12

Cp(0) (J K 'g ')

FIG. 12. Plot of w~ versus the static heat capacity C~(0) for
the 8SI plus 8OSI mixture with X=75. The lines represent a fit

with Eq. {27b) using parameter values given in the text.
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10
10

63 7R

1O' 1O'

FIG. 13. Dynamic scaling plot of [ReC~(co) —C~l ~ )]/
hC~( ~ ) versus co~R. The solid line is the Debye scaling func-
tion G(~~R ) with an asymptotic (co~R &&1) slope of —2. Data
both above and below T, are included. The symbols have the
same meanings as in Figs. 5 and 6.

1O'-

A dynamic scaling representation of our C (co) data is
given in Figs. 13 and 14, where [ReC„(m)—C~(ac)]/
AC~(oc ) and ImC~(co)/EC&(ac )corz are plotted versus
cow~. The values of AC&( ac ) and rit were obtained from
Cole-Cole plots with Pz = 1. Figures 13 and 14 show ex-
cellent data collapse and the experimental points conform
quite closely to the Debye form of F(cow~ ) and G(nor~ ),
as expected from the Cole-Cole plots.

The last issue is the discrepancy between C~(~, T),
and C z(T) shown in Figs. 9 and 11. It is possible that
this indicates the presence of two relaxation processes: a
very slow process with relaxation time ~~ greater than 2 s
(frequency fz, &0.5 Hz), which we have characterized
with C (c0) data taken over the frequency range 0.0035
Hz &f„&0.06 Hz, and a faster process with relaxation
times rz& -0.05 s (fez value )20 Hz). Since our

highest frequency is 2cuo=0. 392, the maximum value of
m~z would be only 0.02 and such a second relaxation with
a small relaxation strength [C~(~ )

—C~~] would have
no e6'ect on the data reported here. In the case of dielec-
tric relaxation near the Sm-A —Sm-C* transition, there
are two distinct relaxation modes —the soft mode (ampli-
tude of tilt order parameter) and the Goldstone mode
(phase of tilt order parameter) [36]. Because the phase
(azimuthal angle) of the tilt order parameter in Sm-C*
can be reoriented by a perturbing external electric Geld,
this Goldstone contribution extends over the entire range
of the Sm-C* phase. In our case, there is coupled BO or-
der and tilt order which evo1ve critically as T~T, along
the path X=X,. This coupled order parameter has an
amplitude and phase and both can show critical slowing
down at T, . Thus we propose to extend the frequency
range of our ac calorimeter in order to search for a possi-
ble second critical relaxation process.

A new calorimeter design capable of operation in an ac
mode and in a nonadiabatic scanning mode has been used
to provide the first high-resolution study of a Sm-C —Sm-
I critical point. Although predicted to belong to the new
universality class that includes Sm-Ad —Sm-32 and Sm-
C*-Sm-C* critical points, the static C data for a 8SI
plus 8OSI critical mixture exhibit a somewhat complicat-
ed mean-Geld behavior in which the leading singularity
varies like

~
T—T, ~

"with x =y = 1.06+0.08.
It is proposed that mean-6eld rather than fiuctuation

behavior is observed due to long bare correlation lengths
that lead to an inaccessibly small critical region
(Ginzburg criterion) There are also indications that the
C data are influenced by strong tilt —bond-orientational
coupling HV=(h6+h, z)~8~ ~P, where the tilt field H
varies as a function of temperature for T & T, . Addition-
al theoretical work is needed on the e6'ects of 0-0' cou-
pling.

The improved stability of measurements of tang, where
(~/2) is the p—hase shift between T„(t) and the input

power P„(t), allows us to characterize the real and the
imaginary parts of a complex frequency-dependent heat
capacity C*(co). Dispersion [i.e., frequency dependence
of ReC~(co)] and nonzero ImC (co) data were obtained
over the range f„=3.5 —62. 5 mHz or ~=coo/9 —2coo,
where our standard operating frequency for ac
calorimetry is no=0. 196. Dynamic data obtained over
the range co~=0.045 —3 conform to a single Debye relax-
ation and the critical relaxation time ~z exhibits classical
critical behavior with ~~ diverging like the static heat
capacity Cz(co=0), i.e., zv= 1.

)00
C0 7R

FICx. 14. Dynamic scaling plot of ImC~(co)/EC~(00)co~R
versus ~~R. The solid line is the Debye scaling function I'(co~R )

Data both above and below T, obtained at ~0/9 (+) show con-
siderable scatter since the numerator and the denominator are
very small and thus less precise at this low frequency.
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