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Statistical mechanics of point vortices
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Thermodynamical functions and probability distributions are found in an explicit form for a mul-
ticomponent vortex gas. A key point in the derivation is the interpretation of integration in phase space
as an average, with respect to some "complex measure. " The exact formulas for the probability distribu-
tion of a vortex gas are used to obtain the averaged equations for two-dimensional fluid motion. The ex-
act formulas for thermodynamical functions help to clear up the relation between various definitions of
entropy and temperature, which, in contrast to the classical models of statistical mechanics, are not
equivalent for a vortex gas.

PACS number(s): 47.90.+a, 05.90.+m

I. INTRQDUCTIQN

It seems natural to try to develop a theory of tur-
bulence using only ergodicity of motion, the standard
postulate of statistical mechanics. Ergodicity seems plau-
sible, at least for developed turbulent Aows when molecu-
lar viscosity is negligible and the Quid is a Hamiltonian
system moving chaotically. Two obvious obstacles are
seen in applications of the methods of statistical mechan-
ics. First, fluids have an infinite number of degrees of
freedom. At present it is not known how to define such
notions as "ergodicity" for infinite-dimensional systems.
Second, in contrast to the usual models of statistical
mechanics, fluids have an infinite number of integrals of
motion (circulation of velocity over closed fiuid con-
tours). Trajectories in infinite-dimensional phase space
lie in the cross section of an infinite number of surfaces.
Intuition suggests that all integrals of motion a6'ect the
long-term behavior of fluids.

A possible way to overcome these difhculties is to con-
struct a truncation of Euler's equations, which respect
the integrals of Quid motion and have a finite number of
degrees of freedom X. Then, assuming ergodicity, one
can find all necessary statistical characteristics of the Aow
and consider the limit of these characteristics for X—+ Oc .
In the two-dimensional (2D) case, a very interesting can-
didate for truncation is a point vortex approximation of
the vorticity field (see the reviews [1,2]). It respects all in-
tegrals of Quid motion and converges for X—+ ~ to the
solution of Euler's equations [3]. Another interesting
truncation has been discussed in [4—6]. In this paper,
point vortex truncation is studied. The basic relations of
statistical mechanics of a multicomponent point vortex
gas are developed. Thermodynamic functions and proba-
bility distributions are found in an explicit form. Equa-
tions governing the behavior of a multicomponent vortex
gas are used to obtain the limit relations for an infinite
number of components. The major di%culty in develop-
ing statistical mechanics of a vortex gas is the calculation
of the phase volume. This difticulty is overcome by
means of an interpretation of the integration in phase
space as averaging with respect to some "complex mea-

f(r„r2)=f(r))f(ri), (1.2)

where f(r ) is the probability density of one vortex. Re-
cently, (1.2) has been proven in [13,14]. These and other
aspects of the statistical mechanics of vortices are dis-
cussed also in [15—19].

We start with a reminder of the basic equations of a
vortex gas (Sec. II) and statistical mechanics (Sec. III).
Then, in Sec. IV we discuss the notion of a vortex tem-
perature with emphasis on the physical sense of the sign
of the temperature. In Sec. V we derive the relations of
low energy dynamics of a one-component vortex gas. A
generalization to a multicomponent vortex gas is present-
ed in Sec. VI. High energy dynamics is discussed in Sec.
VII. Relations between various definitions of entropy,
which, in contrast to the classical models of statistical

sure. " It reduces the calculation of the phase volume to
an application of the steepest descent method.

Statistical mechanics of point vortices started with a
paper by Onsager [7]. Considering motion of X point
vortices in a closed domain V, he found that there is some
critical value of energy Eo at which the temperature of
vortex motion T changes the sign. At high values of en-
ergy, the temperature T is negative. An attempt to calcu-
late the critical energy Eo was undertaken by Taylor [8]
for the neutral case (there is an equal number of vortices
with positive and negative equal intensities). It was
corrected by Joyce and Montgomery [9,10], who got
EO=O. They also derived the equation for the averaged
stream function g of a two-component vortex gas

e ~& e~&
b,g= —k, +k, , (1.1)e-~~'"'d'r f e~~'"'d'r '

where k, P are constants and P is determined by the ini-
tial value of energy. Equation (1.1) was justified by a
more rigorous consideration given by Pointin and
Lundgren [11,12]. They derived (1.1) from the assump-
tion of the mean field theory: the positions of any two
vortices are statistically independent, i.e., the probability
density of the positions of any two vortices f(ri, r2) is
given by
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mechanics, are not equivalent for a vortex gas, are con-
sidered in Sec. VIII. Probability distributions are de-
rived in Sec. IX. This is followed by the derivation of
averaged equations of 2D hydrodynamics and concluding
remarks.

II. EQUATIGNS OF VGRTEX DYNAMICS

t)I(r)= f dt f 8)(g)x(t, g)y(t, g)d g

6 r t, , r t,

X8)(g')8)(g')d gd g' (2.5)

Consider a system of point vortices with positions r;
and intensities y;, i = 1, . . . , N. Vortices move in a
closed bounded domain V. The kinetic energy of Quid is
equal to [20]

H= ,' g y;—y~G(r;,rj )+g y;g(r;) .
IWJ

Here G(r, r') is the Green function of the Dirichlet
boundary value problem

b„G(r, r')= —5(r —r') in V, G(r, r')=0 if r&BV,

(2.2)

where 6, is Laplace's operator with respect to r variables.
The function g(r ) relates to the residual in the expansion
of the Green function in the vicinity of the singular point

Here an overdot means the time derivative for fixed La-
grangian coordinates and co(g) is the initial vorticity. It
can be checked by inspection that the true motion of an
ideal fiuid is the stationary points of the functional (2.5).

An attractive point of this form of variational principle
is that, in contrast to the usual form (see, for example,
[23]), all integrals of Auid motion, corresponding to con-
servation of velocity circulation, are eliminated. Besides,
only particles carrying a nonzero vorticity contribute to
the action functional. It is convenient also that the ad-
missible functions r( t, g) are arbitrary and should not
obey the incompressibility constraint ~~Br /Bg~ = 1.

Point vortex truncation corresponds to dividing the set
of Lagrangian coordinates in small subsets V;,
i =1, . . . , N. The motion of each subset is characterized
by position vector r;(t); r;(t) might be, for example, the
centroid of position V; at moment t.

For small V; the action functional (2.5) takes the form

G(r, r') = — ln
~

r —r'~ +g(r, r'),1

2'
g(r) = ,'g(r, r) .- (2.3)

t

I(r, ) = f g y;x;y; H(r ) dt, —
0

H(r) =
—,
' g G(r;, r )y;yj .

Here

(2.6)

(2.7)

In the expression for energy (2.1), an infinite self-energy
of vortices has been dropped since it is constant in time.

Denote coordinates of the ith vortex by x;,y;, so r;
means the couple (x;,y; ). The dynamic behavior of vor-
tices is governed by the Hamiltonian system of equations
[20,21]

y;= f 8)(g)d g .

In the expression G(r;, r~) the leading (infinite) term can
be dropped as it is independent of motion. Then (2.7)
transforms into (2.1). The functional (2.6) is the action
functional for Eq. (2.4).

dx; g~ dy;

dt By dt
BH
Bx;

(2.4) III. SUMMARY OF THE NECESSARY FACTS
FROM STATISTICAL MECHANICS

For the purposes of the following discussion of the sign of
the vortex temperature, note that Eqs. (2.4) are written in
the right coordinate system, i.e., the rotation from the x
axis to the y axis is assumed to be counterclockwise and
the positive intensity of a vortex corresponds to a coun-
terclockwise rotation of the surrounding fluid.

The first sum in the energy expression (2.1) describes a
vortex-vortex interaction. The Green function G(r, r') is
symmetric and positive. The second sum in (2.1) is the
energy of a vortex-wall interaction. The function
g(r )~—~ when the vortex approaches the wall (see, for
example, [22]).

Equations (2.4) appear as a finite-dim. ensional trunca-
tion of equations of an ideal Quid. To obtain this trunca-
tion consider the motion of a 2D continuum in a bounded
region V. Denote by g=(g„g2) Lagrangian coordinates
of fiuid particles, gH V. Let r(t, g)=(x(t, g),y(t, g)) be
the position vector of the particle g, r H V. Consider the
following functional of the position vector r(t, g):

BH(p, q, a ) . BH(p, q, a )

Bp;
gI= (3.1)

If the parameters a are fixed, trajectories of the system
belong to energy surfaces H(p, q, a ) =E =const. It is as-
sumed that the system is ergodic on energy surfaces and
every surface bounds a finite volume of the phase space
r(Z, a).

The following three statements express the laws of
equilibrium thermodynamic and statistical mechanics.
%'e present these statements in a form that is valid for
any finite-dimensional Hamiltonian system following
[24].

Consider a Hamiltonian system with generalized coor-
dinates q =(q„. . . , q„), generalized momenta
p = (p „.. . ,p„), and the Hamilton function H, which de-
pends on some parameters a = (a„.. . , ak ) describing
the inAuence of external factors. The Hamilton equations
are
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A.. Temperature

Denote by ( ) the time averaging operator along a tra-
jectory. For any function g (p, q ) the quantity (g ) does
not depend on the trajectory chosen on an energy surface
(up to some exceptional sets with zero measure). For any
ergodic Hamiltonian system the equipartition law is valid

(3.2)

The common value of (3.2) is called, by definition, the ab-
solute temperature T. This temperature is expressed in
terms of the function I (E,a ) by a relation

C. Entropy and probability

Consider some set of characteristics
w&(q, p), . . . , w (q,p) and denote by f(z„.. . , z ) the
probability density function of these characteristics. The
probability density function f(z&, . . . , z ) can be ex-
pressed in terms of the entropy S(E,z ) of some auxiliary
Hamiltonian system. This system is obtained from the
original one by setting the kinematic constraints
w, (q,p)=z„. . . , w (q,p)=z . The relation between
f(z) and S(E,z) has the form (we do not mention here
explicitly the dependence on the external parameters a )

I (E,a)
Bl (E,a )/BE

(3.3) s(E,z)1 a
BI (E)/BE BE

(3.8)

B. Entropy

Allow slow variations of the external parameters a.
Then the energy of the system is also changed. The quan-
tity I (E,a ) is an adiabatic invariant; i.e., it could be con-
sidered as a constant (in some sense) in the course of the
variation in E,a (the Hertz-Kasuge theorem [25,26]).
Any adiabatic invariant is a function of I (E,a )
(Kasuge's theorem [26]). It is natural to introduce the en-
tropy of a finite-dimensional system in such a way that (i)
entropy is an adiabatic invariant and (ii) the energy equa-
tion is true: dE =d A + TdS, where d A is the work done
by external forces in order to change the parameters a.

For Hamiltonian systems the work done by external
forces is

dA= dt= da; .

The mean value of BH/Ba; can be calculated for the er-
godic system in terms of the function I (E,a ). Therefore
the work done by external forces can also be expressed in
terms of I (E,a ):

1 Bl (E,a)
BI (E,a )/BE Ba,

Hence the energy equation takes the form

Formula (3.8), derived in [24], is an exact relation valid
for finite-dimensional systems with finite fluctuations of
characteristics. It generalizes the Einstein formula

f(z)=constXe ' (3.9)

IV. TEMPERATURE OF VORTEX MOTION

The equipartition law (3.2) yields a clear physical
meaning of the temperature of vortex motion [17]. In ac-
cordance with (2.4), y coordinates of vortices play the
role of generalized momenta, while x coordinates are the
generalized coordinates of the Hamiltonian system. The
additional factors y; on the left-hand sides of (2.4) do not
affect the equipartition law in the form (3.2). This can be
checked by an inspection of the proof of the equipartition
law. Substituting the expressions for BH/By; (2.4) into
(3.2), we obtain the relation

derived for small fluctuations near the equilibrium state:
(3.8) reduces to (3.9) in the limit X~~.

Note that the Gibbs distribution
f(x ) =Z ' exp[ PH(x )]—can be derived from the Ein-
stein formula (3.9); therefore, the Einstein formula could
be considered as the basic relation of equilibrium statisti-
cal mechanics. Formula (3.8) plays a similar role in the
statistical mechanics of systems with a finite number of
degrees of freedom.

BrdE= — — da;+TdS . (3.4)
ri&yixi& =~2~y2x2~ ) N~yNxN ~ (4.1)

It is easy to find that the only quantity satisfying require-
ments (i) and (ii) and Eq. (3.4) is

S(E,a ) =lnl (E,a )+const . (3.')

1 BS(E,a )

T BE
(3.6)

The work of external forces is found in terms of S(E,a )

as

BQ
(3.7)

This function $(E,a ) is linked to the temperature T by
the relation

The quantity (y,x, ) denotes the average area bounded
by the trajectory of the first vortex per unit time. If the
motion of a vortex is periodic and bounds some area A,
then (yx) is equal to 3/r, where r is the period of
motion. The averaged area is positive if the vortex moves
(in average) clockwise and negative in the opposite case.
The equipartition law (4.1) says that for ergodic motion
the products of the vortex intensity and the averaged area
bounded by the vortex trajectory per unit time should be
the same for all vortices. The sign of the temperature
controls the direction of the rotation of the vortices.

The relation between the temperature and the phase
volume (3.3) is not valid in the case of Hamilton's func-
tion (2.1). Formula (3.3) assumes that H obeys the fol-
lowing condition: region H(r, ) ~E has the boundary
H(r; ) =E. This is not the case for H ( 2.1). The positions
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of the vortices r, satisfy the additional constraint r; E V.
The vicinity of the boundary i)( Vz) belongs to the region
H( r, ) ~ E because g (r; ) (and hence H ) tends to —ao if
the ith vortex approaches the wall while the positions of
all other vortices remain unchanged. Thus the boundary
of the region H(r; ) ~ E consists of two pieces: the surface
H=E and the surface B(V ). Modification of (3.3) for
this case is [27]

ivy" —r(E)
dI (E)ldE (4.2)

One can derive (4.2) by considering the Hamiltonian
system with Hamilton's function H& = —H. The equa-
tions of vortex motion (2.4) take the form

dx.

dt
H( dy.

By;' 'dt
BH)

Bx;
(4.3)

}'i&xiyi & =~2&x2y2 &
= (4.4)

and the usual relation (3.3) between the temperature and
the phase volume

I,(E, )

ar, (E, )laE, ' (4.5)

where l, (E, ) is the volume of the region H, ~Ei. Note
that

Ti(Ei)= —T(E) if Ei= —E (4.6)

because surfaces H, = —E and H =E coincide and
&x;y; &

= —&y;x,. & [xy =d(xy ) Idt —yx and the time
average of the derivative of a bounded function is zero].

Regions H, = —E and H=E, are the complementary
ones; hence

r, ( —E)+r(E)=
~

v~", (4.7)

where
~ V~ is the area of the container. Differentiating

(4.7) with respect to E, we have

dI i

dE j El = —E
dI (E)

dE
(4.8)

Formula (4.2) follows from (4.6)—(4.8).

Hamilton's function Hi has been used in a number of
pioneering papers on vortex motion [21,28,20]. In Eqs.
(4.3), x coordinates of vortices play the role of general-
ized momenta. Note that the trajectories of the systems
(2.4) and (4.3) are identical.

Consider the region H, ~E&. If a vortex approaches
the boundary while the positions of all other vortices are
fixed, H& —++ ~. The function H& might be finite if
simultaneously one of the other vortices is moving to-
ward a vortex of the opposite sign. This means that the
boundary of the region H, ~E, consists of the (N 1)-—
dimensional surface H& =Ei and maybe some submani-
folds of 8( V ). Since only (N —1)-dimensional pieces of
the boundary contribute to the Stokes theorem used in
the proof of (3.3), we can apply (3.3) for the Hamiltonian
system (4.3). We have, from (3.2) and (4.3),

The function I i(Ei ) is an increasing function of Ei be-
cause the increase of E, corresponds to an expansion of
the region Hi Ei. Therefore, dI i/dE& )0 and, as fol-
lows from (4.5), T, )0 for all values of energy. Hence
the temperature T is always negative for all values of en-
ergy. To make sure that the negative sign of the tempera-
ture T is the correct one, we can consider a motion of just
one vortex in a closed domain. One vortex moves period-
ically along a closed curve. This motion is obviously er-
godic and all thermodynamical relations are valid. Equa-
tion (4.1) takes the forin

y&yx&=T . (4.9)

Let us put the vortex very close to the wall. Then the
boundary acts as if it were Aat. Vortex velocity is gen-
erated by the vortex image, which has the opposite sign.
Thus a positive vortex moves along the wall counter-
clockwise, while a negative one moves clockwise. This
corresponds to negative T in (4.9).

Both of Hamilton's functions H and H& can be used;
this is a matter of convention. If Hamilton's function H,
is used (as in [17]), then the corresponding temperature
T, is positive. The Hamiltonian H, has the advantage of
being similar to standard Hamiltonians of statistical
mechanics: the phase volume increases if the value of the
Hamiltonian increases. On the other hand, the Hamil-
tonian H has the sense of "desingularized" kinetic energy
of Quid motion. In the following consideration we use
the Hamiltonian H.

From (4.2), (3.6), and the assumption that entropy is a
function of I (i.e., that entropy is an adiabatic invariant),
we find the expression for the entropy of a vortex gas

S(E)=in[~ V~
—I'(E)]+const . (4.10)

The phase volume I (E) has the following limit behavior:

I (E)~0 if E~—ao,

r(E) ivy" if E +
(4.11)

dIS= ln +const
dE (4.12)

while the link between temperature and entropy (3.6)
stays the same. The corresponding expression of temper-
ature in terms of the phase volume has the form

dI (E)ldE
dI (E)ldE

(4.13)

For the classical models of statistical mechanics, the ex-
pressions for entropies (3.5) and (4.12) and for tempera-
tures (3.3) and (4.13) coincide in the limit N ~ oo. If N is
finite, these expressions are not equivalent. For a vortex
gas, they are not equivalent even in the limit %~~. It
is seen from (4.11) and (4.13) that temperature (4.13)
changes sign at some value of energy Eo [7], while tem-
perature (4.1) has the same sign for all values of energy.

Therefore, the entropy approaches a constant if
E~+ ~, and —~ if E~—~.

In statistical mechanics, entropy is usually defined by
the relation
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In this connection, we need to introduce some additional
terminology. We keep the terms entropy and tempera-
ture for quantities (4.12) and (4.13), while quantities (4.10)
and (4.2) will be called thermodynamic entropy S,h and
equipartition temperature T, , correspondingly.

f G(r, r')d r=O,
V

f G(r, r')d r'=0,

f w(r)d r=O

(5.7)

V. THERMODYNAMICS OF A ONK-COMPONKNT
VORTEX GAS AT I.OW ENERGIES

and h is a constant. Conditions (5.7) determine the func-
tion w(r ) and the constant h uniquely. In fact, integrat-
ing (5.6) over r' we get

To describe the method of calculation of thermo-
dynamical functions, we start from the simplest case of a
gas of vortices with equal intensities y1= =yN=y.
We assume that the total vorticity Xy —=o. stays constant
when X—+ ~. Therefore y -X

The energy of Quid motion takes the form

(5.1)

w(r)+h = —f G(r, r')d'r' .
1

Integrating (5.8) over r, we find the constant h

h= f f G(r, r')d rd r'.1

IVI' v v

Hence

(5.8)

(5.9)

We have to And the phase volume

1(E)=fH(r) ~E (5.2)

w(r)= f G(r, r')d r' — f f G(r, r')d r d r' .= 1 1

I

VI~ v v

(5.10)

In accordance with (5.8), the function w(r) satisfies the
boundary-value problem

Here d r=dx, dy, . dxNdyN and it is assumed that
r,. E V.

We will use the probabilistic interpretation of the in-
tegral (5.2): I (E)/ VI is equal to the probability of the
event H(r;) &E under the condition that all "random"
variables r; are distributed homogeneously:

1(E)/I V "=P«b(H(r;) &E] . (5.3)

We must find the function (5.3) in the limit N ~ oo.
This problem is reminiscent of the problem solved by

the central limit theorem [29], which states that
r

Prob —g w(r;) &A, .
N;

1bw(r)= — in V, w(r)= —h at BV . (5.11)

2 N
H= g G(r, , r )+(N 1)g w(r;)—~2 &' J i=1

N

i=1

Therefore, (5.3) can be rewritten as

Since the function w(r) and the constant h are deter-
mined uniquely, Eq. (5.6) might be considered as the
definition of function G(r, r').

Let us substitute (5.6) into the energy expression (5.1).
We have

A. /b —xe dx =4
lV —r oo V2~ —oo

(5.4) 1(E)/I VI~=Prob. g w(r, )

Here r,- are independent random variables, which, for our
purposes, are assumed to be homogeneously distributed
over Vand

1/2
where

E—
—,'h o.

v'N
CT

(5.12)

f w(r)d r=O,
IVI vf w (r)dr =b. —g G(r;, rj)+ —gg(r, )

1 1 — 1

v'N N, .„. " ' N
(5.13)

The main difference between (5.4) and (5.3) is that the
members of the sum (5.1) are dependent random vari-
ables. Nevertheless, the problem of calculation (5.3) can
be reduced to the central limit theorem in the case of low
energies. More precisely, one can extract from the sum
(5.1) a sum g' of independent random variables and the
remainder g in such a way that g is small compared to g.
To do this, we present G(r, r') in the form

Here X—1 is replaced by N because we consider the limit
relations for 1V —+ ~.

To evaluate the order of q, note that
(I/N)g;&~ G(r;, r ) has a finite prob.ability distribution if
N ~ oo [18]. In accordance with the central limit
theorem for the second sum, we have

gg(r, )-=—f g d r
G(r, r')=G(r, r')+w(r)+w(r')+h, (5.6)

where functions G (r, r') and w (r ) have zero "mathemati-
cal expectations"

1+ random variable of order
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Therefore, the variance of g is of order 1/+¹
If small deviations of the energy E from the critical

value

E =—'ho-0 (5.14)

are of order 1/&N, then (1/v'N )gw(r, . ) is of order uni-
ty, g in (5.12) can be neglected, and the phase volume is
given by the central limit theorem

ar(E)/aE
&2m.o 2b

&N

1Xexp
2

E —E0
1 —4 &N

o. b
2

v'N
o. b

(5.18)

[(E—Eo/cr b))j+N
r(E)/~ V~ ~ I e " dx

&2m

E —E0
o. b

(5.15)

The equipartition temperature does not have a singularity
at E0 and does not change the sign. In the vicinity of E0,
the equipartition temperature is of order I/VN.

The thermodynamic entropy S,h is equal to

b= Jw(r)dr1
1/2

E —E0S =ln 1 —@ &Nth o. b
+const . (5.19)

dI z &N 1 —E Eo
v N exp ——VN

&2rro'b o. b

2

r

d I
~

~~
1

dE &2~ cr b

E —E0—&N
o. b

2

Xexp ——v'N
2 o. b

Therefore, the temperature T is given by

dr(E)/dE (~ b)
d r~(E ) /dE (E—Eo )N

(5.16)

Note that expression (5.15) is valid only if (E Eo)&N —is
finite, i.e., in a small vicinity of E0. This vicinity is of or-
der I/+N. As follows from (5.12), in the case of finite
deviations of the initial energy from Eo (high energy
case), the calculation of probability distributions relates
to the problem of large deviations of the sum of indepen-
dent variables. Random variable g contributes to the re-
sult. This problem will be considered in Sec. VII, while
here we discuss the consequences of formula (5.15).

Calculating derivatives of I (E ), we obtain

Formulas (5.16)—(5.19) leave no doubt that the two ex-
pressions for entropy are really different, in contrast to
most models of statistical mechanics.

The plot of the dimensionless normalized temperature
T*=&N T/a 2b and the equipartition temperature
T,*q=&N T,q/abversus 'the dimensionless normalized
energy deviation from the critical energy
bE'=&N(E Eo)/cr b—is shown in Fig. 1. It is seen
that for large energies E & E0, the equipartition tempera-
ture approaches the temperature T. They become practi-
cally equal if E ~ Eo+2o b /&¹ The coincidence of T
and T, for the high energy limit will be confirmed in
Sec. VIII. In the vicinity of the critical energy, T and T,
are different.

The critical energy E0 has a simple physical sense. If
one puts vortices in the container randomly and indepen-
dently, then H(r, ) is a random variable. Its mathemati-
cal expectation is Eo, as follows from (5.14), (5.9), and
(5.1). If the initial positions of the vortices are chosen in-
dependently and randomly, then the initial energy E devi-
ates from Eo for the value of order 1/+N. High energy
cases correspond to "special choices" of the initial posi-
tions of vortices; for example, a finite deviation of the ini-
tial energy from E0 is obtained if all vortices are put to-
gether in a small "vortex cloud. " One consequence of the
basic relation (5.15) is worth noting here. Two values of
the phase volume I (E ) follow from its definition:

We see that temperature T really changes sign at
E=E0 and T&0 if E)E0. The temperature T ap-
proaches infinity if E~Eo. If E Eo —1/&N, T is also-
of order 1/&N.

The entropy S=lndI /dE+const in the vicinity of
the critical energy is equal to critical energy

r —E —EoS=const ——
2 o. b

(5.17)

The entropy reaches its maximum value at the critical en-
ergy. This property was established for a one-component
vortex gas from other reasonings by Eyink and Spohn
[13].

In the vicinity of the critical energy, the equipartition
temperature T, is given by

equipartiti
temperatu

Teq

FIG. 1. Graph of temperature and the equipartition tempera-
ture in the vicinity of the critical energy.
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r( — )=0, r(+ )=lvl".
Equation (5.15) provides one more exact value of I'(E )

r(E, ) =-,'I vl" . (5.20)

So the energy for which the phase volume is exactly be-
tween its two limit values is the critical energy.

VI. THERMODYNAMICS
OF A MULTICOMPONENT VORTEX GAS

AT LOW ENERGIES

1 2 h+ —,'h gy; + gcr; g(r, ) —w(r, )
——.

(6.1)

Let the vortex intensities be not necessarily equal. We
assume that y;-N ' and o.;=y;N stay constant when
N~ ~. Applying the same transformation (5.6), we ar-
rive at the energy expression

'V~ 1g o;w(r, )+ g o;crJG(r, , r )

H~ ,'h g—y;
l

=Ep . (6.6)

So the reference energy is the averaged energy of the vor-
tex system if all vortices are distributed over V indepen-
dently and homogeneously.

In the case of equal vortices, the total vorticity gy; is
equal to 0 and expression (6.6) reduces to (5.14).
Modifications of the expressions for entropies and tem-
peratures (5.16)—(5.19) are evident.

The case of a neutral vortex gas is different. In this
case, the first term in (6.1) is equal to zero and the second
term takes the leading role:

r

homogeneously distributed over V. Then the average
value of energy is

H= —g fG(r, r')dr dr'y, y
1 1

+g y,
I I

fg(r)dr .
I

When N ~~ the last sum vanishes; therefore

The first term is supposed to be the leading one. We see
that two cases should be distinguished: a neutral gas
(gy; =0) and a rotating gas (gy;%0). Let first gy;%0.
Then r(E) can be written in the form, generalizing
(5.12), where

+il~(E Eo)N ', —

r(E)/I VI"=Prob g o;o JG(r;, rj )
1

(6.7)

I (E)/I VI =Prob —g o;w(r; )
ep 2 1Eo=, eo=cr g(r)d r —h

where

Eo= —,'h(g y, )

1 1

2N, .~,.

+g ~ (E Eo)&N ', — (6.2)

(6.3)

i)= —g o; [g'(r, )
—w(r, )],=1

1

g'(r)=g(r) — f g(r)d r .1

Ivl v

The sum in (6.7) has some finite probability distribution
E(g) when N~ ao. The random variable r) has variances
of the order 1/&N. Therefore, it can be neglected and

+—g o; g(r;) —w(r;) ——
l

(6.4)
r(E)/I vl" — z(EN —..) .

N —+ oo
(6.8)

E —Epr(E)/I vl e &N .
gy; ob

2 1
cr = lim —(o., + +cr~) .2 2

(6.5)

To determine the sense of the reference energy Ep, con-
sider the expression for energy (2.1). Assume that the po-
sitions of all vortices are independent random vectors

The mathematical expectation of g has the order 1/&N.
The variance of the first sum in (6.4) also has the order
1/~N (see Appendix A). The variance of the second
sum in (6.4) has the order 1/&X. Therefore, q can be
dropped in (6.2) if (E Eo)v N has the ord—er unity.
From the central limit theorem we obtain

Note that, although the reference energy Ep tends to zero
for N —+ ~, there is some finite shift ep in the probability
distribution for small energies E of the order 1/N. The
function de�/dg has been studied numerically in [16] for
periodic Aows.

VII. PHASE VOLUME
OF A MULTICOMPONENT VORTEX GAS

AT HIGH ENERGIES

By high energy we mean energy deviating from the
reference value Ep for a finite value that does not depend
on N if N~ 00. To find the phase volume in this case, we
prepare first a convenient form of the expression for
I (E ). The definition of I (E ) can be written as

I (E)=f 8(E H(r;))d r, —
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= f 5(E H—(r, ))d. r, (7.1)

where 5(E) is the 5 function. Using in (7.1) the Fourier
presentation for the 5 function

where 8(E) is the step function. Differentiating this
equation by E, we have

z
A (z, N ) =exp — g cr; o h;

lWJ

X~ f e '"""'d'r
V

5(E)= f e' dk,
277

we have

(7.2)
XM exp — g o;o~G,"(r;,r~ )

2N

(7.8)

—ikH(r, . )
r

It is convenient to make a change of variables k —+z:
ik =Nz. Then

dI (E) N + ~,~( )d
dE 2~i

A(z N)=f e 'd r
v

(7.3)

If we find the asymptotics of A (z, N ) for N ~ ao, we can
use the steepest descent method to calculate dI (E)ldE.
To obtain the asymptotics, we make the transformation
of energy similar to (5.6): for each particle i we introduce
some function w;(r), which will be specified later, and a
"modified" particle-particle interaction 6,

If M in (7.8) were a usual mathematical expectation, if z
were real, and if the mathematical expectations of
G, (r, , r ) "in both variables r;, rj were zero-, then, as in
Sec. V, the last term in (7.8) converges for N +~ to—a
function of z. A similar statement for "complex mea-
sures" is discussed in Appendix A.

Before studying the asymptotics of A (z,N), let us es-
tablish that the functions w; are determined by the condi-
tion of zero mathematical expectations of 6;.

—zo, F,.(r)6; rr e '' dr=0,
(7.9)—zo .F.(r)f GJ(r r)e ' ' d r=O.

Here i,j =1, . . . , N, and there is no summation over re-
peated indices. Substituting (7.4) in (7.9), we get

—z~,.F,.(r)G(r, r)e '' dr

G, (r, , r )=G("r;,r ) w;(r —) —w (r;)—hj, (7.4)

where h; are some constants. The difference from (5.6) is
that m functions should be taken differently for different
vortices in the high energy case. After substituting (7.4)
into the energy expression (2.1), the function A(z, N)
takes the form

—[w;(rj)+h,j]f e ' ' d r
v

—zcr,.F,.(r)w(r)e ' ' d r=O,J

f G(r, , r)e
' ' '"d'

—[w (r, )+h,"]f e ' ' d r
—z~.F.(r)—fw;(r)e ' ' d'r=O .

(7.10)

(7.11)
z

iAj
A (z, N) =exp

zX exp — g cr, o G, (r, , r.).. "
v" 2N

—z goF(r) d r, (7.5)

F, (r ) =—g cr w ( r ) +. o;g ( r ) —.1 1

JWl

(7.6)

f ( )
i i "d2 f i i "d2 (7 12)

V v

Equations (7.10) and (7.11) form a system of equations
for w;(r) [it is assumed that F, (r) are expressed in te. rms
of w,. by means of (7.6)]. This system is overdetermined:
it contains 2N equations for n functions w;(r) and N
constants h; . Nevertheless, the system is consistent. It is
seen from (7.10) and (7.11) that the functions w;(r) are
constant at BV. We put an additional constraint on
w;(r): w;(r)=0 at i)V. Then, from (7.10), we obtain the
expression for h;.

Let us consider now N independent variables r;, taking
the values in the region V, which have complex "proba-
bility density functions" while from (7.11)

—zo,.F,.(r) —zcr,.F,.(r')
e

v
(7.7) h; = —f w;(r)e '' d r f e '' d2r. (7.13)J v v

Denoting the "mathematical expectation" with respect to
this measure by M, we may rewrite (7.5) as

Applying the Laplace operator to (7.10) and (7.11), we
obtain the equations for m;



—za,.F,. (r)
e

Am;= ——,— in V,
r
~

I~

I

d
~I

~

7—zo, F,.(r')

V

m;=0 at BV .

(7.14)

Equations (7.14), along with the expressions for F, in
terms of w; (7.6), form a closed system of n equations for
n required functions m;.

Equations (7.14) show that two different expressions
for the constants h; (7.12) and (7.13) are consistent: mul-
tiplying (7.14) by w and integrating over V, we have

f w, aw, d'r= f w,
—e

—zo. .F.(r) —zo.F (r)
r e d r

V

=h,, = —1' V'w, Vw, d'r= f w, aw, d'= —f w, e
—zo. .F.(r) —za .F.(r)J J d r e '' dr ~

V

Hence, the right-hand sides of (7.12) and (7.13) are equal
due to (7.14). So if w, and h,.~ obey (7.10) and (7.11), then
w; is a solution of (7.14) and the constants h; are deter-
mined by this solution from (7.12). It can be checked by
inspection that the inverse statement is also true: (7.10)
and (7.11) follow from (7.14) and (7.12).

The system (7.14) takes a simple form in the limit
X—+ ~. Note that the functions I'; can be presented as

—zo, u(r)
1 ~ eAu= ——To. — —za u(r')

e ' dr'
V

in V,

(7.18)

This mathematical problem is well posed at least for
some z, o.. Note that if we make another transformation
instead of (7.4),

F,(r)=u(r)+ o, (g(r) —w—, (r)},1
(7.15)

where

1u(r)= —g o;w;(r) . (7.16)

In the limit X~~ the last term in (7.15) can be
dropped, functions F, (r) for all i .are equal to u(r), and
we get the equations

6; (r, , r )=G(r, , r ) —w;(.r, )
—wj(.r )

—h,",
we would arrive at the equations for ur, - which do not
have a solution.

Let the vortex gas have s components. This means that
vortex intensities take s values yI, . . . , y, and each value

y is carried by X vortices g X =X (greek indices
number the gas components). It is assumed that
o. =y X and c =X /X stay constant when X—+ ~.

Equation (7.18) for a multicomponent vortex gas takes
the form

—zo,.u(r)
e

f —zo, u(r')
e d r

V

in V,

(7.17)

—za u(r)
ehu= — c o.

CX A —zo. u(r')
e dr'

V

u=O at av.

in V,

(7.19)

and the equation for u which follows from (7.16) and
(7.17)

The sum go;o. .h;, which is contained in the expression
for 2 (z, X), can be expressed in terms of the solution of
Eq. (7.19): in accordance with (7.12), (7.16), and (7.18)

1—go.;o h,
l Wj

—zo, u(r)
e d r

V

—zo, u(r) —zo. u(r)dr e ' dr
V

go oJ f w&(r)e ' d r
I)J

1
u r o;e

2 V

=—f uhu d r= ——f (7' )dur .
2 V 2 V

(7.20)

Now, everything is prepared to put A (z, %) in the final
form

A(z, X)=
~

V~ exp[NB(z, u )]C(z,X),
C(z, X)=M exp ——g cr;o 6;,(r;r,).i' (7.23)

B(z u)= —f (V' )dur+pc ln f e d r,
2 v ivy v

(7.22)

The function u in (7.22) is the solution of Eq. (7.19). It is
more attractive, however, to consider B(z,u) as a func-
tional of function u. Then, it turns out that the station-
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ary points of the functional 8(z, u ) are the solutions of
the boundary-value problem (7.19). We will widely use
this fact in the following. Qne immediate consequence is
worth noting right now. For a real positive z functional,
8(z, u) is strictly convex. Therefore, it has the only
minimizing element. Hence, the boundary-value problem
(7.19) makes sense and has the unique solution at least for
real positive z.

Collecting (7.3) and (7.21)—(7.23), we obtain for d I /dE
the relation

~

V~N
' N(Ez+B(z, u)]C(

O'E 2ai l 00

(7.24)
where 8(z, u ) is the functional (7.22). Since C(z, X) con-
verges for X—+ ~ to some function Co(z), one can use
the steepest descent method to find the asymptotics of
d I /dE. The asymptotics is determined by the stationary
points of the function Ez+8(z, u). To simplify the
dependence of the functional B on z it is worth changing
the variables u —+v by setting v =zu. Then the last term
in the expression for 8 (7.22) becomes independent of z
and B takes the form

8(z, v)= f (Vv) d r+ gc ln f e "d r .
2z v fV) v

(7.25)
For a given z, the stationary function of the functional
8(z, v) is denoted by v(z). It obeys the boundary-value
problem

VIII. THERMODYNAMICS GF A VC)RTEX GAS

The relations obtained in the preceding section allow
us to analyze the thermodynamical functions of vortex
gas. First, we find from (7.29) the expression for the en-
tropy S

'S(E)=EP+B(P,v()(P)) .

Here p is a function of energy determined by the relation

E+ 8(P, vo(P)) =0 .d
(8.2)

Small terms of order X 'in% and X ' are dropped on
the right-hand side of (8.1). Entropy can be presented as
the stationary value V,"„[

~
of the functional Ez+B:

Since Ez+8(z, vo(z)) has the minimum value at z=P,
Re[Ez+8(z, v(z))] has the local maximum at z=p
along the line of integration. It is shown in Appendix 0
that this maximum is, in fact, the global maximum of
Re[Ez+8(z, v(z))) along the line of integration. Hence,
in accordance with the steepest descent method, in the
first approximation

dI (E), , N &X N[Ep+B(p, u, (g))] 7.292~8"
where p and vo(p) are the solutions of the system of equa-
tions (7.26) and (7.27) (they depend on E) and 8" is the
second derivative of the function 8(z, vo(z) ) with respect
to z at the point z =p.

0 Vpe
Avo= —zoic 0 (, )ao d2

V

v, =O at av.

in V,

(7.26)
X 'S(E)= V,"„(„) Ez+ (Vv) d r

II

The stationary point of the functional 8(z, vo(z ) ) with
respect to z is denoted by p. The stationary point p is
determined by the equation

1
Vvo d r (7.27)

2P'

It is shown in Appendix B that the functional 8(z, v ) is
convex with respect to z, v for all real, positive z. In this
case, Ez+B has the only stationary point and this sta-
tionary point is the point of minimum. For real negative
z, (7.26) can be interpreted as Euler s equation in maximi-
zation of the functions 8(z, v ) with respect to v. It is as-
sumed that for some values of energy E the function
Ez+8(z, vo(z) ) might have a ininimum with respect to z
at some negative value P.

For real positive z, the solution vo of (7.26) is real;
therefore, as seen from (7.27), E )0. For E &0 there are
no real stationary points. We will confine ourselves to
the case of E)0.

To get the asymptotics of dl /dE, we move the line of
integration in such a way that is passes the point z =P:

~
V ~N f~ N[Ez+B(z, v)]C(

dE 2mi p—joo

(7.28)

+pc ]ni
i

f e dr (8.3)

The stationary value with respect to v is, in fact, the
minimum value for positive z and the maximum value for
negative z.

If the energy E is close to Eo, the variational problem
(8.3) yields the expression for entropy in the low energy
limit (5.17) (see Appendix E). Diff'erentiating S(E) with
respect to E, we find the temperature

1

dS/dE P(E )
(8.4)

For the motion of a one-component vortex gas in a cir-
cular domain, the variational problem (8.3) can be solved
exactly (see Appendix F). Functions P(E) and S(E) are
shown in Figs. 2 and 3, where E* and P are dimension-
less E and p. The characteristic features of these func-
tions are (i) that the entropy S has its maximum value at
E=EO, (ii) at this value of energy, the temperature T
changes sign; (iii) the negative values of temperature cor-
respond to E )Eo; (iv) S(E )~—~ if E tends to zero or
infinity; and (v) the admissible values of P are bounded
below. The following analysis pertains to the cases when
these properties take place.

Let us now find the thermodynamic entropy. To do so
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zo

6-

peratures because I (E) should be less than lVl . The
rest of this section deals only with the case of negative
temperatures.

Substituting (8.6) into (4.10), we obtain that S(E) and
S,h(E) coincide. Hence canonical and equipartition tem-
peratures are also equal

1
eq NP

(8.7)

0 05

FIG. 2. Dependence of the inverse temperature on energy for
a one-component vortex gas in the circular domain.

Since P does not depend on N, the temperature decays as
X . This fact has a simple physical meaning. In accor-
dance with (4.1), the decay of y and T,q

as N ' yields
that the averaged area bounded by each vortex trajectory
per unit of time stays finite. Substituting y;=o;/N in
(4.1) and using (8.7), we obtain a "finite" form of the
equipartition law

(8.8)

we must determine the phase volume I'(E). Integrating
(7.29), we have

I (E)= ' C(P)e ' ~+ '+const .
&2vrB "N P(E )

(8.5)

Note that expression (8.6) is valid only for negative tem-

Relation (8.5) can be verified by difFerentiation with
respect to E. In this calculation one must take into ac-
count that the derivative of E13+ B (P, v 0(P) ) with respect
to P is equal to zero and the contributions of derivatives
B"and P are negligibly small compared to the right-hand
side of (7.29).

Note that expression (8.5) is true only out of the vicini-
ty of the critical energy Eo where P(EO)=0. The con-
stant in (8.5) can be found from the condition that
I'(E)~l Vl if E woo. Since S—(E)~—oo for E~&n,
the first term in (8.5) tends to zero and we find that the
constant is equal to

l Vl . Finally,

1(E)=lvl 1+ "„e"'i' " . (8.6)
Q(R)

&2mB "N P

This relation determines the physical sense of parameter

The equality of the equipartition temperature and the
canonical temperature holds only outside some vicinity of
the critical energy Eo. The size of this vicinity depends
on X. If energy decreases and enters a small vicinity of
Eo of order 1/&N, then TW T, , as we have discussed in
Sec. V (see Fig. 1). Moreover, T changes sign when E
goes below Eo, while T, keeps its sign in accordance
with common sense: the direction of rotation should not
be changed in the course of variation of energy. For
E & Eo, XT and XT, are different.

For energies close to Eo, the order of magnitude of the
equipartition temperature becomes 1 IV'N. That is much
larger than 1/X, the order of magnitude of the equiparti-
tion temperature for finite E—Eo. This indicates that
the averaged area bounded by the vortex trajectory per
unit time becomes very large, of order &N, at the vicini-
ty of critical energy. A possible explanation is that, at
the critical energy, trajectories become much more cur-
ling.

IX. PROBABILITY DISTRIBUTIONS

-3
0 05

—Pcr,.u(r)

lf (r)= —Po. .u(r')
C d2p

V

where u(r) is the solution of Eq. (7.19). Formula (9.1)
gives the first term of an asymptotic series in X '. The
next term is of order X

Let us derive (9.1) for the probability density of the
first vortex f, (r ). As follows from (3.8) and (3.5) (see also
[24,30]), the probability density can be written in the
form

(9.1)

One of the most interesting probabilistic characteristics
of Quid motion is the probability density of vortex coordi-
nates f; (r ) for the ith vortex. In this section, it is shown
that, in the first approximation,

FICx. 3. Dependence of entropy on energy for a one-
component vortex gas in the circular domain.

BI (r, E) BI (E)
BE

(9.2)
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where I (r, E) is the phase volume of the [2(N —1)]-
dimensional region, extracted by the inequalities
H( r, r2, . . . , rz ) ~ E, r; E V. The derivative BI (E ) /BE
has been found in Sec. VII. Determining the derivative
Br(r, E)/BE is quite similar; the only difFerence is the
dependence of the Hamiltonian on the parameter r, the
position of the 6rst vortex. Following the line of Sec.
VII, we start from the formula for BI'(r, E ) /BE analo-
gous to (7.3):

d+(r E ) N '

~E A ( N)d

(9.3)

I

V

—[w, (rj, r)+h; ]f e ' ' '
d r'

—zo, u,.(r', r)—f wj(r', r)e ' ' ' d r'=0,
(9.8)

—zo .u. (r', r)—f w;(r', r)e '' ' d r
V

—[w~(r;, r)+h;, ]f e ' ' ' d2r'=0.

It follows from (9.8) that the functions w;(r', r ) do not de-
pend on r' if r'EBV. Therefore, we de6ne the constant
h; by the additional condition

The Hamiltonian H(r, r2, . . . , r&) can be written as
w, (r', r)=0 if r'EBV . (9.9)

0= 1

+2
1

o;crJG(r;, r )
lAJ

i,J 2

I

V
(9.10)

Tending r' to BV in (9.8) we arrive at the values of h,"
I

h,"(r)=—f w (r', r)e

+ g o, (o,G(r, r, )+o;g(r, ))+o..fg(r )
E=2

(9.4)

I

Z
A(z, r, N)=exp — g o;cr~ h,j—.

lWJ

ZO(
g(r)

Now we make the transformation (7.4) for i,j ~2. The
functions w; and 6;1 in (7.4) depend on the parameter r.
We obtain

b, „.w;(r', r)=—

The differential equations for w; can be obtained by ap-
plying Laplace's operator to (9.8). We have

—za, u, (r', r)

(9.11)—zo,.u,.(r",r) .2

V

Equations (9.11) and (9.9), along with the expressions for
u; (9.6), form a closed system of equations for w;.

It follows from (9.11) and (9.9) that h,"=h, . Then, as
is easy to check, 2(N —1) equations (9.8) are the conse-
quences of 2(N —1) equations (9.11) and (9.6) and expres-
sions for h,J (9.10).

Using (9.10) and (9.11), the sum gcr;o .h; in the ex-
pression for A (z, r, N ) can be presented in the formX,exp

Z
o;cr 6;

g@J
2 l,j

—Z 0.;u; r;, r
1=2

Q crojh; = —g o;o f. VwVwjd r' .i' i'
Finally,

A (z, r, N) =
~ V~ exp[NB(z, w, , r )]C(z,r, N ),

Xd f2' 'd rg (9.5)
ZB(z,w;, r)= 2 g o';aj f V'w;Vwjd r

1u;(r'„r)= —g o w (r', r)+ 6(r', r)+ g(r') .

(9.6)

As before, we put the following constraints on the func-
tions G; (r;, r ): the average values of 6;J with respect to—zo, u,.the complex measure const e ' ' are zeros,

+ 1 ~1 1 —,.u,.(, ')d2,
N, . [Vi v

1 2cr,g(r ),
pf 2

C(z, r, N) =M exp — g o;o G;.
Z

lXJ

(9.12)

(9.13)

(9.7)

Here, for brevity of notation, we do not mention the
dependence of 6," on parameter r. The constraints (9.7)
yield the system of integral equations for w,.

where M denotes a mathematical expectation with
respect to the complex measure with the "probability
density" const exp[ zgz o; u; (—r, , r ) ].

It is assumed that u; in (9.12) is expressed in terms of
w; in accordance with (9.6). Then B becomes a functional
of w;. The solutions of the system of equations (9.11),
(9.6), and (9.9) are the stationary points of functional B
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(Appendix G).
In the case of a multicomponent vortex gas, we search

for solutions for which functions w, are equal for the vor-
tices of the same component. In this case functional B
takes the form

B(z,w, r)= —f Vgc o w d r'
V

+pc ln — —f e
' " '"'"'d r'

o. ,g(r) ——gc cr f (Vw ) d r,
a

(9.14)

where

0 )
u (r', r)=pc o. w (r', r)+ G(r, r')

a

[31,23]. In accordance with this method, we present the
stationary point w in the form

W~ —W~+ W~ (9.16)

where w is the first approximation to w and w are
small compared to w . After substituting (9.16) in (9.14)
and (9.15) all linear terms containing w cancel out due
to Euler's equations for w . The terms of the next order
form a quadratic functional. To determine w we must
find the stationary points of the quadratic functional with
respect to w . The corresponding linear problem con-
tains "excitations" of order X '. Therefore, w

and the quadratic functional with respect to w has the
order X . Since we are interested in the leading correc-
tions and there are terms in the functional of order X
quadratic corrections, related to w, can be dropped.
Therefore, to obtain the first-order corrections, we must
calculate the functional 8 on the functions w and keep
the terms of order X '. We have

+ (g(r') w(r'—, r )) . (9.15)

The functional 8 depends on the parameter r and on the
small parameter X '. The dependence on r enters by
means of the functions G(r', r) in (9.15) and g(r) in
(9.14). They have small factors. In the first approxima-
tion, the dependence of 8 on r disappears. If a11 the small
terms [the last two terms in (9.14) and the last three in
(9.15)] are dropped, the functional B becomes the func-
tional (7.22) because, in accordance with (9.15), all u are
equal to u =g c cr w . To find the dependence of B on
r one must consider the correction of the first order. To
do that, one can use the variational-asymptotic method

I

tt G( I )d2
B=Bo Pgc o.

a
V

(9.17)

where Bo is the stationary value of the functional (7.22)
and 0 p is the solution of the boundary-value problem
(7.19). There are additional terms of order N ' in (9.17),
but they are dropped because they do not depend on pa-
rameter r. So, in the first approximation, the parameter r
enters in B by means of the Green's function G(r', r ). In
accordance with the steepest descent method,

dI (r, E) =V(E,N)exp —Po, gc o.
dE

e
~~a u E 1 )

r ~ ~ ra "
G( i )d2

—per u(r')
e dr'

V

(9.18)

where V is a function of E and N. Equation (9.1) follows
from (9.18), (9.17), (7.19), and (9.2). Equation (9.1) has
been found by Pointin and Lundgren [11,12] from the as-
sumption (1.2) for a two-component vortex gas. The con-
sidered derivation does not contain any other assumption
except the ergodicity of motion. The hypothesis (1.2) can
be proved in the same way as (9.1): one must find, in the
first approximation, dl (ri, r2, E)ldE (I (ri, r2 E) is the
phase volume of the region in [2(N —2)]-dimensional
space (r3, . . . , r„), which is bounded by the energy sur-
face H(ri, r2, r3, . . . , r„)=E) and show that
d&r„r2, E)IdE is proportional to the product
dI (ri, E)ldE dI (r2, E)/dE. This can be done by fol-
lowing the reasoning of this section.

co(t, r ) =g y;5(r r, (t ) ) . —

Discussing the limit behavior of co(t, r ) for N~ ~, it is
sensible to consider the weak convergence, i.e., the con-
vergence of integrals

f co(t, r)p(r)d r=g y;p(r;(t)), (10.1)

behavior of hydrodynamic characteristics. Consider first
the vorticity field co(t, r ). In the point vortex approxima-
tion

X. MEAN STREAM PUNCTION

The ergodicity of vortex motion and the way of decay-
ing the vortex intensities (y; —N ') yield a very special

where p(r ) is a smooth function. In accordance with the
central limit theorem, integrals (10.1) converge to the
mathematical expectation of g;y, p(r, ), i.e.,to.
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fg(r)e '" "d r

"(')de
lim —g o;

e d r

fg(r)e d r
=Wc o.a a —po u(r)

e d T

This means that vorticity converges weakly to the func-
tion that does not depend on time

—po. u(r)
e d

co(t, r)~w(r)=pc o.

V

(10.2)

AP= —gy;5(r r;(t)) —. (10.3)

The solution of Eq. (10.3) converges weakly to the solu-
tion 1t(r ) of the "averaged" equation

—pa. u(r )

ekg= —co= —g y;
I

v

in V,

(10.4)

At each point r, the true vorticity field co(t, r ) fiuctuates
around the average value (10.2). Fluctuations are of or-
der 1/V'¹ The temporal fiuctuations disappear if
N —+ ~ . One might say that temporal chaos is
transformed into spatial chaos. This is a characteristic
feature of all theories of mean field type (see the discus-
sion in [32]). The feasibility of a mean-field-type theory
for hydrodynamical problems is discussed in [32,33].

Consider the stream function of fluid motion. It can be
found from the equation

ponent vortex gas. The term "exact" is put in quotation
marks because the assumption on ergodicity might not be
true for Quid motion.

Let us take the initial continuous vorticity distribution
co(r ). We model this vorticity distribution by some mul-
ticomponent vortex gas. To "prepare" this gas, we divide
region V into a large number of small blobs of equal area
b and identify a point vortex with each blob. The inten-
sity of the vortex with the initial position r, is

y; =co(r,. )b, . If the initial vorticity field is approximated
by some piecewise function with s values
(a=i, . . . , s), we obtain the s-component vortex gas
with intensities of y =co b, . If the subregion where co(r )

takes the value co has the area
I
V I, then the number of

vortices in the ath component is N =
I
V I/h. The as-

sumption that all blobs have the same area 6 means in
fact that the number of vortices in each component is
proportional to the corresponding area

I
V I. For such a

gas, cr =y N=co AN=co
I VI, AN=IVI, c =N /

N=Iv. I/IvI, and c a =co IV I. With the numbe~ of
each component to infinity, we obtain, from (10.6), the
equation

—p~p(rp)l Vlf(r)

coo(ro )
y f —Pcoo(ro )~ V~/(r')

V

tP=O at Bv .

d ro in V ,

The right-hand side of (11.1) can be written in terms of
the distribution function of initial vorticity g(co)

1
g(co)b, co= measure [x: co~co(r) &co+A,co] . (11.2)

or, in the ease of a multieomponent vortex gas,
We have

ae5~= —W c o.a a pcs u(r )
d 2p'

v

in V,

(10.5) /=0 at Bv .
(11.3)

/=0 at BV .

Comparing (10.5) and (7.19), we conclude that
u(r)=P(r). Finally, the averaged stream function is the
solution of the following boundary-value problem:

—pa p(r)

V (10.6)
/=0 at BV .

For the particular case of a two-component vortex gas,
this equation was derived in a different form by Joyce and
Montgomery [9,10].

XI. AVERAGED EQUATIONS
OF 20 HYDRODYNAMICS

One of the central tasks of the theory of turbulence is
to find the equations for averaged characteristics of Quid
low. In this section, the "exact" averaged equation is de-
rived from the averaged equation (10.6) for a multicom-

For each co, g(co) is the integral of motion: if one substi-
tutes in (11.2) the function co(r, t ) instead of c'o(r ), one ob-
tains the same function g(co) for all t. We see that an
in6nite number of integrals of Quid motion contributes to
the averaged equation (11.3). If the number of values of
the initial vorticity field c'o(r) is finite, we return to the
original equation (10.6). In [32—34] a system of equations
was obtained for g that difFers from (11.3). The
differences will be discussed elsewhere.

A confusing feature of the averaged equation is its
dependence on the way of "preparation" of the vortex
gas. This dependence can be seen from the following
thought experiment. Let region V contain a spot of con-
stant vorticity ~. Consider two different approximations
of the spot by point vortices. In the first approximation
we divide the spot into N pieces of the same area and ob-
tain point vortices of equal intensities. In the second one
we divide the spot into two parts V& and Vz and take N&
equal vortices in V, and %2 equal vortices in V2. The in-
tensities of the vortices in this case take two values
y, =co V, /X, and y2 =co V2/%2. Then we consider the
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limit N =Xi +%2~ ~ ' Ni /N and N2/X stay finite. It is
seen from (10.6) that the averaged equations for these two
approximations of the vorticity field are different. That
leaves us with two options: (a) only one approximation
captures correctly the long-term dynamics or (b) fiuid
motion is not ergodic and the above consideration is not
relevant. Intuition suggests that equal vortices should
better approximate the dynamics of the spot of constant
vorticity. In fact, this has been rejected in the approxi-
mation of the continuous vorticity field accepted above
by dividing V into equal parts. Another consequence of
dividing V into equal pieces is that, in each region
m=const, the number of vortices is proportional to the
area of this region. These assumptions extract the unique
averaged equation. The convergence of the point vortex
approximation on infinite time has been proven in [3] un-
der the assumption that the initial vorticity field is divid-
ed into equal pieces. The dependence of the accuracy of
the approximation of the vorticity field by point vortices
on the method of preparation of the vortex gas has not
yet, to my knowledge, been considered. If it develops
that convergence of the point vortex approximation on
infinite time does not depend on the method of prepara-
tion of the vortex gas, it would mean that Quid motion is
not ergodic and the above consideration is not relevant.

XII. CONCLUDING REMARKS

In this paper, the basic relations of statistical mechan-
ics of point vortices were derived. Thermodynamical
functions and probability density functions are found and
analyzed. An equation for the averaged stream function
of a How with a continuous distribution of initial vorticity
is obtained. Theory predicts decay of temporal Auctua-
tions in the limit X~~. This feature is common for all
theories of mean field type. In real Qows, temporal Auc-
tuations are presented. This contradiction of theory and
experiment requires an explanation. There are a number
of reasons for temporal fluctuations to persist. First, real
Rows are not closed and disturbances at the inlet could be
a trigger for temporal fluctuations. Second, decay of tem-
poral Auctuations might be just a two-dimensional effect.
Third, a certain role might be played by viscosity.
Viscosity, along with external excitation, yields the finite-
ness of the attractor's dimension and possibly finiteness of
the number of degrees of freedom in the approximation
of Quid motion by motion of point vortices. For finite X,
temporal Auctuations exist; they are of the order of X
Temporal fluctuations are described by the next term in
the asymptotical expression for the probability distribu-
tion (9.1). This term is responsible for Reynolds stresses
in vortex gas and can be found by the steepest descent
method. At present, there is no clear understanding as to
which of these reasons dominate.

N E
Prob —g p(r; ) ~ E

N~ oo CT

(Al)

where o. is the variance of p

o = jp (r)f(r)dr .

The central limit theorem (Al) can be written as a state-
ment on the limit behavior of the multidimensional in-
tegra1

j f(r, ) . f(r&)dr& . dr&
(&l&N )g;p(;) E

E
r EVi

N —+co 0
(A2)

The statement (A2) admits the following generalization:
the probability density f(r) can be a complex valued
function, which satisfies the normalization condition

j f(r)dr=1 . (A3)

Note that the variance cr in (A2) becomes, in general, a
complex number. The relation (A2) can be further gen-
eralized in order to admit complex values of E and p(r).
To do that, one can rewrite (A2) in the form

j 8 E — —gp(;)
l

Xf(r) ) . f(rq)dr( dry (A4)

In the standard formulation of the central limit theorem,
8(x ) is the step function. However, if we understand by
8(E) the continuation of the step function 8(x) in the
complex plane [8(z)=1 if Rez)0 and 8(z)=0 if
Rez (0], then (A4) is valid for complex valued E and
p(r). The proof of (A2) —(A4) does not differ from the
standard one [29].

In the calculation of phase volume, we need a
complex-valued version of the following statement:

1M exp —z—g G;J(r;, r~ ) — (function of z ) (A5)

purely analytical nature and might be considered as some
statements about integrals. Consider, for example, the
central limit theorem for independent random variables
r;, i =1, . . . , 1V. Each variable takes values in some re-
gion V and has the probability density f(r). Let p(r) be
a real function of r with zero mean value

jp(r )f(r )dr =0 .

Then the central limit theorem states that

APPKNDIX A: COMPLEX PROBABILITIES

The term complex probabilities is used in physics in
various senses. In this paper, the term complex probabil-
ity is defined in a formal way, putting aside a discussion
of possible physical meanings.

Many statements of the theory of probability have a

if the mathematical expectation of G, (r, , r ) with respect.
to each argument is equal to zero:

M„G; (r, , r )=0, M„G, (r. ;,r-z)=0 . "
J

(A6)

This statement has been proven [18] for
GJ(r;, r )=g(r, , r~ ) under the followin. g assumptions:
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g(r, r')=g(r', r), sup f g2(r, r')dr &+ ao,
r V

all mathematical expectations Mg(r;, r~ ) g(r;, rj )
Ic J/c

exist. The similar statement (A5) can be proven for com-
plex probability densities by following the reasoning of
Ref. [18].

APPENDIX 8: CONVEXITY OF THE FUNCTIONAL 8

Let us show that the functional

The two sides of (Bl) are equal if and only if Vuz =c2Vv,
and z, =c z, . So the first two terms of (81) are convex,
but not strictly convex. Since the last term in (Bl) is
strictly convex, 8(z, u ) is strictly convex.

APPENDIX C: AN INEQUALITY FOR ENTROPY

Let us show that the entropy of vortex motion is al-
ways negative. In accordance with (8.3), the entropy is
the stationary value of the functional Ez+B. Denote by
J(u ) the functional

8(z, u)=Ez+ f (Vu) d r1

2z V
J(v)=pc ln f e d r . (Cl)

Note that

is strictly convex with respect to two variables z, v for
z &0 and c )0. The last term in B(z,u) is a strictly con-
vex functional because the functional

b(u)=f e d r
V

is strictly convex, while the functions c lnx are mono-
tonically increasing . So, to prove the statement it is
enough to show the convexity of the functional

1
v 2d2r .

2z v

J(0)=0 . (C2)

5J A

ca~a
5u ~~' ze d r

V

Therefore, at the minimizing point

The stationary point of the functional Ez+8 satisfies the
equations

E
z f (V—u) d r=0, —hu=1 1 5J

2z z 5v

To this end we have to prove the inequality

f (Vu, +Vu, )'d'r
4 z, +z2 v

f (Vui)d r+ f (V z)ud r1 1 2 2

4 Zi Z2 V
(82)

—f (Vu)dr= —f u dr,
z V V 6V

Ez= f (V'u)2d2r=1
2Z V

and the entropy has the value
which should be valid for any positive z, ,z2 and any
v „v2. This inequality can be written as

f (V'v, +Vu2) d r

(C3)

Consider the functional of u ( r )

X 'S=Ez+8 =J(u) —f v dr . ——

v 5v

~ f [(V'u, ) +(Vu2) ]d r

+t f (Vui) d r+ —f (Vv, ) d r,1

v v

where t =z2/z&. Since

(83)

f v d r —[J(u)—J(0)] .
v 5v

(C4)

Let us show that it is positive. For any convex function
of a finite number of variables v„. . . , v2, the following
inequality is valid [35]:

min t f (Vv, ) d r+ —f (Vu~) d r1

V t v g v ——~ J(u )—J(0) .5J
l (C5)

1/2=2 f (Vui)d rf ( Vzu)d r (84)

inequality (82) follows from (83), (84), and the Cauchy-
Buniakovsky inequality

If we discretize the functional (Cl), we get some convex
function of a finite number of variables that obeys the in-
equality (C5). Tending the size of discretization to zero,
we obtain, on the left-hand side of (C5),

(85)
1/2f VuiV'v2d r ~ f (Vui) d r f (V'v2) d2r

The equality in (85) takes place only when Vv2=c Vui
and c =const. The minimum in (84) is reached for

1/2
t=zzlz, = f (Vvz) d r f (Vv, ) d r

Therefore, the continuum version of (C5) means the posi-
tiveness of the functional (C4) and the negativeness of the
entropy. Note that the proof does not use the positive-
ness of z: entropy is negative for negative z as well.
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APPENDIX 0: FUNCTIONAL B
IN THK COMPLEX PLANK

5J( 5J2 5J2 5J,
6v, 5V2 5U, 6U2

(D 1)

where 5J /5u& are the variational derivates. These rela-
tions follow from the identity

Let vp(z ) be a stationary point of the functional 8 (z, u )

with respect to U for a complex z. Consider
Re[Ez+8{z,up(z)}] on the line z=P+it (t is the real
parameter along the line; P) 0). We will show that this
function reaches its maximum value at t =0.

Let J(v) be some complex valued functional of a com-
plex valued function v, u=ui+iv2, J=Ji(ui, u2)
+iJz(v i, u2 ); ui, v2, J„Jz are real. The following
Cauchy-Riemann relations take place:

5J
5U — 6U) + 5U2

5U 5U) 5U2

At a stationary point

5Ji 5J~+i =0,
5vi 5U j 5v2 5V2 5U2

(D2)

Due to identities (D 1) among four real equations (D2),
only two are independent. For definiteness, we can take
the equations

5J, (v„u~)—=0
5v(

5Ji(ui, v2) =0.
5V2

(D3)

Denote by u, and v2 the real and imaginary parts of vp(z )
and by 8, (t, u„u2) the real part of functional B. We
have

8, (t, v„v,)=, , f [P[(Vu, )' —(Vv, )']+2tVv, Vv, ]d'r1

2(P'+ t')
2 ~a~i 2 1/2

e 'cos(cr u2)d r + e 'sin(o v&)d r

infsupB, (t, u„u2) .
Ul U2

(D5)

Denote the function of t (D5) by 8*(t). We have to show
that

8*(t)&8(P,u(P)) .

We have to show that the stationary values of 8 i for t&0
are less than the stationary value for t =0. The problem
of the determination of v, , v2 can be set up as the saddle
point problem

—f [P[(Vu, ) —(Vuz) ]+2tVv, Vv2]d r2(P'+t')
2

z z f P+ (Vu)dr2(P'+ t')
1 f (V'u, )d r.

V

Hence

8*(t)(min maxB(P, u, )=minB(B, ui ) =8{P,u(P) },
Let us rnajorize 8&, trying to eliminate U2. Since

~a" l
2

e ' cos(o uz)d r

0' vl cT Ule 'd r e 'cos(o uz)d r
V V

as claimed.

APPENDIX E: DERIVATION
OF THE LOW ENERGY LIMIT

FROM THK GENERAL RELATIONS

0 vl 2f e ' sin(o u2)d r

«f e "'d rf e "'sin(o u2)d r,
the last term in (D4) does not exceed

yc. inf e ""'d'r .
V

The first term can be majorized by means of the inequali-
ty

2t f VuiVu2d r « Itl f (Vv, ) + (Vu2) d r .

1
Etp g c'~o~

I I

in V, up=0 at BV

This problem has the solution

1

V

(El)

Let us show that the formulas for the low energy limit
derived in Secs. IV and V follow also from the general ex-
pression (7.29). We confine ourselves to the case of a
non-neutral gas (gy;=pc cr %0}.

We must solve Eq. (7.19) in the limit of small z. In the
first approximation u =uo, uo does not depend on z and
obeys the boundary-value problem

Multiplying (El) by up(r) and integrating over V, we get
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the relation

f (Vuo)d r=
~ (

gc cr f uodr.2 2

V V v

Using (E2), (4.9), and (5.4), we find that

Eo= f (Vuo) d r= ,'h —gco
a

(E3)

(E4)

u =uo+ (E5)

we see from (7.19) that u' is of order z. Substituting (E5)
into the functional X 'S and dropping all terms of or-
ders z and higher, we have

Let us calculate entropy S by taking into account the
small terms of order z and z . Presenting u(r) in the
form

'S=Ez+ —f (Vu) d r+gc ln f e d r
2 v [Vf v

=Ez+ —,'z f (Vuo) d r+2f VuoVu'd r
V v

+pc [—zo &u, &+ —,'(zo. )'(&u,'& —&u, &')—zo. &u'&] . (E6)

N-'S=(E —E, )z+-,'z'o'(& u,'& —
& u, &') .

o~=gc o.
(E7)

Here &
.

& means average value over region V:
&= J v d rl~ V~. Two terms containing u' can-

cel out due to (El). The sum of linear terms in z which
contain uo is equal to Eoz, as fol—lows from (E3) and
(E4). So

dI'(E)
dE

V2mcrb g. c o

N (E—Eo)
X exp

gc o crb

The coefficient &uo &
—&uo& can be expressed in terms

of the constant b [b =
& w &'; see (5.15)]. To do so we

note that, in accordance with (5.10), (5.11),and (El),

uo=[w(r)+h]gc o

The same relation follows from the di8'erentiation of
(6.5).

APPENDIX F: A ONE-COMPONENT VORTEX GAS
IN A CIRCULAR DOMAIN

Since & w(r ) & =0,

&u, &=h gc o

2

&u,'&= gc o [&w'&+h'] .

Hence

'2
=b +co

So

'2

For motion of a one-component vortex gas in a circular
domain, thermodynamic functions can be found in terms
of elementary functions. Of course, there is the addition-
al integral of motion for a circular domain and the previ-
ous consideration should be modified to be physically
relevant. However, all the relations make sense formally
and allow one to get a qualitative impression of the
behavior of thermodynamic functions. It seems plausible
that small disturbances of a circular domain, destroying
the additional integral, yield small disturbances of ther-
modynamic functions found for the circular domain.

For a one-component vortex gas the equation for the
stationary point of the function B(z, v ) (7.26) takes the
form

'S=(E Eo)z+ ,'z o b g—c~o—~ (E8)

—oup(r)
e

Avp = zo
crvp( r )

e d r
V

in V,

Minimization of (E8) with respect to z gives
—2

N 'S(E)= ,'o b pc o. ——(E—E )2

Plugging this relation into (7.29), taking into account that
C(0)=1, and, as follows from (E8), B"=o b (g c o )2,

we obtain

2 o. z r
v =—ln 1+ 1—

0 8m
(F2)

where r =x +y and R is the radius of the circle. Note

vp=0 at BV .

It can be checked by inspection that Eq. (El) has the
solution
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that this is the solution of (F1) for complex z.
Using (F2) we find B(z),

tends to —oo. Graphs of the functions P*(E*) and
S(E' ) are shown in Figs. 2 and 3.

2

B(z ) =1— 1+ ln 1+
zo2 8m

Then the energy E is linked to the stationary value P by
the relation

E=—1 — 1 1+
((3 Pg ' 8qr

The entropy S as a function of P is

2

S=2— 1+ ln 1+
P(72 8qr

Let us introduce dimensionless parameters i3'=Po /Sqr
and E*= SqrE /O. Then.

g O. .R.=O,
JWl

where

(G 1)

APPENDIX G: EULER'S EQUATIONS
OF THE FUNCTIONAL B(z, m;, p )

Let us show that the stationary points m; of functional
B(z, ur, , r ) (9.12) are the solutions of the system of equa-
tions (9.11), (9.9), and (9.6). By varying the functional
B(z, ur, , r ) we get the Euler equations for 1();: for each i

E Q 1 ln(1+P*)

S=2— 1+ ln(l+P*) .
2

(F3)

(F4)

Consider (Gl) as a system of (X—1) linear equations
with respect to (X—1) variables R. (j=2, . . . , X). The
determinant of this system is equal to const Xoz - o.~.
Suppose that none of the numbers o.2, . . . , o.& is equal to
zero. Then the determinant is not zero and the only solu-
tion of (Gl) is R =0, i.e., we arrive at Eqs. (9.11).

In the vicinity of critical energy P'~0. Expanding
ln(1+P') in a Taylor series we find

E4 —1 1P4
2 3

Hence the dimensionless critical value of energy is —,. Let
us compare it with (5.14). We need to find the constant h

(5.9). The function

p(r)= f G(r, r')d r'
V

is the solution of the boundary-value problem

APPENDIX H: EQUIVALENCE OF MICROCANONICAL
AND CANONICAL DISTRIBUTIONS

In some papers (see, for example, [14,32]) statistical
mechanics of point vortices in a closed domain is con-
sidered using a canonical ensemble with Gibbs s probabil-
ity distribution

f(p q )
— e PH(p, q)1

Z(P)
where Z(P) is a partition function

b,()()= —1 in V, y=O at BV .

For the circle of radius R we have, from (F5),

(F5) Z(p) —f PH(p, q)d N+ dN—
~

and the parameter P related to the averaged energy E

(H2)

1((1=—,'(R —X —y ) .

Therefore
E f II( )

pH(p, q)dN dN—H
z (H3)

h= f f G(r, r')d rd r'= f yd r=1 z 2 1 z

]
V[2 «

/
V[2 v Sqr

(F6)

It follows from (5.14) and (F6) that the critical value
found for the energy coincides with (5.14).

If energy increases then P' approaches exponentially
the constant value P*=—1. Presenting entropy in the
form

ln(1+P*)+2— ln(1+P*)

and taking into account that the last term goes to zero
for P'~ —1, we conclude that the entropy tends to —oo

when energy increases.
In the limit E'~0, P'=1/Eq, and entropy again

1 pNE d 1(E)

Z(P) dE
(H4)

If canonical and microcanonical distributions are
equivalent, the probability density function (H4) should
converge for N ~ oo to 5(E E), while E should —coincide

If the number of vortices is finite, Gibbs's distribution
differs from the microcanonical distribution and is not
relevant because the energy of Quid Aow is conserved.
However, in the limit N ~~, canonical and microcanon-
ical distributions might coincide. Let us show that this is
the case. To have coincidence for high energies, we must
scale the parameter P in (Hl) —(H3) properly: in
(Hl) —(H3) we change P to NI3. The "new" P turns out to
be equal to the parameter P used in this paper. First, let
us find the probability density function of energy f(E).
We have, from (Hl),
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with the value of energy prescribed by initial conditions,

1 NE dl (E)
e

—p —~5(E E—) for N~ac . (H5)
Z(P) dE

Relation (H5) is a necessary condition for the equivalence
of microcanonical and canonical distributions. It can be
shown that it is also a sufficient condition in the following
sense: if (H5} holds, then for any smooth function
q)(p, q), the probability density functions of y, found by
means of microcanonical and canonical distributions, will
colnclde.

Relation (H5) can be checked if Z(P) and dI /dE are
known. The derivative of phase volume d I /dE has been
found in Sec. VII [formula (7.29}]. Let us now find the
partition function Z(P). From (H2) we have

s(E ) o—E=s(E ) o—P+ — (E P—)
1 d $ 2

2 dE
(H12)

d s(E) dP
dE2 dE

On the other hand, since from (8.3) and (7.25)

E+ dB

(H13)

(H14)

we obtain by differentiating (H14) with respect to E

1+B" =0 .
dE

(H15)

We need to relate d s/dE and B". Diff'erentiating
(H10), we have

Z(o)= f "e E" dE .
OO dE In accordance with (H13) and (H15)H6

Plugging in (H6), the expression for dI /dE from (7.29),
we obtain

S

dE
1

BI I (H16)

Z( )
—f + —aEN I I C(P)

&2trB "(P)
N[(Ep+B(p, U (p))]Xe (H7} Z(~) =C(~)e('~)- ~]I VIN (H17)

Applying Laplace's method we see from (H8), (H12), and
(H16) that

Here P and vo(P) are assumed to be functions of E deter-
mined by Eqs. (7.26) and (7.27). Forinula (H7) can be
rewritten in terms of entropy per one degree of freedom
s(E)=N 'S(E) (8.3),

z((r ) f+- N
I
vl"

c(13)e N[s(E) aE]dE— —
(H8}

&2m.B"(P)

The expression for entropy (8.30) yields that s(E) crEis-
equal to B(cr, v o(o ) ). Finally

Relation (H18) can be written in the form of the varia-
tional principle

—ln =V", (B( o, v ) ),1 Z((T )

N IvI"
(H19)

where Vs' denotes the stationary value with respect to v.

To check the validity of (H5) we use (H18) and (7.29).
%'e haveds (E)

dE 1 ~NE d I C(P}
Z(cr ) dE NB(cr, vo(cr))Co eIt follows from (8.3), (7.26), and (7.27) that

To find the asymptotics of the integral in (H8), one might
use Laplace's method. The maximum value of s(E) oE—
is reached at the point P, which is the solution of the
equation

p(E )
ds (E)

dE
(H 10) e N(s(E ) —o E]

&2~B" (H20)

—o

In the vicinity of the point of maximum

(H 1 1)

Therefore, at the point of maximum s(E ) oE, we have— The convergence of function (H20) to a 5 function follows
from (H12) and (H 1 1). So the microcanonical and canon-
ical ensembles are equivalent for high energies in the lim-
it N —+ao.

[1]P. G. Saffman, Vortex Dynamics (Cambridge University
Press, Cambridge, 1992).

[2] E. G. Puckett, in Incompressible Computational Fluid
Dynamics —Trends and Advances, edited by R. A.
Nicolaides and M. D. Gunzburger (Cambridge University
Press, Cambridge, 1992).

[3] O. H. Hald, SlAM J. Numer Anal. 16, 726 (1979).
[4] V. Zeitlin, Physica D 49, 353 (1991).
[5] A. Rouhi and H. D. I. Abarbanel (unpublished).
[6] J. S. Dowker aud A. Wolski, Phys. Rev. A 46, 6417 (1992).
[7] L. Onsager, Nuovo Cimento Suppl. 6, 279 (1949).

[8] J. B.Taylor, Phys. Lett. 40A, 1 (1972).
[9] G. Joyce and D. Montgomery, J. Plasma Phys. 10, 107

(1973).
[10]D. Montgomery and G. Joyce, Phys. Fluids 17, 1139

(1974).
[11]Y. B. Pointin and T. S. Lundgren, Phys. Fluids 19, 1459

(1976).
[12]T. S. Lundgreu and Y. B. Pointin, Phys. Fluids 20, 356

(1977).
[13]G. L. Eyink and H. J. Spohn, J. Stat. Phys. 70, 883 (1993).
[14]E. Caglioti, P. L. Lions, C. Marchioro, and M. Pulvireuti,



4452 VICTOR L. BERDICHEVSKY

Commun. Math. Phys. 143, 501 (1992).
[15]J. Frohlich and D. Ruelle, Commun. Math. Phys. 87, 1

(&982).
[16]L. J. Campbell and K. O' Neil, J. Stat. Phys. 65, 495 (1991).
[17]V. Berdichevsky, I. Kunin, and F. Hussain, Phys. Rev. A

43, 2050 (1991).
[18] K. A. O' Neil and R. A. Redner, J. Stat. Phys. 62, 399

(1991).
[19]A. J. Chorin, Vorticity and Turbulence (Springer-Verlag,

New York, 1994).
[20] C. C. Lin, Nat. Acad. Sci. U.S.A. 27, 570 (1941).
[21] G. Kirchho(F, Vorlesungen uber Mathematische Physi k

(Mechanik, Leipzig, 1897).
[22] B.Turkington, Arch. Ration. Mech. Anal. 97, 75 (1987).
[23] V. L. Berdichevsky, Variational Principles of Continuum

Mechanics (Nauka, Moscow, 1983).
[24] V. L. Berdichevsky, J. Appl. Math. Mech. (PMM) 52, 738

(1988).
[25] P. Hertz, Ann. Phys. Fourth Series, 33, No. 12 (1910);33,

No. 13 (1910).

[26] T. Kasuge, Proc. Jpn. Acad. 37, 431 (1961).
[27] L. J. Campbell and K. O' Neil, Phys. Rev. E 47, 2966

(1993).
[28] H. Lamb, Hydrodynamics (Dover, New York, 1945).
[29] W. Feller, An Introduction to Probab ility 'Theory and its

Applications (Wiley, New York, 1971),Vol. II.
[30] V. L. Berdichevsky, Thermodynamics of Chaos (Long-

mans, London, in press) ~

[31]V. L. Berdichevsky, J. Appl. Math. Mech. (PMM) 43, 711
(1979).

[32] J. Miller, P. B.Weichman, and M. C. Gross, Phys. Rev. A
45, 2328 (1992).

[33]R. Robert and J. Sommeria, Phys. Rev. Lett. 69, 2776
(1992).

[34] A. Shnirelman, J. Math. Phys. 1, 105 (1993).
[35] E. F. Beckenbach and R. Bellman, Inequalities (Springer-

Verlag, New York, 1961).
[36] J. Sommeria, C. Staquet, and R. Robert, J. Fluid Mech.

233, 661 (1991).


