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Langevin approach to a chemical wave front: Selection of the propagation velocity
in the presence of internal noise

A. Lemarchand, ' A. Lesne, ' and M. Mareschal
Laboratoire de Physique Theorique des Liquides, CARS URA 765, Universite Pierre et Marie Curie,

4 P/ace jussieu, I'-75252 Paris Cedex 05, I"rance

B-1050Bruxelles, Belgium
(Received 31 October 1994; revised manuscript received 23 January 1995)

The reaction-diffusion equation associated with the Fisher chemical model A +8~2A admits wave-
front solutions by replacing an unstable stationary state with a stable one. The deterministic analysis
concludes that their propagation velocity is not prescribed by the dynamics. For a large class of initial
conditions the velocity which is spontaneously selected is equal to the minimum allowed velocity v;n, as
predicted by the marginal stability criterion. In order to test the relevance of this deterministic descrip-
tion we investigate the macroscopic consequences, on the velocity and the width of the front, of the in-
trinsic stochasticity due to the underlying microscopic dynamics. We solve numerically the Langevin
equations, deduced analytically from the master equation within a system size expansion procedure. W' e
show that the mean profile associated with the stochastic solution propagates faster than the determinis-
tic solution at a velocity up to 25% greater than v;„.
PACS number(s): 47.70.Fw, 82.20.Mj, 82.20.Fd, 05.40.+j

I. INTRODUCTION

Spatiotemporal organization in inert and living systems
offers a large variety of mechanisms among which wave-
front propagation appears as a simple and rich example.
In the specific case of a wave front replacing an unstable
stationary uniform state with a stable one, the propaga-
tion velocity is not imposed by the dynamics, and the
mechanisms governing its selection have been extensively
studied.

Fisher [1] originally built a reaction-diff'usion model to
describe the spread of a favored genetic trait through a
population. At the same time, Kolmogorov, Petrovsky,
and Piskunov [2] worked independently on the same
reaction-diffusion equation, which will be further referred
to as the FKPP equation. Since then, the FKPP equation
found various applications in biology [3] as well as in the
description of various phenomena such as fIame propaga-
tion [4,5], phase separation of polymer melts [6], or
chemical wave fronts in nonlinear chemistry [7—12].
Several macroscopic studies [13—16] have led to the con-
clusion that a continuum of possible propagation veloci-
ties greater than a minimum value exists. Moreover, ac-
cording to marginal stability analysis [13,15], sufficiently
steep initial profiles have been shown to relax to the
front, propagating at the minimum allowed velocity.

In this paper, our goal is to test the validity of the mac-
roscopic deterministic description when some effects of
the underlying microscopic dynamics are taken into ac-
count. More particularly, we will be concerned with the
possibility of a modification of the minimal velocity selec-
tion mechanism by internal fluctuations. In order to ana-
lyze these questions, we have set up a numerical investi-
gation of a front-propagating solution in the presence of
internal noise. This consists in solving the Langevin

equations [17—19] associated with the FKPP model [1,2]
in the frame moving along with the front. Both the front
width and velocity can be determined with and without
noise. In a similar context, a direct modeling of Turing
pattern formation has recently been performed [20] using
a lattice-gas cellular automaton: a modification of the sta-
bility regions, due to internal noise, has been reported.

The paper is organized as follows. In the next section,
the results of the marginal stability analysis specific to the
case of the Fisher reaction-difFusion model are recalled.
Then, the Langevin equations associated with this model
are deduced from the master equation in Sec. III. Tech-
nical details about the numerical integration scheme are
given in the Appendix. Results are discussed in Sec. IV,
while some conclusions are drawn in Sec. V.

II. SOME RESULTS OF THE
MACROSCOPIC THEORY

We consider an infinite two-dimensional (2D) medium
containing two chemical species 3 and B, which may
diffuse with an identical coefficient D and react according
to the following autocatalytic reaction of rate constant ~:

A+B~A+ 3
Due to the reaction and diffusion processes, the concen-
tration of a given species or number of particles of this
species per unit surface varies with space (x,y) and time

From a macroscopic point of view, A (x,y, t) and
8 (x,y, t) respectively denote the local concentrations of
particles 3 and B. At time t =0, the total concentration
C (x,y, t)= A (x,y, t)+B (x,y, t) is supposed to be spa-
tially homogeneous and equal to the constant C. Since
the species 2 and B diffuse with the same diffusion
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coefficient and since the chemical reaction given in Eq. (1)
does not modify the total number of particles, the total
concentration remains constant; that is, whatever x, y,
and t,

steepness at the inAection point can be used to define a
front width [3] as

1/2

C (x,y, t)=C . (2)

l3efining respectively the local fractions of particles A
and B at time t by a—:a(x,y, t)= A(x, y, t)IC and
b =b(x—,y, t) =B(x,y, t) IC, it follows that

a+6=1, (3)

whatever x, y, and t. The deterministic evolution of the
system hence reduces to the following reaction-difFusion
equation:

2— 2—
=Ka(1 —a )+D +

Bt ()~ 2 Qy2

where K is given by

K=KC .

(4)

It is worth mentioning that the reaction-diffusion equa-
tion (4) only depends on the two parameters K and D, so
that the macroscopic behaviors of two different systems
labeled 1 and 2 are identical, provided their chemical rate
constants, total concentrations, and diffusion coefticients
obey the following relations:

K&C& =K2C2 ~ D) =D2 (6)

v;„=2+KD (7)

which satisfies the marginal stability criterion [15].
It has also been proven [13,15] that a large class of

sufIiciently steep profiles, including a step function,
evolve in time to the stable solution a(x —v;„t), which
propagates with the minimum allowed velocity. This
wave front appears as stationary in the frame moving at
velocity u

As a matter of fact, numerical solutions of the deter-
ministic reaction-diffusion equation (4) always relax to
the front, which propagates at the minimum velocity. In
particular, fronts propagating initially with a higher ve-
locity seem to be slowed down to the marginal one by
small but unavoidable perturbations induced by the finite
precision of the numerical computation. The analytical
expression of the profile propagating with the minimum
velocity is not known, but an approximate value p of the

As will be seen in next section, let us mention that the
stochastic behaviors of these two systems are different.

Since the pioneering works of Fischer [1] and Kolmo-
gorov, Petrovsky, and Piskunov [2] in 1937, the FKPP
equation has been extensively studied. It is well known
[13—1S] that, for adequate initial conditions, it admits
uniformly translating solutions a(x —vt), independent of
y, moving in the direction x with a constant velocity u

and replacing the unstable uniform and stationary state
a =0 by the stable state a = 1. An essential feature of Eq.
(4) is the existence of such stable wave-front solutions for
any propagation velocity v greater than a minimum value
u;„given by

III. INTERNAL FLUCTUATION DESCRIPTION
THROUGH THE LANGEVIN FORMALISM

The description of reaction-diffusion systems by deter-
ministic equations such as Eq. (4) does not take into ac-
count the internal Auctuations that are generated by the
underlying microscopic dynamics. In critical situations
or for a system that is not structurally stable, it is well
known [16—19] that internal noise is able to induce ob-
servable deviations from the deterministic or mean-field
behavior. In the specific case of a wave front propagating
into an unstable stationary state, the existence of a con-
tinuum of possible propagation velocities may enhance
the sensitivity to Auctuations, and it may be asked wheth-
er internal noise influences the selection of a particular
propagation velocity. In this spirit, we have already per-
forrned microscopic simulations of the FKPP model
adapting two different numerical methods, the direct
simulation Monte Carlo method [10], originally built by
Bird [21] in the context of dilute gases, and a lattice gas
cellular automaton model [11,12] first introduced by Har-
dy, de Pazzis, and Pomeau [22]. In both cases, the devia-
tions that we observed between the mean properties of
the simulated front and the deterministic predictions
were too small compared to the error bars of the simula-
tion to be significant.

In the present study, we have chosen an intermediate
level of description, the so-called mesoscopic level at
which the local concentrations A (x,y, t) and B (x,y, t) of
particles A and B are treated as random variables. Their
evolution is described through a Langevin equation ob-
tained from the deterministic equation for variable
a (a= A, B) by adding a random force [19] F (x,y, t),
which is supposed to mimic all the effects of the micro-
scopic dynamics. Our goal here is to take advantage of
the reduction of actual microscopic dynamics to the
simplified Langevin formulation to favor a direct compar-
ison with the deterministic results and to make more pre-
cise the role of internal fluctuations on the selection of a
propagation velocity.

As in the deterministic case, the initial conditions are
such that the total local concentration
C(x,y, t)= A (x,y, t)+B(x,y, t) is initially homogeneous
and equal to the constant C. The initial conditions obey

C(x,y, 0)=C .

The local fractions of particles A and B are now respec-
tively defined as

a=a(x, y, t)= ' ', b:b(x,y, t)=-A (x,y, t) B(x,y, t)
C C

(10)

but they do not fIuctuate in the same way and the
Langevin description cannot be reduced to a single equa-
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Ba =Ka (c —a)+D +
2 +F,(x,y, t),

~a $2a

at Bx By
(12a)

c cj2c c)2c=D
2

+
2 +F,(x,y, t),

()y
2 (12b)

where the mean value of the forces vanishes according to

(F,(x,y, t) ) = (F,(x,y, t) ) =0,
whatever x, y, and t . (13)

The variable c is not affected by the chemical reaction
given in Eq. (1), which justifies the choice of the variables
a and c instead of a and b. Moreover, the mean value of
the variable c is equal to the deterministic solution reduc-
ing to c = 1 for our choice of initial conditions.

In order to describe the internal noise, we deduce the
Langevin forces from the master equation [17—19]
governing the probability distribution for the stochastic
processes a and c. In the master equation approach, the
chemical reaction is modeled by birth and death process-
es and diffusion by a random walk. The Langevin force
variances are identified with the second moments of the
transition probability. It reads [19]

(F,(x,y, t)F, (x',y', t') )

5(t —t')
Ka (1—a )5(x — x)5(y —y')

C

+2DV.V'[a5(x — )x5(y —y') ', (14a)

(F,(x,y, t)F, (x',y', t') )

5(t t')V V'—[5(x —x')5(y —y') ]
C

(F,(x,y, t)F, (x',y', t') )

(14b)

with

5(t t')V. V'[a 5(x —— )5x(y —y')],
C

(14c)

a
Bx

V=

By By

and where a =a(x,y, t) obeys the deterministic equation
(4). Note that in addition to K and D, a third parameter,
the mean total concentration C, appears in the stochastic
analysis. Mor~erecisely, the Langevin forces are propor-
tional to 1/+C. The two systems defined by the param-
eter values given in Eq. (6) were associated with the same
deterministic equation. Since C&WC2, they are now de-

tion as was the case in the deterministic analysis. Chaos-
ing the random variables a and c, with c defined as

c=a+b,
the Langevin approach formally leads to the following
stochastic differential equations:

TABLE I. Comparison between deterministic and Langevin
results in 1D and 2D media for different sizes of the system and
for the following parameter values: E =8X10 ", D =0.1, and
C = 100.

Results

Deterministic
equation

1D Langevin
equations

2D Langevin
equations

Propagation
velocity

0.0179

0.0220 +
0.0002
0.0224 +
0.0002

Profile
width

89.5

110+1

114+1

Number
of cells

512

512 X4

512X512

scribed by different Langevin equations.
The Langevin approach appears as a first order ap-

proximation of the master equation in the framework of a
system-size expansion [17—19]. It corresponds to a
Gaussian approximation that neglects irreducible transi-
tion probability moments of order higher than 2. The
Langevin force variances given in Eqs. (14) define the
noise statistics. At this order of approximation, the vari-
ables appearing in the expressions for the force variances
may be replaced by their mean values, as has been done
in Eq. (14).

For the sake of simplicity, a continuous description has
been adopted up to now, but it is to be regarded as a con-
venient notation. As a matter of fact, the master equa-
tion formalism lays on a spatial discretization into cells.
The choice of the cell size is a balance between two oppo-
site constraints. On the one hand, the cells must be
sufficiently small to be considered as homogeneous. On
the other hand, a correct description of the chemical pro-
cesses inside a cell requires sufficiently large cells, con-
taining a large number of molecules so that the parameter
C obeys C))1. This justifies the system-size expansion
in power of 1/VC.

As it is hopeless to look for an analytical solution of
Eqs. (12) and (14), we solve them numerically. A discre-
tized version of Eqs. (12) and (14), supported by the mas-
ter equation approach and suitable for a numerical in-
tegration, is given in the Appendix. Using Eqs. (A6), we
follow the evolution in time of the variables a; (t) and
c; (t) in cell (i,j) of a two-dimensional square system.
The system is divided in n by n cells with typically
n =512 or n =1024.

A plane initial condition with a steep profile is im-
posed. The simplest choice is a step function with
a~(0) = I for i (n /2 and a; (0)=0 for i )n/2 and with
c;.(0)=1, whatever i and j. However, it is easy to look
first for a numerical solution of the deterministic equa-
tion given in Eq. (4) for the same value of the parameters
EC and D than for the Langevin equations. We compute
the stationary deterministic profile in the frame moving
with the minimum velocity obeying Eq. (7). The initial
choice of this deterministic profile, translated in the y
direction labeled by j leads to the same asymptotic re-
gime of the Langevin equations than the step function for
a shorter computation time.

Classical periodic boundary conditions are imposed in
the direction y, whereas the propagation of the front in
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l7J E7J

is obeyed, a procedure to reduce the 3 excess is started as
follows:

(i) the first column of cells, characterized by i =1, is
suppressed;

(ii) column i, for i ) 2, becomes column i ' =i —1;
(iii) a last column, characterized by i'=n, is created, in

which a„)( t) =0.

The front position denoted by p(t) is computed in the
following manner: initially set equal to 0, P(t) is increased
by 1 at each time step for which Eq. (15) is verified. The
quantity P(t) contains global information about the entire
front propagation and we define the front velocity U as
the time derivative of the position P(t).

Depending on the values of the three parameters X, D,
and C, diferent asymptotic regimes are reached for
which it is possible to define a mean stationary profile in
the frame moving at velocity U. Hereafter, "mean" will
refer to an average over the cells in direction j and over
time t. It is then possible to characterize the steepness of
this profile and to determine its width in the sense given
in Eq. (8). Let us mention that our mean-front width
definition di6'ers from the one adopted by Chopard and
Droz [7] from the position variance. Whereas the width
defined in the latter work steadily increases in time, our
choice allows us to compute a width that reaches a sta-
tionary value even in a fluctuating system and that can be
quantitatively compared with the value predicted by the
deterministic theory.

Typically, the integration of the Langevin equations
given in Eqs. (A6) for a system of 1024X1024 cells re-
quires 1 s per time step on a CRAY YMP C98. For the
parameter values listed in Tables I and II, the statistics
needed after the stationary regime has been reached in
the moving frame have required 10 time steps, which
amounts to 30 h of computation time.

the direction x is reproduced in the following manner. In
order to mimic an infinite medium in the direction x, it is
necessary to counterbalance the consumption of particles
B due to the chemical reaction given by Eq. (1). To do
so, the sum over all cells (i,j) of the fractions of particles
A is compared with its initial value. More precisely, at
each time step where the inequality

g a;J (t) & g a; (0)

IV. RESULTS DEDUCED FROM THE NUMERICAL
INTEGRATION OF THE I.ANGEVIN EQUATIONS

FOR THE FKPP MODEL

Our goal is to compare the values of the propagation
velocity and the profile width predicted by the deter-
ministic theory according to Eqs. (7) and (8) with the re-
sults deduced from the Langevin equations. Let us recall
that the initial condition is a plane front whose profile in
the direction x labeled by i is the deterministic solution
propagating with the minimum velocity or any steeper
profile. The Langevin equations given by Eqs. (A6) are
integrated for given values of the three parameters K, D,
and C over a sui5ciently long time until a stationary re-
gime is reached in the moving frame. The mean propaga-
tion velocity (U) is a time average of the velocity de-
duced from the front position P(t) after the stationary re-
gime has been reached. The mean width profile (e) is
deduced from the slope at the inAection point of the
mean stationary profile.

The integration of the Langevin equations given in
Eqs. (A6) in the case of a 2D medium can also be per-
formed in a similar way in a ID medium. The only
change is to set apart the j label. In Tables I and II, we
compare the results obtained in one-dimensional and
two-dimensional systems. The mean propagation veloci-
ty and the mean profile width appear to be identical in
1D and 2D media, whatever the choice of the parameters
K, D, and C. Taking advantage of this property, the
computation time has been reduced by performing the
following analysis in a one-dimensional system.

For fixed values of K, D, and C, we now study, in a 1D
system, the inhuence of the length of the medium for
which the Langevin equations are solved. In particular,
we analyze the effect of the number of cells in front of the
leading edge of the profile. Since the inAection point of
the mean profile is stabilized in the middle cell, the num-
ber of cells in front of the leading edge doubles with the
medium length. As shown in Table III, the mean propa-
gation velocity, as well as the mean profile width, do not
significantly vary with the medium length. Actually, in
each case, we consider a sufIiciently long medium, such
that the fluctuating variable a (x,y, t) vanishes, up to the
precision of the numerical computation, in an interval
ranging from a given point of the leading edge up to the

TABLE III. Comparison between deterministic and
Langevin results in 1D media for difFerent lengths of the system
and for the following parameter values: K =8 X 10, D =0.1,
and C=100.

TABLE II. Same caption as Table I for the following param-
eter values: K=3X10,D=0. 1, and C=100.

Results
Propagation

velocity
Profile
width

Number
of cells

Results

Deterministic
equation

1D Langevin
equations

2D Langevin
equations

Propagation
velocity

0.0110

0.0142 +
0.0002
0.0137 +
0.0002

Profile
width

146

190+1

Number
of cells

1024

1024 X4

1024X 1024

Deterministic
equation

1D Langevin
equations

1D Langevin
equations

1D Langevin
equations

0.0179

0.0220
+0.0002

0.0226
+0.0002

0.0222
+0.0002

89.5

110+1

116+1

112 +1

512x4

1024x 4

2048 x4
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right boundary. In this interval, the Langevin force vari-
ances, proportional to the mean value a (x,y, t) according
to Eq. (14), also vanish, so that the state a =0, although
unstable, cannot be destroyed by internal Auctuations.
As a consequence, the effect of internal noise on the
wave-front properties does not depend on the size of the
interval for which a =0. Obviously, this property disap-
pears when studying the effect of external noise [23],
which enables the appearance of some nucleation germs
of particles A in front of the leading edge of the profile.

Values listed in Tables I and II show that the mean
quantities deduced from the Lan gevin equations are
larger than the corresponding deterministic ones. For a
concentration C equal to 100, the discrepancy between
deterministic and stochastic values for the propagation
velocity as well as for the profile width reaches 25% with
an error estimated around 1 or 2 %.

As appears from Eqs. (14), the C parameter controls
the amplitude of the Langevin force, and a systematic
analysis of the velocity and width variations with C, at
fixed K and D, does reveal the inhuence of internal noise
on wave-front propagation. The qualitative variations
with C of the profile width appear in Fig. 1. As C in-
creases, the noise term amplitude decreases, and the
profile becomes steeper and tends to the deterministic
profile associated with the minimum velocity. The time
variations of the wall position in the fixed frame are given
in Fig. 2 for different C values. As C increases, the slope
of the profiles or (qualitatively) the front velocity de-
creases and tends to the minimum velocity predicted by
the marginal stability analysis.

The quantitative variations with the Langevin force
amplitude I/+C of the mean profile width (e ) and of
the mean velocity (v ) are respectively given in Figs. 3
and 4. The Langevin approach, whose validity relies on a

0.8

2000
. C=50
C=100

1500 C =2000

1000

500

Bx 104 4x 104 6x 104 8x 104

time t
FIG. 2. Variations with time t of the front position P(t) in

the fixed frame for different values of the mean total concentra-
tion C and for the same parameter values as in Fig. 1.

system-size expansion in powers of I/+C of the master
equation, loses its sense for a too-high noise level. In
practice, the results become meaningless for C (50. In-
side this domain of validity, Figs. 3 and 4 clearly show
the continuous increase of (e) and (v ) with the noise
level, i.e., with I /+C.

To sum up, for given values of K, D, and C, the
Langevin equations given in Eqs. (A6) admit a wave-front
solution whose mean width and mean propagation veloci-
ty are greater than those predicted by the deterministic
theory. The advantage of the Langevin formalism with
respect to the microscopic simulations [10—12], which we
undertook before, is to provide a parameter C that con-
trols the noise level independently of the other parame-
ters K and D, allowing us to test if the deviation with
deterministic results increases with the Auctuation ampli-
tude. Such a systematic analysis was not possible in the
microscopic simulations, since an increase of the noise
level by the number density decrease was accompanied by

p, 0.6—
V

0.4

110

105

0

de
PI

100 200 300 400

cell number i

500

100

FICi. 1. Mean wave-front profiles, solutions of the Langevin
equations, in the moving frame and for different values of the
mean total concentration C. Each curve represents the spatial
variations in the propagation direction x labeled by i of the
mean fraction (a) of particles A. These results have been ob-
tained for the parameter values K=8X10,D=0. 1, and in a
system of 512X4 cells, which can be considered as a 10 medi-
um.

90
I J

0 O. OP, 0.04
I

0 06 0 08 0 1

]/~(c)
FICr. 3. Variations of the mean-front width (e ) with I/+C,

where C is the mean total concentration and for the same pa-
rameter values as in Fig. 1.
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O. OP, B

0.021

0.02
V

0.019

0.018

I I I

)

I I I

I
I I I

J

I I I

IE

I

propagating with the minimum velocity u;„=2+EpD'p
as well as the mean solution of the Langevin equations as-
sociated with C=1000 have been represented in Fig. 6.
As already mentioned, the mean stochastic solution has a
larger width (e & and propagates faster than the deter-
ministic solution. The mean velocity of the fluctuating
front is denoted by (v &. A third profile has been added
in Fig. 6; it is a deterministic solution associated with
effective values X, and D& such that the profile has the
same width, e'; =8+D, /ICi, and the same velocity,
u';„=2+%,D„ than the Langevin profile. With our
notations, it reads

0 0.02 0.04 0.06 0.08 0. 1

&/v(c)
FIG. 4. Variations of the mean propagation velocity (v)

with 1/+C, where C is the mean total concentration and for
the same parameter values as in Fig. 1.

a variation of the diffusion coefficient D.
The continuous dependence of the mean-front proper-

ties with the noise level reveals that the deterministic
solution is structurally stable with respect to stochastic
perturbations induced by the underlying microscopic dy-
namics. Figure 5 shows a log-log plot of the variations
with C of the diff'erence (u &

—u;„between the mean
propagation velocity deduced from the Langevin equa-
tions and the minimum allowed velocity. The straight
line of slope —

—,
' suggests the existence of the following

scaling law:

e',„=(e&, u';„=(u & . (17)

By construction, the slopes at the inflection points of
these two profiles are identical, but the mean stochastic
profile is smoother in the leading edge region than the
deterministic solution that has the same width. In order
to compare more precisely these two profiles, we choose
them as initial conditions and follow their deterministic
evolution governed by Eq. (4) for the values Xp and Dp of
the parameters; Eq. (4) is then numerically solved. For
computational efficiency, we define an instantaneous
profile width e' as the number of cells for which the frac-
tion a varies between 0.1 and 0.9. In Fig. 7, the deter-
ministic evolution of the width e' is given in the case
where the Langevin profile associated with Ko and Do, as
well as the deterministic effective profile associated with
K, and D„are chosen as initial conditions. Due to its
definition, the width e' takes only integer values, which
explains the discrete jumps in Fig. 7. At time t =0 the

(u &
—v,„a

2/3

C
(16)

which proves that the deviation from the marginal stabil-
ity analysis cannot be considered as a perturbation effect.

For given values Ko and Do of the rate constant and

of the diffusion coefficient, the deterministic profile

0.8

0.6

0.4

0.2

300 350
x —(v) t

400

V
c3 2.7

QQ
G —2.8

FIG. 5. Log-log plot of the variations with the mean total
concentration C of the dift'erence between the mean propagation
velocity (u ) and the minimum allowed velocity u;„ for the
same parameter values as in Fig. 1.

FIG. 6. Mean-front profiles in the moving frame. The solid
line represents the deterministic profile propagating with the
minimum velocity associated with Ko = 8 X 10 and Do =0.1.
The dotted line is the mean Langevin solution associated with
C = 1000 and the same values Ko and Do. Its width (e ) and ve-
locity (v) are larger than the corresponding deterministic
values. The dashed line is the effective deterministic profile
propagating with the same velocity and having the same width
as the Langevin solution. It is associated with the parameter
values Ki =7.92X10 and Dl =0.1238 that have been chosen
in such way that u';„=2+K&D& = (u) and..',„=S(D,ZE: )'"=(.).
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I I

f

I I I I

f

I I I I small uncontrolled numerical errors destroys the fronts
associated with greater velocities than v;„. This last
phenomenon exhibits the specific role played by the inter-
nal noise.

105
V. CONCLUSION

I I I I I f I I l I I I j

104 Bx 104 Bx 10~

FIG. 7. Deterministic temporal evolutions of the profile
width e' defined as the number of cells for which the fraction a
varies between 0.1 and 0.9. The two curves are deduced from
the numerical integration of the deterministic equation associat-
ed with Ko=8X10 and DO=0. 1 for two different initial con-
ditions. The upper curve is obtained when the asymptotic mean
solution of the Langevin equations associated with the same
values Ko and Do is initially chosen. The lower curve is ob-
tained when the initial profile is the deterministic solution asso-
ciated with the effective parameter values K& =7.92X10 and
D, =0.1238.

width e' of the deterministic profile is smaller than those
of the Langevin profile, in agreement with the behavior in
the leading edge already observed in Fig. 6.

More important, it appears that, when the determinis-
tic profile associated with K, and D

&
is initially chosen,

the width of the deterministic solution rapidly decreases
to reach an asymptotic value, exhibiting the rapid relaxa-
tion of the profile towards the marginal stability solution
associated with Ko and Do. On the contrary, when the
Laugevin profile is the initial condition, the width e
remains unchanged during a relatively long time. The ex-
istence of such a plateau in the evolution of the profile
width reflects the deterministic stability of the solution
selected by the Langevin equation. However, the profile
finally relaxes to the solution propagating with the
minimum velocity. It is to be noted that the length of the
plateau is sensitive to the precision of the numerical com-
putation. In particular, the minimization of unavoidable
numerical errors by the choice of a smaller time step in
the integration of Eq. (4) increases the length of the pla-
teau, i.e., the time during which the Langevin profile
remains a solution of the deterministic equation.

The numerical integration of the Langevin equations
clearly shows that the effect of internal noise is to in-
crease the propagation velocity as well as the profile
width of the wave front. Moreover, we think, on the one
hand, that the existence of a plateau in Fig. 7 indicates
that the mean solution of the Langevin equations is a par-
ticular deterministic wave front that has been selected by
internal noise in the continuum of possible solutions of
the deterministic equation. Qn the other hand, the final
relaxation towards the marginal stability solution ob-
served in Fig. 7 shows that (external) noise induced by

The FKPP equation is the prototype reaction-diffusion
equation admitting wave-front solutions propagating into
an unstable state. The main feature of this type of wave
fronts is the existence of a continuum of possible propa-
gation velocities. Suspecting the important role that
internal noise could play on such a degenerate state, we
have used the Langevin formalism to take into account
the internal fluctuations generated by the underlying mi-
croscopic dynamics. The expression of the Langevin
forces is deduced from a first-order approximation of the
master equation in the framework of a system-size expan-
sion.

We found that the mean wave-front solutions of the
Langevin equations have a larger width and propagate
faster than the corresponding deterministic solutions.
The Langevin formalism provides an independent param-
eter, the mean total concentration C, which controls
the internal noise level. To remain in the valid~it domain
of the system-size expansion in powers of I/+C, it is not
possible to increase the noise level indefinitely. We ob-
serve a systematic increase of the mean width and the
mean propagation velocity (v ) as I/+C increases. The
discrepancy between stochastic and deterministic values
reaches 25%%uo for the highest noise level available.

The effect of internal Auctuations is thus to select a
propagation velocity greater than the minimum allowed
velocity U;„, in contradiction with the marginal stability
analysis. The scaling law observed,
(v) —U;„a(1/+C ), suggests that this effect cannot
be considered as a perturbation. Taking into account the
stability properties of the mean Langevin profile when it
is chosen as an initial condition for the deterministic
equation, we conjecture that the effect of internal noise is
to select a particular wave front in the continuum of pos-
sible deterministic solutions. Similar results have been
recently obtained by Peeters and Baras [24] from the nu-
merical integration of the corresponding master equation.
To test the validity of our conjecture, we plan to deter-
mine if this important fluctuation effect is specific to wave
fronts propagating into an unstable state. In particular,
we wish to compare the behavior of the FKPP model
with a reaction-diffusion model admitting wave fronts
propagating between two stable stationary states: such
behavior is found, for example, in the Schlogl model [25].
Up to now, the internal noise effect analysis is purely nu-
merical, and some analytical work would be welcome.
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APPENDIX

In this appendix, the discretized form of the stochastic
differential equations associated with the FKPP model is
deduced; the continuous version is given by Eqs. (12) and
(14). The contribution of chemistry to the noise term, la-
beled by the subscript K, and those of diffusion, labeled
by the subscript D, may be separated in Eqs. (12) and
(14), leading to the following equations:

Ba =Ka(c a)+—D + +F, (x,y, t)
BQ BQ
8 Bp

(V.F, (x,y, t)V.F, (x',y', t'))

5(t t—')V V'[a5(x —x')5(y —y')] .
C

The chemical noise I' and the diffusive noise V.I are
independent. Note that the diffusive noise couples the
evolution of the variables a and c and that it induces non-
trivial spatial correlations.

Dividing space (x,y) into square cells of side b, l and
denoting by ht the integration time step, we define
discrete space and time variables by

+V.F, (x,y, t), (A 1) i =x/bi, j=y/hl, s =tlat, (A3)

a2 82=D + +V F, (x,y, t),
()y

2

where the Langevin-force variances obey

(F, (x,y, t)F, (x',y', t'))

=—a (1—a )5(x —x')5(y y')5(t —t'), —
C

(A2)

( V F (x,y, t)V' F (x',y', t') )

where i, j, and s are integers.
We introduce dimensionless parameters k, d, and y as

follows. The parameters k and d are respectively de-
duced from the kinetic constant and the diff'usion
coefficient appearing in Eq. (12) by

k =Kit, d= Dht
(b, l)

(A4)

and y, defined as the mean total number of particles in a
cell, obeys

y=C(b, l) (A5)

for a equal to a or c,

5(t —t')V' V'[a5(x —x')5(y —y')]
C It is convenient to choose time and length units such that

At = 1 and Al = 1. Using the notations introduced above,
the discrete version of Eqs. (A 1) and (A2) yields

a J($+1)=aJ($)+«J(ci—a J)+d( a; +& 1+a;, J+al+& +al &

—4a; )+&K/yea; (1—a;. )Z, (s)

+ d/7'[V a; ij+a;J.X,J(s) )/ aj. +a—;+& X+, (s)++2a;.[Y,"(s)—Y +, (s)]},
cj($+1) c;(J)$+(d;ci++Jc; il+c,i. +i+c; i 4c; )

+ I d/'YV a; &i+aiiXi(s) —Qal+a, .+,JX+& (s)++2al[YJ(s) —Y +, (s)]}

+ d/yI'1/2 —a,. &J. aJXJ(s) Q—2 —aj —a;—+, X,."+, (s)++2(1—a; )[Y~(s)—y;"+&(s)]},

(A6)

(X, ($)XPi, (s')) =5 t)5, , 5 '5„. , (A7)

with a and P taking the value a or b.
The complexity of Eqs. (A6) is partly due to the spatial

coupling of the noises induced by diffusion. Actually, the
evolution in cell (i,j) is coupled through the diffusive

where Xi(s), Y; (s), and ZJ(s) are independent Gaussian
white noises of zero mean and unit variances, obeying in
particular

noise term to the evolution of its nearest neighbors (i+1,
j) and (t, J 1). From a technical point of view, the nu-
merical resolution of Eqs. (A6) implies the generation of a
large amount of random numbers in a Gaussian distribu-
tion, five times the number of cells at each time step, ex-
actly. Moreover, the existence of correlations requires
the storage of these numbers. Even after optimization,
the time consuming part of the program remains the gen-
eration of Gaussian random numbers itself.
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