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Sonoluminescing bubbles and mass diffusion
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The transduction of sound into light by a pulsating bubble in water occurs when its maximum radius

is about ten times greater than its ambient radius. For such high-amplitude motion, the steady-state bal-

ance of mass Aow between the bubble and gas dissolved in the surrounding Quid can be maintained by
dift'usion only at low partial pressures, about 3 Torr. The observation of sonoluminescence (SL) from

bubbles in 200 Torr solutions of air in water requires the action of some as yet unknown mass How mech-

anism. On the other hand, gas solutions prepared at low partial pressures, in the di8'usion-controlled re-

gime, enable one to achieve SL in gases that do not emit light at higher partial pressures. These include

hydrogenic gases and gases with a ratio of specific heats close to unity, which hardly heat up upon adia-

batic compression. Experiments that probe the role of mass transfer in SI are presented along with the
implications of their comparison to a multiple-time-scale analysis of mass difFusion.

PACS number(s): 47.40.Nm, 78.60.Mq
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FIG. 1. Radius versus time for one cycle of the driving sound
field for an argon-doped nitrogen bubble trapped in water. As
the drive is increased the larger bubble abruptly shrinks, and
the expansion ratio (R /RO) increases. This bifurcation is due
to a nondifFusive mass How mechanism. Water is the only Auid

in which we have succeeded in observing this transition. These
measurements were carried at a partial pressure of gas of 150
Torr on a bubble that is 5% argon using the techniques of Ref.
[3]. The solid line is a best fit to Eq. (1). The light-scattering
technique is described in Ref. [27].

Acoustic radiation pressure can trap a small gas bubble
at the pressure antinode of a resonantly driven fiuid [1].
For su%ciently high drive amplitudes the bubble pulsa-
tions can prevent its dissolution into the surrounding
liquid [2,3]. At a threshold drive level, the oscillations of
an air bubble in water become so nonlinear that the bub-
ble collapses yield picosecond Gashes of broadband light
[4]. This light emission, sonoluminescence (SL)
represents a concentration of the diffuse energy of the
driving sound field by twelve orders of magnitude [5].

Light-scattering measurements have shown that this
threshold to light emission is characterized by a bifurca-
tion in the bubble dynamics (Fig. 1) [6]. The motion of

the non-light-emitting, yet stably "bouncing" bubble is
well described by the basic hydrodynamic equation. A
small increase in the drive amplitude causes the bubble's
ambient size (where the pressure of the gas inside it is the
ambient pressure of 1 atm) to shrink, the expansion ratio
of the maximum radius R to the ambient radius Ro to
grow sufticiently that the subsequent collapse becomes su-
personic, and light to be emitted. A consideration of mass
diffusion into and out of the oscillating bubble shows
that, at a partial pressure of 150 Torr of air dissolved in
the undersaturated water, the subthreshold bouncing
bubble is a steady-state solution to the diffusion equation,
while the SL bubble, where the acoustic radiative losses
during the collapse suppress the after ringing, is not.
Rather, for these experimental parameters, the stability
of the light-emitting bubble implies the existence of a
nondiffusive mass exchange mechanism. Conversely, cal-
culating the conditions under which the SL bubble dy-
namics would be in diffusive equilibrium with the sur-
rounding Quid has led to the observation of light emission
in a new region of parameter space, characterized by ex-
tremely low partial pressures of dissolved gas (Fig. 2). In
this diffusion-controlled regime of SL, we have succeeded
in observing light emission from some gases that do not
make the transition from bouncing to SL behavior at
higher partial pressures.

The observed sensitivity of SL to experimental parame-
ters such as water temperature, sound level, and gas con-
tent of the bubble [6,7], suggests that stable SL in fiuids
other than water, which remains the only one in which it
has been observed, could yield splendid surprises. Thus,
en route toward the ultimate understanding of SL, the
more immediate goal is to find the appropriate experi-
mental conditions for light emission in these systems.
The mass How bifurcation of Fig. 1 characterizes a large
region of SL parameter space, and may be a key to
finding SL in other Auids and gases. Without resolving
the question of the anomalous mass Bow, we present the
relevant phenomenology, theoretical and experimental,
which will de6ne the problem and so hopefully point to
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FIG. 2. Intensity of sonoluminescence, normalized to air of
150 mm and 20'C, for various pure gases dissolved at low par-
tial pressures. The inset shows the behavior of a nitrogen bub-
ble doped with 1% xenon. Some gases, notably hydrogen and
deuterium, are stable light emitters only at low partial pres-
sures. The graph shows ethane intensities for bubbles, that last
longer than 1 min. For ethane between 50 and 100 mm signals
of about 0.03 could be seen for 5 to 25 sec. The experimental
apparatus is discussed in Ref. [7].

its solution. The goal is an extension of the parameter
space of SL as well as an interpretation of the second
phase of single-bubble SL which occurs at partial pres-
sures of a few Torr.

Theoretically, the diffusion equation closes the hydro-
dynamic description of the bubble motion by specifying
the size of the bubble (i.e., the ambient radius) as a func-
tion of the experimental parameters. The Rayleigh-
Plesset (RP) equation describes the motion of a bubble
driven by a sound field [8—11],

RR+ —,'R = Ps(R) —Po+P, (t)
Pi
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equation; "a" is the radius of the bubble's van der Waals
hard core which arrests the violent collapse of the bubble
(a/Ro= 1/8. 54 for air). The nonlinear response of the
driven bubble described by the RP equation displays the
asymmetric motion that is the key to its energy-focusing
properties (Fig. 3). When the driving pressure goes nega-
tive the bubble slowly and isothermally expands to its
maximum radius. As the pressure turns to compression,
the bubble collapses to its minimum size, where the light
emission of an SL bubble occurs. In the shock wave
model of SL [6,12], the energy of the bubble's adiabatic
collapse is concentrated to even shorter length and time
scales by the convergence of a spherical shock wave
launched into the bubble interior as the bubble wall
reaches speeds of order Mach 1. Following the collapse,
the bubble oscillates as its natural frequency with dimin-
ishing amplitude until the next rarefaction phase of the
drive. For the SL bubble, the energy of these oscillations
is greatly diminished by the radiation of sound into the
liquid during the supersonic collapse; the SL bubble
remains virtually still at its ambient size for the second
half of the acoustic cycle.

The differences between the bouncing and SL bubble
motions for virtually the same drive parameters are attri-
butable to their different ambient radii. Including
diffusion determines the equilibrium size of the bubble by
requiring no net mass How across the bubble surface dur-
ing a cycle. When the bubble is large and the gas pres-
sure inside it is lower than the partial pressure to which

+— [P,(R)+P.(t)]R d
ci dt

4g)R
R

Here, the radius of the bubble R (t) depends on the pres-
sure of the gas inside it Pg(R), the ambient pressure Po,
the drive pressure P, (t), and the density, speed of sound,
surface tension, and viscosity of the Quid, pI, cI, oh, and

gl, respectively. The driven motion of the bubble is
damped both by viscosity and by radiation of sound into
the Quid. The RP equation is supplemented by an equa-
tion of state for the gas [10]. We choose this to be
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where y is the ratio of specific heats of the gas (and unity
for an isothermal process), and Ro is the ambient radius
of the bubble, which is an undetermined parameter of the
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FIG. 3. Radius as a function of time for a light-emitting deu-
terium bubble at a partial pressure of 3 Torr. The driving sound
field is shown along with (B) a detail of the after bounces. The
solid lines are fits to the Rayleigh-Plesset equation (1).
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the Auid is degassed, gas Aows into it. 'When the bubble is
small and the pressure inside it is high, gas Aows out of
the bubble into the surrounding Auid. For given drive
parameters, the bubble for whose motion these two Auxes
are equal is the steady-state solution.

Formally, the spherically symmetric diffusion equation
for the concentration of gas in the Auid is

The solution to (9) can be written

C(h, r) —C =Ho+ g [A„cos(k„h —Q„r)
n=1

+B„sin(k„h Q—„r)]e

(10)
ac RR ac
9t r2 3r

(3) where

Here D is the diffusion coefficient ( =2 X 10 cm /sec for
air in water), and the convective term is determined by
the velocity field of a pulsating bubble [10]. [Assuming
that diffusion is a small effect on the size of the bubble,
the RP equation (1), with the equation of state (2), deter-
mines R (t) in (3); if diffusion is a large effect, the mass-
conserving equation of state is no longer valid, and the
diffusion and RP equations must be solved together (Ap-
pendix A).] The concentration of gas dissolved in the
Auid at the bubble wall depends on the gas pressure inside
the bubble according to Henry's law [13]:

C (r =R ) =COPg (R )/Po, (4)

where Co is the saturated concentration at 1 atm. Far
from the bubble the concentration C (r = oo ) =C„,
which is determined by the extent to which the Auid is
degassed. The rate of mass Aux across the bubble wall is
determined by

dM
dt

=4mR D BC

4/3
C —D~ 1+ar aa

'+
R3( ) ah

=0.

In the limit of a diffusive penetration depth small com-
pared to the bubble radius, or

5D =+2D /co, ((R

the diffusion equation reduces to

BC BC
Bh' (9)

In the steady state the integral of the mass Aux over one
cycle of the motion must be zero. For the measured dy-
namics of a sub-SL bouncing bubble, the integral of the
right-hand side vanishes, indicting that diffusion de-
scribes the mass transport for these steady-state bubbles.
For the bubble dynamics of the SL regime of this same
system, Eq. (5) implies that there is a net inass fiow into
the bubble each cycle and thus the bubble should increase
in size with every cycle, or that there exists a supplemen-
tary nondiffusive mass Aow mechanism.

The expression for the mass Aow can be greatly
simplified via a transformation to a moving reference
frame that eliminates the convective term [3]. Defining

h =
—,'(r' —R') r(t)= f R'(t')dt' (6)

transforms the diffusion equation into the form

0„=,k„=QA„ /2D
a

C Rf ',' 'dr =(C(o,r)) .
r(T. ) o R '(r') (12)

Here we have used Boyle's law for the gas pressure P (R)
and the brackets denote a "time" average with respect to
the variable ~. Boyle's law is an accurate description of
the bubble dynamics during the slow expansion phase of
the bubble as well as the inception of the collapse. It is
not valid when the collapse reaches Mach 1, but the dilat-
ed time spent at these small radii is very short, and these
terms do not contribute to the integral above.

Given the definition of w the expression (12) is dominat-
ed by the time the bubble spends at its maximum radius
and obeys the simple scaling relation, obtained by calcu-
lating (12) for the SL bubble dynamics;

Ro
3

R

3

(13)

For the sub-SL bouncing bubble (13) yields values of C„
that are consistent with the measured amount of gas dis-
solved in the fluid, for a variety of gases and concentra-
tions (Fig. 4). Thus bubble dynamics can be used to deter-
mine the gas concentration in a fiuid [10,14]. From the
simple expression (13) it is clear that the threefold larger
expansion ratio characterizing the light-emitting bubble
would be in diffuse equilibrium with a much lower am-
bient concentration of dissolved gas. Assuming a typical
SL expansion ratio of 10, which is the criterion for the
bubble's runaway collapse to reach supersonic speeds as
it passes through the ambient radius [6], the diffusion-
limited regime of SL bubble dynamics should appear at
partial pressures of a few Torr. By the same reasoning,
this region of SL parameter space should not admit a
steady-state bouncing bubble since such a bubble would
dissolve into the degassed Auid. The low partial pressure
regime of stable SL has been observed for a variety of
gases, including certain polyatomic ones, characterized
by a y very close to unity, which do not give light at
higher partial pressures (Fig. 2). These observations sug-
gest that the SL light-emission mechanism is effective
even without adiabatic heating. The pure noble gases,

and T, =2m/co, is the acoustic period. In the steady
state there can be no constant Aow to infinity, so Ho =0,
or

T. COP (R)
C d'

r(T, ) o Po
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500 C(h, r)=C(h, r)+ g C„(h,r)cos(nQ, r+5„),
n

(14)
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where ~ is the long time scale that changes only a small
amount during a cycle. In this equation, C(h, r) is a
slowly varying function of time and space, and C„(h,r)
drops off exponentially for distances beyond a penetra-
tion depth. Averaging Eq. (7) over one acoustic period
gives
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FICx. 4. Static versus diffusive partial pressures. The abscissa
shows the pressure at which gas has been stirred into the water,
and the ordinate shows the pressure calculated from the appli-
cation of the diffusion equation to the measured low-amplitude,
steady-state bubble motion.

which emit the same light intensity throughout the range
of partial pressures, are more stable at the lower partial
pressures. The noble-gas-doped nitrogen bubbles that are
the brightest at the higher partial pressures [7] do not
show any peak in intensity at the diffusion-limited param-
eters. No SL has been seen from pure nitrogen bubbles at
the low pressures where they are completely unstable.

The data showing the abrupt transition between a
bouncing bubble and a light-emitting bubble was taken at
a partial pressure of air in water of 150 Torr (which is
about the amount of air that dissolves into degassed wa-
ter when it is poured from one Qask to another under
normal room conditions). Given the light-scattering
measurements of the bubble dynamics in this SL regime,
one can calculate the amount of mass that Qows into the
bubble from infinity each cycle. Since the bubble is in a
steady state this same amount of mass must somehow be
nondiffusively ejected again. The diffusion process de-
scribed by Eq. (7) is characterized by two separate time
scales. The bubble motion defines the short time scale,
during which the Inass flow is restricted to a diffusive
penetration depth around the bubble. On the longer time
scale, mass can Qow steadily from the bubble wall to
infinity. Thus we can define the concentration of gas in
the Quid as

(15)

where angular brackets indicate an average over one cy-
cle. In the steady state C(h, r) is independent of r, and in
the far field of the bubble where h »5DR and the
coefficients of the oscillatory terms C„(h,w) are zero, (15)
yields

Bo/R
(16)

Noting that the time average in the denominator of (16) is
dominated by the maximum radius, and integrating the
right-hand side with respect to h yields

C(h, r)= Bo(r)
3A

R (r)

(17)

C(h, r) = C(O, r) —C„
]/3 +C e

3A

R (r)

Since, for the case under consideration, C »C(O, r),
the mass inQux to the bubble per cycle, evaluated by us-
ing (18) in Eq. (5), is b,M=2m. DC R T, . The fraction
of mass in the bubble that must be ejected per cycle in or-
der to maintain the steady state is, therefore, given by

TD C Co R —10
M 2 R ~o Co po Ro

(19)

where po is the ambient density of the gas (for air, po is
1.02X10 g cm and Co/p0=0. 02). This is a very small
portion of the collapsed bubble, but the process that leads
to this ejection is the key to SL in a single bubble.

A candidate source of this mass ejection is the extreme-
ly high pressure P, characterizing the bubble at its
minimum radius R, . Although the applicability of the
sample hydrodynamic model to the bubble's collapse is
questionable, the solution of the RP equation (1) and the
equation of state (2) gives a maximum pressure I', of 10

where we note that R (r) can be changing on the long
time scale ~. The factor 80, which is a constant on the
short time scale, is fixed by matching (17) to the near-field
solution, i.e., for 5DR' «h «R, where Henry's law
determines the concentration since C(h, r) is a slowly
varying function of h. The resultant expression is [2],
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atm, lasting for a time At, =10 psec [10]. Extrapolating
Henry's law to this extreme implies that for an air bubble
in water the maximum concentration C, of air dissolved
in the water near the minimum radius is twice the density
of water. A more reasonable ansatz would set the max-
imum fraction of air molecules in the water to be one in
ten. Using this ansatz in (5) and choosing the diffusive
penetration depth appropriate to At, as the length scale
of the concentration gradient gives for the mass ejected at
the minimum

AM, =4rra C, QDAt, . (20)

Co &. 1 &~ Co &».
M jn 5D 2 p()Ro 2 po Ro

=10
which agrees with a more careful analysis based on in-
tegrating (10) over a half a cycle. Note that the oscillato-
ry contribution to mass transfer (21) is independent of

This quantity is approximately that required by (19) to
compensate for the diffusive mass inAux. However, this
outburst of mass at the bubble's minimum does not lead
to a net Aow to infinity. Instead, using the assumed value
for C, in evaluating Eq. (12) shows that the contribution
of the collapse to the determined of C is down by the
factor At, /T, from the mass influx during the bubble ex-
pansion. The parabolic nature of the diffusion equation is
such that during the short duration of the collapse the
ejected mass hardly penetrates the liquid. Rather than
feeling the boundary condition at infinity, the concentra-
tion instead follows Henry's law, and Aows back into the
bubble during the rest of the cycle. The bubble's spheri-
cal geometry amplifies this effect, since mass conserva-
tion, in the absence of mass exchange across the bubble
surface, implies that the surface layer of dissolved gas
near the bubble becomes thinner as the bubble grows,
steepening the concentration gradient and increasing the
mass inAow. The net effect of this process is contained in
Eq. (12). Thus the anomalous mass Row of (19) must be a
nondiffusive mechanism, and the ejected mass must be
displaced beyond the penetration depth of the bubble
motion. In the shock wave model of SL the ejection
could perhaps be associated with the imploding shock
launched by the collapsing bubble which collides with the
bubble wall after reAecting off the origin. Assuming that
the mass is ejected at the minimum radius of the bubble,
where the diffusion equation is most likely to be violated,
the mass fraction (19) corresponds to a shell of
compressed gas which is less than 1 A thick. This small
mass ejection underlies the transition to SL.

Within a single cycle of the motion the diffusion pro-
cess leads to cruxes that are generally larger than (19).
These Auxes can be approximated by assuming that mass
Aows out of the bubble during that half of the cycle when
its radius is virtually still at R0. Approximating the gra-
dient in concentration by using the diffusive penetration
depth, 6D, as a characteristic length scale, the change in
the mass of the bubble during half of a cycle due to
dlffuslo11 1s
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FIG. 5. Radius versus time measurements of a helium bubble
trapped in low viscosity silicon oil. This non-light-emitting
bubble is driven at 30.9 kHz. [The speed of sound in this silicon
oil is 954 m/s, the specific gravity is 0.91, and the shear viscosity
is 1 centistoke (=10 cm /s). ] The helium was mixed at a par-
tial pressure of 165 mm. At higher drive levels, a mass How bi-
furcation, like that of Fig. 1, cannot be seen, and the expansion
ratios characteristic of SL have not been achieved in this sys-
tem. The solid line is a best fit to Eq. (1).

C, as follows from evaluating the coefficients A„and
B„(for n@0) in (10) subject to the boundary condition
(4). This flow is sufftciently small that the basic formula-
tion of the bubble dynamics (1) is not affected. However,
the numbers given above apply only for air in water. For
air in other liquids the factor Co/po is larger by a factor
of 100 or more. In fact, perhaps the anomalously low
solubility of gases in water [15] facilitates the occurrence
of SL. In other Auids, such as silicon oil, the mass Aux
during the expansion part of the cycle can equal the origi-
nal mass in the bubble and significantly alter the bubble
dynamics. In particular, the collapse of the bubble may
be weakened by the extra cushion of gas absorbed during
the expansion. Perhaps this explains why at high partial
pressure a gas bubble in silicon oil can display bouncing
motion, but does not make the transition to a supersonic
collapse (Fig. 5). Substantial mass transfer across the
bubble surface may also shift the phase of the bubble
motion with respect to the acoustic drive, affecting the
trapping of the bubble at the pressure antinode (Appen-
dix B). This analysis suggests a possible route to finding
the parameter space of SL in other Auids. Combining
other Auids with low solubility gases such as helium and
hydrogen will lower the Co/po to the air-water level.

The apparent mystery of the occurrence of SL at the
higher partial pressures where diffusion is disobeyed is
added to by further investigation. The abrupt transition
to SL characteristic of air and noble-gas-doped nitrogen
contrasts with the same measurement of the phase space
of pure argon bubbles. There the transition to SL is con-
tinuous, and the discrepancy between diffusion and the
bubble dynamics increases smoothly with the drive level
and the light intensity [7]. A pure nitrogen bubble whose
SL intensity is only 1/30th that of air is rather unstable
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and jittery, while a bouncing nitrogen bubble is stable.
Despite the different behaviors of these gases, however,
the "anomalous" mass Bow process is a characteristic of
each, since the law of partial pressures requires the ther-
modynamic equilibrium of the gaseous phase and the dis-
solved gas to apply to each component separately. The
generalization of (13) to a mixture of gases is

is held fixed at C(h =O, r)=0, gives [18]

hM
C(h, r)= exp .

2 mDr 4Dr

—(h +2a )
p (26)

P
Po

C

Co;
Ro P

P
(22) Integrating the expression (26) over all h gives the net

mass in the Quid due to the barodiffusive ejection. Initial-
ly, this mass is simply AM&. For long times this integral
is

Using the expansion ratio typical of SL bubble dynamics
to compare the first and third term in (22) shows that
given a mixture of gases, which experimentally has been
shown to give light at high partial pressures, each gase-
ous component will likely violate diffusion. [There are
values of the parameters for which (22) is satisfied, but
such isolated, coincidental solutions do not sufFice to de-
scribe the richness of the SL parameter space. ] While
some rectification process that concentrates one of the
gases in the bubble may exist, implying that Henry's law
is violated, the underlying dynamics must involve each
gas dissolved in the liquid.

As mentioned already by Rayleigh [8], the equation
describing the violent collapse of the bubble also predicts
huge pressure gradients in the Auid right near the inter-
face. Associated with such gradients is an additional
term in the diffusion equation

ac a
a. ah

ac k~ ap
g 3(r) Bh P Bh

where k~ is the barodiffusion coefficient [16]. In the limit
of a dilute concentration of gas in the liquid [17],

kp

P 2
pI. co

(24)

where co is the ambient speed of sound in the gas
(3.4X10 cm/sec for air). Since the pressure gradients
are largest when the bubble is at its minimum size, we es-
timate the efFect of the pressure term by comparing the
two contributions to the mass Aux at the minimum,

k~ ap
p ah
ac
ah

P, QDht,
pleo

2 (25)

Here the length scale characterizing the pressure gradient
in the Quid is the minimum bubble radius, which is limited
by the van der Waals hard core. The ratio in (25) is of or-
der unity, and the earlier comments regarding the mass
ejected at the minimum by an extrapolation of Henry' s
law apply to barodiffusion as well. To evaluate the effect
of barodifFusion, we model it as a 5-function shell of mass
AM& outside the bubble, at r =2a. Solving the diffusion
equation (9), subject to this initial condition, and the
boundary condition that the concentration at the bubble

2a
lim M~(r) =AM~

~»a /D

After one acoustic cycle, only one part in 10 of the eject-
ed mass is still in the Quid. Because the hard-core radius
"a" is of the same order as 5z, the mass outAow due to
the pressure gradient at the collapse simply diffuses back
into the bubble during the rest of the acoustic cycle.

The preceding analysis of mass transport also neglects
effects of acoustic streaming, which by its nature extends
over distances large compared to 5~. Previous experi-
ments with one millimeter bubbles have suggested that
quadrupolar shape oscillations of a bubble enhance mass
transport across its surface [19]. Evidence for the spheri-
cal symmetry breaking associated with the streaming ve-
locities has not yet been observed in the SL bubble
motion. Analysis of the corrugation (Rayleigh-Taylor)
instabilities associated with the accelerating wall of the
bubble [20—22] suggests that the sphericity of the bubble
is maintained in the course of its nonlinear oscillations
(Appendix C). The dynamics typical of the SL bubble,
which spends one half of each acoustic cycle motionless
at its ambient radius, contrasts with the long time scales
required for the establishment of mass convection cells.
For example, a quadrupolar perturbation of the bubble
shape decays with a time constant of less than 1 @sec
while the bubble is motionless at its ambient radius for
more than 10 psec. Rather than the bubble dynamics
slaving to a preexisting How field, it appears that the bub-
ble begins each cycle without any memory of its previous
motion.

Any theoretical approach to understanding SL must
grapple with the broad range of time scales characteriz-
ing the phenomenon. Dynamically, diffusion is a very
slow process. Applying the diffusion equation to a quies-
cent bubble, where the convective term can be neglected,
gives the time for a bubble to dissolve into a degassed
liquid [23],

1 PRO
2 D(C )

(28)

According to (28) a 5-pm air bubble will dissolve in de-
gassed water in a fraction of a second. Alternatively,
given a typical drive frequency of 40 kHz, the time for a
driven bubble to grow to its ambient size from an
infinitesimal radius according to Eq. (19) is also on the or-
der of a second. If the sound amplitude driving a weakly
light-emitting bubble is suddenly increased, the bubble
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will grow to a new equilibrium size and simultaneously
increase the intensity of its emission on precisely this
time scale. The SL of doped-nitrogen bubbles can display
oscillations in the light intensity [7]; these are accom-
panied by oscillations in the radius of the light-emitting
bubble, with the same period of seconds (Fig. 6). While a
solution of the coupled equations of diffusion and bubble
motion would describe a smooth approach to the steady
state (Appendix A), these oscillations represent an
"overshoot" of the mass flow mechanism, absent from
such a description. Rather, one could wonder whether
the inertia associated with these oscillations is a charac-
teristic of the anomalous mass flow mechanism.

Experimentally, the dynamic mass range processes can
also be probed by measuring the turn-on time of driven
bubbles (Fig. 7). A bubble is seeded into the isolated
resonator by means of a toaster wire, which, when heat-
ed, boils the liquid and creates a vaporous cavity [7,14].
Before this can collapse, dissolved gas from the fluid
flows into it, and it is subsequently trapped by the sound
field. The time that elapses between the seeding of the
bubble and the subsequent light emission shows surpris-
ing variability as a function of the gas dissolved in the
fluid and of the drive amplitude. The nable gases, when
driven at a low amplitude, reach their maximum bright-
ness within fractions of a second of being seeded. The
same behavior characterizes higher drive levels, where
the eventual light emission is ten times brighter. These
bubbles can be seen to emit light as they rise from the ni-
chrome wire on the way to the pressure antinode of the
sound field. A noble-gas-doped nitrogen (or air) bubble
turns on slowly. At low drive levels, it emits little or no
light for some seconds before abruptly climbing to its
steady SL value. When driven harder, it first attains a
low level of light emission, comparable in intensity to the
more weakly driven one. After a second or so of very
slow and irregular increases in light intensity, the bubble
brightness then exponentially approaches its steady state,
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smoothly increasing in brightness by a factor of 10 on
time scales of about 5 sec. These behaviors characterize
the turn ons at both low and high partial pressures of dis-
solved gas. It is unclear whether the doped bubble's slow
approach to its enhanced brightness is the result of some
mass exchange process or a signature of the light-
emitting mechanism itself.

An effect of surface tension on the transition of SL is
shown in Fig. 8 which displays the radius-versus-time
cues of a 1% xenon in nitrogen bubble at 150 Torr for in-
creasing drive levels. Above the bouncing regime, there
occurs a mass flow bifurcation similar to that in Fig. 1.
At this point the bubble shrinks, and the expansion ratio
increases as shown in Fig. 9. But as the sound field is in-
creased further the transition to SL is hindered by the ac-
tion of surface tension on the small bubble. For these
bubbles 2oi/R (0) is comparable to P, (0)—Po, where
time is now measured from the moment of maximum

SL INTENSITY
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FIG. 6. SL intensity and bubble radius as a function of time
for a nitrogen bubble with 5% argon. At a drive level just
below the upper threshold of SL this bubble shows a variation
on a long time scale of the order of 4 sec. The acoustic frequen-
cy is 23 kHz, and the gas is dissolved at 150 Torr.

FIG. 7. Turn-on times for SL. Shown is the light intensity as
a function of time after seeding a bubble into an acoustically
driven resonator. In (a) a pure xenon bubble at high drive levels
lights up almost instantaneously. In fact, these bubbles are
glowing as they leave the toaster wire on their way to the veloci-
ty node of the sound field. (b) and (c) show the response of a
xenon-doped nitrogen bubble. An arrow indicates a Rash of
light from an LED that is activated by the current through the
nichrome wire. This is the moment of seeding the gas bubble.
Note the plethora of time scales that characterize the bubble
driven at a high amplitude (c)~ These experiments were carried
out in a cylindrical plexiglass resonator.
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FIG. 8. Radius versus time for a 1% xenon-doped nitrogen
bubble as a function of increasing drive level. The relative in-
tensity of SL is indicated by the vertical lines. The transition to
SL occurs only after the force of surface tension on the small
bubbles is overcome by the driving sound level. The partial
pressure is 150 Torr.
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FIG. 10. Detail of the radius versus time showing the transi-
tion from a small bubble to an SL bubble. This transition is
dominated by the effect of surface tension as can be seen from
the plot (dashed line) of the solution to Eq. (1), where o.

I has
been set equal to zero. (For the solid line fits, we have used
o.=50 dynes/cm. )

rarefaction of the drive. Since the rate of expansion
scales as

R= P, (0)—Po —2o.i/R (0)

PI
(29)

the action of surface tension on a small bubble can inhibit
the realization of a large R as shown in Fig. 10. When
the drive level exceeds the dynamic thresholds deter-
mined by surface tension and Po, the increase in bubble
radius can be dramatic since the elastic force decreases
further as the radius increases.

When surface tension is important the bubble motion
can display hysteresis. For example the transition to SL
for a 0.1% xenon in nitrogen bubble at 150 Torr is shown
in Fig. 11. Note that SL is separated from the non-light-
emitting regime by a region where there is no steady-state
bubble motion. Within the non-SL region, an upward
sweep in drive amplitude marches from bubble to bubble
regardless of the rate of increase of the acoustic pressure.

However, an infinite step to lower P„will cause the bub-
ble to disappear. Nor can such a bubble be reseeded at
the drive level at which it disappeared; to recover the
stable small bubble, one must start with a lower-
amplitude bouncing bubble and increase the drive level.

For pure noble gases the transition to SL can be
smooth [7] rather than displaying the abrupt bifurcation
of the air bubble. The transition of a 5% noble-gas-
doped nitrogen bubble hes between the limiting behaviors
of 1% and pure bubbles (Fig. 12). In cases like this, the
higher-amplitude bouncing bubble parameters already
show some deviation from diffusion theory.

The hydrodynamic theory of SL, even as supplemented
by diffusion, is necessarily incomplete, as it lacks any
light-emitting mechanism. Phenomenologically, SL is
characterized by complementary traits: its remarkable
sensitivity to small changes in experimental variables and
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FIG. 9. Detail of the radius versus time for a 1% xenon-
doped nitrogen bubble at the mass How bifurcation.

FIG. 11. Transition to SL for a 0.1% xenon bubble at 150
rnm. These radius versus time curves were taken as a function
of increasing drive level. As the drive is decreased, the small
bubbles cannot be reseeded. Those states-must be approached
from the lower-amplitude, bouncing-bubble regime.
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ideal gas constant, and I'0 is the ambient pressure. The
excluded volume of a gas molecule is 4~b /3.

The diffusion of gas from the bubble wall into the Quid
determines the change in the number of gas molecules in
the bubble. This change is given by (5), which in the
transformed variables is

4m& BC
Bh

(A2)

FIG. 12. The transition to SL for a 5% argon in nitrogen
solution at 150 mm. Figure 1 is a detail from this waterfall plot.

the robustness of its steady state [24]. These two proper-
ties guide the hydrodynamic theory. The robust nature
of the phenomenon in the systems in which it has been
seen, suggests that the underlying mechanism of the ener-

gy concentration is generalizable to other regions of the
vast phase space. The startling sensitivity of SL to con-
trollable variables urges one to uncover the properties of
the light emission, and the limits of the energy focusing,
in these other systems. As for diffusion, the discovery of
a new window in phase space is accompanied by more
questions for the theorist. Indeed the measurements indi-
cating the anomalous mass Aow and the dependence of
the light intensity of air bubbles on their one percent ar-
gon component, make the original SL discovery [25]
seem all the more "fortuitous" [26]. Surely even more
discoveries lie in wait as the parameter space of SL is ex-
panded and explored.

We are obliged to P. H. Roberts for valuable comments
and key help with the derivation of expression (18), and
to L. P. Pitaevskii for helpful discussions. We are in-
debted to R. Hiller for valuable advice and ideas. We
are grateful to A. Prosperetti for bringing Ref. [2] to our
attention. This research is funded by the USDOE OIIIice
of Basic Energy Science, Division of Advanced Energy
Projects (experiment) and Division of Engineering and
Geophysics (theory).

APPENDIX A: COUPLING THE RAYLEIGH-PLKSSET
AND THE DIFFUSION EQUATIONS

If diffusive mass How significantly affects th number of
gas molecules in the bubble, the mass-conserving equa-
tion of state (2) no longer applies. Instead, the self-
consistent solution of the RP equation (1) and the
diffusion equation (3) determines the radius of the bubble
R (t) and the number of gas molecules in the bubble,
Xs(t). In terms of these quantities (and neglecting heat
Aow into the bubble, which is studied in detail by Pros-
peretti [11]),the generalized equation of state is

Po(JATO/Po)~
P (RX )=

(R /N h )r

where To is the ambient temperature of the ffuid, % is the

where JM is the molecular weight of the gas. The concen-
tration gradient of the gas at the bubble can be deter-
mined by a solution to the diffusion equation (3). The
concentration at the surface is fixed by Henry's law (4),
where the pressure in the gas is a function of both the
bubble radius and the number of gas molecules in the
bubble according to (Al). The coupling of hydrodynam-
ics to diffusion entails simultaneous solution of the RP
equation (1) with the equation of state (Al), and the
diff'usion equation (3) and (A2). It remains to be seen
whether this coupling affects the phasing of the R (t)
curves relative to the sound field.

APPENDIX B: TRAPPING AN SL BUBBLE

In SL the effectiveness of the sound field is dramatic.
The drive oscillations of the bubble are the initial stage of
the energy focusing which eventually leads to the hght
emission. Coupled with diffusion, the bubble pulsations
prevent it from dissolving in the degassed Quid. More
fundamentally, the sound Geld stabilizes the bubble
against the force of buoyancy, and traps it at precisely
the location where its effect on the bubble is the greatest.
The time-averaged force on a bubble in a standing-wave
sound field is [1]

~.= —(VVP. ), (81)

14m mR

4 3
(82)

where I", and k, are the amplitude and the wave number
of the z component of the sound field, and *'z" is the dis-
tance of the bubble from the pressure antinode. This net
force is directed toward the pressure antinode of the
sound field. Note that because of the great asymmetry in
the SL bubble motion, the radiation force is linear in the
driving pressure.

As in the force (82), the effect of buoyancy is greatest
when the volume of the bubble is a maximum. To find
the equilibrium location of the bubble, one balances (82)
with the buoyant force

where V is the bubble volume. For small oscillations the
acoustic radiation (or Bjerknes) forces are a second-order
effect in the drive amplitude. For an SL bubble, the
time-averaged force is dominated by the expansion of the
bubble, when the volume is the largest and the drive pres-
sure passes through an ascending node (Fig 3). Ap.proxi-
mating the time-averaged radius as one half of its max-
imum value and the duration of the expansion as one
fourth of the acoustic period gives for the radiation force

3
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1 4m.
+b =Pig & I') =— R '»g

Here, gravity acts in the z direction. For a typical acous-
tic drive frequency of 25 kHz and a dynamic amplitude
of one atmosphere, the distance of the bubble from the
antinode,

(84)

During the collapse from the maximum, the bubble obeys

2 Po
R

3 pi

which is Rayleigh s solution for a collapsing vacuous cav-
ity [8]. For this motion equation (C2) can be rewritten in
the form [21,22]

is less than a millimeter. In addition one can estimate the
movement of the bubble about this equilibrium position
as during its radial oscillations. Here the radiation force
acts on the effective mass of the bubble,

y(1 —y)~„"(y)+ ———y a„'(y)
1 5

(n —1)
a„(y)=0, (C4)

R 3piz'(t) =E,(t)+Fb(t)

R P,'sin(cogt )k, z(t) —pig R
3 3

(85)

where y=R /R . The asymptotic solution of this hy-
pergeometric equation, as y ~ oo, is a„-(R /R )'~ .
Since the Rayleigh expression (C3) is true to radii of the
order R o, before the gas pressure affects the collapse, the
enhancement of the surface corrugation is only a factor
of about 10'~ = 1.8. Alternatively, (C2) can be written in
a Hamiltonian form

Because the coefficient of the time-dependent pressure
term is small compared to the inertia of the displaced
fiuid, the solution to (85) can be written as

2
pn

2R 3pi

(n —1) 2" 2

2
R Ra„pi, (C5)

P,'
z(r) = (z) + (z), sin(co. r),

2~pre&

and the excursions of the bubble from its equilibrium po-
sition are seen to be negligible.

APPENDIX C: THE RAYLEIGH-TAYLOR INSTABILITY

A plane interface between two media of different derisi-
ties is unstable to corrugation if the lighter one is ac-
celerated towards the heavier one (or, in a gravitational
field, if the heavy one is on top). For a gas bubble in a
liquid, the exponential growth of the angular surface per-
turbations, which characterizes the planar Rayleigh-
Taylor instability [20], is accompanied by effects related
to the spherical geometry [21,22]. Following these refer-
ences, we write the radius of the bubble as

R (r) =R (r)+ g a„(r)Y„(6,N),
n =2

(C 1)

where the Y„are spherical harmonics. Requiring that
pressure and velocity be continuous at the surface of the
bubble yields, to linear order in a ( r ),

a„(t) =a 0 cos(co r +50)e (C6)

where

(n —1)(n +1)(n +2)o
&

Q)
CT 3Roti

and

(n +2)(2n + l)g&

Roe~

~ ~

where p„ is the momentum canonical to a„. Since R is
negative during the collapse, the motion in the "potential
well" of the Hamiltonian is stable, and the magnification
of corrugations is due to the scaling of the effective mass
and the potential through R in the spherical geometry.
Following the collapse the bubble is virtually motionless
at Ro for one half of the acoustic cycle. Applying Eq.
(C2) yields a linear growth of a (t) during that time. In-
cluding corrections due to surface tension o.

&
and viscosi-

ty g& shows that the more accurate solution during that
part of the motion where the bubble radius is constant is
[22]

3R .a„+ R
(n —1)—a =0.

R
(C2)

In the equation above surface tension and viscosity,
which tend always to dampen the corrugations of the
bubble surface have been neglected. To investigate the
susceptibility of the bubble to corrugations, it is helpful
to consider separately three regimes of the SL bubble
motion. During the expansion of the bubble to R, the
growth is quite accurately linear. The corresponding
solution for a (t) decreases as 1/R from its initial value.

In particular the time constant for a quadrupolar pertur-
bation to decay for a bubble motionless at Ro=4 pm is
less than 1 psec. The instabilities associated with the col-
lapse of the bubble to its minimum cannot be analyzed
within this simplified framework, since even the hydro-
dynamics is violated at the minimum. We conclude that
during any given cycle, i.e., from Gash to Aash, spherical
modulations do not build up. The upper threshold of SL
is due to either some other hydrodynamic instability or to
an event occurring at the moment of collapse, which is
not describable by hydrodynamics.
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