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Instability of two-dimensional solitons and vortices in defocusing media
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In the framework of the three-dimensional nonlinear Schrodinger equation the instability of two-
dimensional solitons and vortices is demonstrated. The soliton instability can be considered as the
analog of the Kadomtsev —Petviashvili instability (Dokl. Akad. Nauk SSSR 192, 753 (1970) [Sov.
Phys. Dokl. 15, 539 (1970)]) of one-dimensional acoustic solitons in media with positive dispersion.
For large distances between the vortices, this instability transforms into the Crow instability [AIAA
J. 8, 2172 (1970)] of two vortex filaments with opposite circulations.

PACS number(s): 03.40.Gc, 47.32.Cc, 42.65.Vh, 67.40.Vs

I. PRELIMINARY REMARKS

This paper is devoted to the stability problem of two-
dimensional solitons and vortices, described by the non-
linear Schrodinger equation (NLSE) with repulsion

was first derived by Gross [3] and Pitaevsky [4] and there-
fore it is sometimes called the Gross-Pitaevsky equation.

Equation (1) can be interpreted as a model of disper-
sive hydrodynamics if one rewrites it in terms of density
N and phase P (@ = ~We'~),

ty, + —V'y+ (1 —IVI')4 = 0.
2

Nt + divNV'P = 0, (4)

This equation has at least two important applications.
The first one relates to nonlinear optics and here Eq. (1)
describes the propagation of the electromagnetic wave
in defocusing media. Then the refractive index n has a
negative nonlinear addition

n = np(u)p, kp) —P~E~2, (2)

where np is the linear refractive index, cup and kp are
the carrier &equency and the wave number, respectively,
P ) 0 is a constant, and E is the complex amplitude of
the electric field. When the wave dispersion is positive
(w" = &&, ) 0), the equation for the envelope E(r, t)
reads

i(Et + vs, E ) + ' V'~E+ E —arp E = 0.
2kp 2 Ap

After a translation to a system of reference, moving along
the x axis with the group velocity vg, and a simple rescal-
ing, Eq. (3) transforms into the NLSE of the form of
Eq. (1).

It should be noted that the nonlinear term in Eq. (3)
amplifies the linear effects, diffraction and dispersion, by
broadening the optical pulse in transverse and longitudi-
nal (relative to the pulse propagation) directions. Thus
meaningful nonlinear dynamics is possible only for pulses
suKciently long in time and wide in transverse direction
when, for instance, dark solitons are observed. Therefore
we will further assume that @ tends to the constant'value,
say, to 1, as ~r~ m oo. In such a formulation Eq. (1) is
also used as a model for the description of the condensate
motion in a weakly imperfect Bose gas, with vP being the
condensate wave function. For the Bose gas this equation

P, + —(VP)'+ N —1 =
2

where the pressure p = N2/2 is positive. Depending on
the spatial dimensions of the problem, the NLSE (1) gives
rise to different nonlinear behaviors. As is well known,
in the one-dimensional case the equation can be inte-
grated by the inverse scattering transform [5]. One of
the main results of this theory is a stability proof of one-
dimensional solitons,

vbp ——vtanhv(x —let —xp) +ir, Ic + v = 1. (6)

In optics such objects are called gray solitons; they repre-
sent the propagation of density (or intensity) wells with
the velocity K. In the particular case K = 0 the solution
(6) corresponds to the so-called dark solitons.

In two and three dimensions soliton solutions cannot
been found explicitly in all range of parameters (except
for some limited cases), but only numerically. Multi-
dimensional solitons have been studied in detail in several
papers, mainly in the context of the dynamics of the Bose
condensate. Among these we would like to distinguish a
series of five papers by Roberts et al. [6—10] and the paper
of Iordanskii and Smirnov [11].

The shape of the soliton solution in the form g
gp(x —vt, r~) is determined by integration of the equa-
tion

—iv + —V @p + (1 —
~1bp] )@p = 0.clQp 1 2

Ox 2

Here v is the velocity of the soliton and @ -+ 1 for all
directions as r ~ oo. The possible range of soliton veloc-
ities is defined &om the form of the spectrum of small os-
cillations on the background of constant density, N = 1,
for (1) (the Bogolyubov spectrum),
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u) =k(1+@ /4) i .

This means that the range of velocities has to lie in the
interval 0 ( v ( C, (= 1). Here C, is the minimal phase
velocity v~h = tu/k, the sound velocity. The soliton ve-
locity cannot exceed the minimal phase velocity because
then the Cherenkov-like radiation will become possible
and, as a result, such a localized structure cannot be
stationary; it will lose its energy and. 6nally disappear.
Therefore, close to the threshold of the Cherenkov ra-
diation, but for e ( C„ the amplitude of the soliton
will be small and vanish for v = C, . Near the thresh-
old the nonlinearity, being weak on the soliton solution,
is compensated by the (positive) dispersion, which also
has to be weak for this reason. In this velocity region
in the two-dimensional (2D) case the soliton solutions
are close to the 2D acoustic solitons of the Kadomtsev-
Petviashvili (KPI) equation, the so-called lumps. These
lumps were found explicitly for the 2D KP equation by
means of the inverse scattering transform [12]. For the
NLSE similar soliton solutions were later found numeri-
cally by Jones and Roberts [9]. In that work the whole
family of two-dimensional solitons was also found numer-
ically. According to these results, the density well at the
center of the soliton becomes deeper and deeper when the
velocity decreases. There exists a velocity e„ for which
the density well reaches the "bottom, " i.e., N becomes
equal to zero. For smaller velocities this zero bifurcates;
it splits into two separate zeros in the direction trans-
verse to the direction of the soliton propagation. These
zeros correspond to two vortices with opposite circula-
tions and look like a vortex dipole. The reduction of the
soliton velocity results in a growth of the distance be-
tween the two vortices so that in the small velocity limit
the dipole vortex pair is described, with a good accuracy,
by the Euler equation for incompressible Huids. Thus, in
one limit we have the KP solitons and, the KP equation,
respectively, and in the other limit for small velocities we
get two parallel vortex filaments with opposite circula-
tions, which are similar to the vortex solutions of the 2D
Euler equation.

The main purpose of the present paper is to investi-
gate the stability of the whole family of two-dimensional
soliton solutions. We assume that these solutions, repre-
senting stationary points of the Hamiltonian II for fixed
momentum P, should be stable in the 2D case because
both the KP and the Euler limits indicate their stability.
In the first limit, the KP soliton realizes the minimum
of the Hamiltonian for fixed P and therefore it is sta-
ble in accordance with the I yapunov theorem [13]. For
the Euler equation the fact of stability of two point vor-
tex distribution is well known (see, for instance [14]).
We show that such solitons are unstable with respect to
three-dimensional perturbations. We demonstrate the in-
stability in the long-wavelength approximation, when the
perturbation wavelength is larger than the soliton size.

For the study of the stability problem we use the ap-
proach developed for the related topics, e.g. , for one- and
two-dimensional acoustic solitons in media with positive
dispersion [13] and for the two-dimensional stability of

gray solitons in nonlinear optics [15]. The present paper
represents the natural development of the latter. The
instability that we found turns out to be of the self-
focusing type, analogous to the instability of 1D (gray)
solitons against transverse perturbations [15]. In the
long-wavelength limit the symmetric (relative to the soli-
ton) perturbations are unstable and antisymmetric per-
turbations are stable. This is in agreement with the sta-
bility analysis of Crow for two line vortex filaments in
the fluid case [2] as well as that for the KP instability of
two-dimensional acoustic solitons [13].

The course of the instability is qualitatively the same
as for 1D acoustic solitons [1]. The soliton amplitude de-
creases while the soliton velocity increases. Therefore, by
the transverse modulation of the solit'on the regions with
smaller amplitude (shallow wells) will overtake those with
higher amplitudes (deep density wells). This gives an in-
stability of the self-focusing type. In the nonlinear stage
such a tendency would provide the division of 2D soli-
tolis or dipole vortices into separate cavities. For vortex
filaments these cavities look like vortex rings. Such an as-
sumption means that the process of the cavity formation
in this limit should be accompanied by the reconnection
of vortex filaments. If initially the soliton distribution
has no zeros, this instability can be assumed to lead to
the cavitation, i.e. , to the appearance of zero in the den-
sity pro6le, and, probably, at the later stages to the birth
of the vortex rings. In that connection we should note
that the reconnection of vortex lines has recently been
investigated by numerical solutions of Eq. (1) in three di-
mensions [16]. The main result was that vortex filaments
of opposite "circulation" would reconnect whenever they
come within a distance of a few core radii of one another.
Further support for the nonlinear stage of the instabil-
ity, conjectured above, is obtained IIrom the following ob-
servations. First of all is the collapse of acoustic waves,
which can be considered as the nonlinear stage of the KP
instability of solitons. The acoustic collapse, studied in
detail both theoretically and numerically [17,18], demon-
strates the tendency of the catastrophic decreasing in the
density profile for solitons of small amplitude. Besides,
recent experimental observations and numerical study of
the nonlinear development of the dark soliton instability
showed the formation of a point vortex street [19,20], fa-
miliar to the von Karman street in fluids. It should be
noted that the instability we consider here represents the
unification of two, at first glance, di6'erent kinds of insta-
bilities: the KP instability of acoustic solitons for media
with positive dispersion [1] and the Crow instability of
two vortex filaments [2].

II. STATIONARY SOLITARY VfAVES

Let us consider an axisymmetric two-dimensional so-
lution of Eq. (7),

g(x', y) = @o(x', —y) (x' = x —vt).

It is easy to see that this solution (as well all other sta-
tionary ones) can be obtaiiied from the variational prob-
lem
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where

6'(H —vP ) = 0, (9) f 0@
(& =8)

ax

2 + 2 ] 2 (1o)
dr =e —vP,f Bg

19g
(17)

P = — [@V@'—vP'V@]dr
2

are the Hamiltonian and the momentum, respectively.
Equation (9) says that the soliton solution represents the
stationary point of the Hamiltonian for 6xed momentum.
The Lagrange multiplier v in (9) coincides with the soli-
ton velocity in (7). Hence, in particular, it follows that
on the soliton family the velocity v can be de6ned as

DG

OP'

where c is the soliton energy and P = P is the x com-
ponent of its momentum.

However, the momentum P, given by Eq. (11),diverges
logarithmically at in6nity on the 2D soliton, as shown in
Ref. [9]. This follows by considering the asymptotics of
@ at the infinity,

x
g(x, y) 1+im

X + 1 —v Q
(13)

where m is real. Thus P in Eq. (11)needs to be redefined.
If the momentum is defined as (see [9])

P = — [(@—1)V@' —(g' —1)V@]dr, (14)

then it will converge and also remain conservative. In
terms of the density Quctuation n = N —1 and the ve-
locity U = V'P, the momentum (14) can be rewritten
as

Hence, with the help of (12) we get the inequality

E, 19G'

P OP (19)

In the two limiting cases, i.e. , in the limit v + C, and
in the limit for small velocities, the 2D soliton solutions
can be found in analytical form. In the first case, as may
be seen from the asymptotic form (13), the gradient of vP

along x is larger than the corresponding gradient along
the y direction,

Oz Og

Moreover, it is observed that the density Huctuation n, as
well as the characteristic inverse soliton size along the x
axis, tends to zero as the soliton velocity approaches C, .
These properties permit us to make a reduction of the
NLSE (1) to the KPI equation, describing the propaga-
tion of acoustic waves of small amplitude with a narrow
angular distribution and possessing positive dispersion.
The regular procedure of such a reduction [21] consists
of the introduction of both slow time and slow coordi-
nates

t'=e t, x'=e(x —C, t), y'=e y, z'=e z

and the representation of n in the form of series in powers
of the small parameter e

P = nUdr.

The definition (14) guarantees now that P remains
bounded. It allows us to characterize the whole soliton
family by the velocity v or by P (15). For this family it is
possible to find some integral relations (for more details,
see [10]). Here we present one of them. Let us perform
two independent scaling transformations along the x and
g axis:

A(+ 9) ~ A(a*, u), 40(*,u) -+ A(*,&u)

N = 1+) e "n„(x',y', z', t').
k=l

For stationary solitary waves e = gl —v.
The KP equation appears in third order ( e ),

8 f 1 3 i 1

Oz 8 2 ) 2~
ni ——n~~~ + —nn~

~

= ——V~n, (2o)

where a and b are scaling parameters. Inserting this
transformation into the variational problem (9), it is evi-
dent that the following two integral relations hold on the
soliton solutions:

0 0
Ba Ob

(H —vP)i i —— (H —vP)ib, = 0—.

Simple algebra gives

where V& ——0 + 0 and primes are omitted. The mo-
mentum P in this case can be expressed through the
density fluctuation n

P= n dr&0,

and the energy e coincides with the leading order with
P. The Hamiltonian for the KP equation appears in the
next order of the perturbation theory,
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HKp = — n—+ n + (V'~P) dr (P = n), (22)
2 4

so that the Hamiltonian for Eq. (1) in this limit can be
written approximately as

P(iv) = arg(iv —iL/2) + arg(ur + iL/2),

where m = x —vt + iy. The main contribution to the
energy in this limit is connected with this incompressible
How)

H P+ HKp. (23)

As the Nl SE the KP equation (20) belongs to the Hamil-
tonian equations, and it can be represented as

2
On O hHKp
Ot Ox bn

(24)

In full accordance with (9) the soliton solutions for
the KP equation represent stationary points of the KP
Hamiltoiuan (22) for 6xed momentum (21),

s = 2~1n(1/v).

Using relation (12) we can write

OG' Ov

Ov OP

Introducing (29) we obtain

OP 2x= ——(0
Ov v

(29)

(3o)

(31)

and consequently
(25)b[HKp —v'P] = 0,

27rP r

vwhere v' = 1 —v.
The solution of this variational problem can be found

explicitly in the form of a two-dimensional soliton, the
so-called lump [12],

8v' + 6v'y —3(x —v't)n= —6
[8v' + 6v'y2 + 3(x —v't)2]2

' (26)

Thus, in both limits the derivative BP/Bv is negative. If
one assumes that the function P(v) is monotonic, then
by applying the inequality (19) it is readily seen that the
derivative BP/Bv will be negative in. the whole range of
velocities v. Numerical integration of Eq. (7) confirms
this assumption completely [9].

The momentum P on the lump is proportional to ~v' so
that III. STABILITY ANALYSIS

where

OP A &0,
Bv gl —v

P
2/1 —v

(27)

@( t) = @o(* ) + ~@(*» t) (32)

In this section we consider the linear stability of two-
dimensional solitons with respect to three-dimensional
perturbations. Let us seek the solution of Eq. (1) in the
form

is a positive quantity. The soliton solution (26) real-
izes the minimum of the Hamiltonian HKp for fixed mo-
mentum P and is therefore stable with respect to two-
dimensional perturbations [15], in accordance with the
Lyapunov theorem in the &amework of the KP equation.
In the other limit of small velocities v, the solution of
(7) represents the vortex dipole pair as noted in Sec. I.
In this case the distance between vortices grows inversely
proportional to the velocity, v,

where the soliton solution go(x', y) obeys Eq. (7),
8@(x',y, z, t) is a small perturbation, and x' = x —vt.
Let the perturbation depend on t and z in the following
way:

Then after linearization of Eq. (1) on the background of
go, we arrive at the spectral problem

L =1/v,

as v ~ 0. The density Buctuations n for such scales
are unessential with respect to the phase variations. The
density vanishes at the centers of each vortex and sat-
urates sufficiently rapidly at the distances of the core
radius a 1 (the so-called healing length). Thus the
Qow outside the core regions can be considered incom-
pressible with a good accuracy (see, for instance, recent
papers [22,23], devoted to this subject)

1 2(d03tL ——k 7L + L'll = 0 .
2

Here

O 1 2L = —zvo3 + —V~x 2 f42

is a Hermitian operator and

(33)

oo

2IAI' —1)

divU' = V' Q = 0. (28) (1 ol
The solution of this equation, as v —+ 0, can be written
in the form It is hardly possible to solve this spectral problem ex-
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actly; therefore we shall restrict ourselves by considering
only the problem in the long-wavelength limit, where k
is small compared to ihe inverse soliton size 1/L, i.e. ,
we introduce a smallness parameter e = kL (& 1. This
means that the solution of the system (33) may be found
in the form of a series in the small parameter e:

u=up+eui+e u2+ . , ~=ELaIi+E' ld2+. . . (34)

To the leading order,

8 /@pl—icrsuoi+L —l, l

= 0,
Kv (0p)

8 (@pl
Bv (Vp) (39)

The equation for second order reads

which coincides up to the constant factor i~ with Eq.
(38) for up = upi. Hence we have

Lup ——0, (35)
12

&03%41 ——k vip = —L'Q2.
2

(40)

0 (@pl
&01

4'&p ) (36)

and

which shows that up are neutral modes. Among them
there are two modes corresponding two independent in-
finitesimal translations of the soliton as a whole,

12
~(uoilo'sluii) = —k (uoiluoi).

2
(41)

The solvability condition for this equation is the orthogo-
nality of its left-hand side to all functions &om the kernel
of L. For the given case, due to the parity, a nontrivial
relation appears only for the function upi. As a result,
we have

uo2 = (gp )
» E

(37)

Inserting Eq. (39) into this expression, integrating by
parts, and using relation (16), we arrive at the disper-
sion relation

Both modes are localized and belong to the bound states.
These modes have different parities with respect to x
and y. The function upi is symmetric with respect to y
and u02 is antisymmetric. The neutral modes generate
two independent branches with different parities, which
allows us to consider each branch separately.

The kernel of the operator L contains also an eigen-
function with a zeroth eigenvalue; this is a neutral mode

co = k (0
BP/Bv (42)

We recall that BP/Bv & 0 as shown in Sec. II. Thus the
considered perturbation turns out to be unstable with the
growth rate (Im w) given by Eq. (42). In the limit v ~ C,
this growth rate translates to that for the instability of
two-dimensional acoustic solitons in media with positive
dispersion [13]

k = —2(l —v)k .
OP Ov

(43)

corresponding to a small gauge transformation. This
mode belongs to the continuous spectrum and therefore
it is not interesting from the point of view of possible
instability. From first principles it follows that unsta-
ble modes should be bounded. Modes that have a con-
stant amplitude at infinity will evidently be stable. It
should be noted that in the case of one-dimensional soli-
tons there are only two functions, connected to transla-
tion and gauge in the kernel. It is therefore natural to
assume that in the 2D case there will be the three func-
tions presented above in the kernel of L.

A. Symmetric perturbations

In the next order of the perturbation expansion we
obtain

coo3tcp + Lvli = 0 (38)

For symmetric perturbaticpns this equation can easily be
solved. Let us consider Eq. (7) for the stationary soli-
ton and its complex conjugate. Differentiation of these
equations with respect to v gives

For the case of small v « C, the growth rate (42) is also
simplified by means of (29) and (31),

= —(kv) ln(1/v). (44)

The instability governed by Eq. (43) represents the
prolongation of the KP instability of 1D acoustic solitons,
while instability (44) corresponds to the Crow instability
for two parallel vortex filaments in ideal fluids [2). In
spite of the difference between these two physical situa-
tions, the reasons for both instabilities are the same. As
stated in Sec. I, if the soliton velocity decreases when its
amplitude increases, one should expect instability with
respect to transverse perturbations. It is important to
note that this instability is of the self-focusing type and
it is expected that the instability saturates at a level suf-
ficiently larger than the initial amplitude, if it saturates.
In the acoustic region the instability initiates in the non-
linear stage the collapse of acoustic waves [17,18]. For
vortices this instability represents the first stage of the
cardinal reconstruction of the Bow topology, i.e. , of the
vortex reconnection [16]. It is also interesting to note that
the general expression for the growth rate (42) does not
contain the logarithmic dependence on k, as follows &om
the results of Crow [2] for filaments with zeroth width.
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B. Antisymmetric perturbations

0 F@p)—zosupz + I
BVu

Vp —0

(45)

The derivatives with respect to v& are easily expressed
through the generator of the infinitesimal rotation

I et us Gnd the dispersion relation for antisymmetric
perturbations. To find ~ to leading order it is necessary
to solve Eq. (38), where instead of up we should substi-
tute up2 from Eq. (37). For this case the solution can also
be found. Note that if one considers a soliton propagat-
ing under a small angle to the x axis, then the following
relation may be derived:

(q„)2f I@el'dr (q„)2s
—&v

Pv Pe (48)

Thus the antisymmetric long-wavelength perturbations
are stable in the whole range of soliton velocities includ-
ing both limits, i.e., for vortex filaments and for the 2D
KP solitons. The frequencies for both limits transform
into those obtained in [2] and [13].

Next we replace upq by up2 from (37) and uqq by uqz
from (47) in (41) and integrate by parts. Using relations
(17) and (18), we obtain the following dispersion relation
for the antisymmetric perturbation:

0@p
|9'Uy

Vy —O

As a result, the solution has the form

(47)
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