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Heat flux vector in highly inhomogeneous nonequilibrium fluids
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We develop a simple, efficient, and general statistical mechanical technique, based upon the previously
developed method of planes (MOP) technique of calculating the pressure tensor, in order to calculate the
heat flux vector of an atomic fluid. The method is applied to the case of Poiseuille flow through a nar-
row channel and is compared to the corresponding Irving-Kirkwood heat flux vector, using the first ap-
proximation (IK1). Our exact MOP method is shown to be more efficient than the approximate IK1 ap-
proach. Additionally, for the special case of planar Poiseuille flow, we derive an alternative mesoscopic
expression by integrating the energy continuity equation. This mesoscopic calculation is shown to be ex-
tremely efficient and is in excellent numerical agreement with the MOP.

PACS number(s): 03.40.Gc, 02.50.—r1, 51.10.+y, 05.70.Ln

I. INTRODUCTION

The heat flux vector of a statistical ensemble of fluid
atoms is usually calculated by the application of the
Irving-Kirkwood statistical mechanical theory of trans-
J

port processes [1,2]. Once the heat flux vector is known
the thermal conductivity of the fluid may be calculated
by either the Green-Kubo or the NEMD technique [2,3].

The Irving-Kirkwood technique leads to the following
expression for the ensemble averaged value of the heat
flux vector:

Jq(r,t)=lV<2 [vi(t)—u(r,t)]U;(t)— % 2rij(t)[v,-(t)—u(r,t)]-F,-j(t)O,-j(z)lri(t)=r> , (1)
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where V is the volume of the system, v; is the laboratory
velocity of particle i, u is the streaming velocity of the
fluid, U; is the contribution of particle i to the internal
energy of the fluid, r;; is defined here as r; —r;, and F;; is
the intermolecular force on atom i due to atom j. O;; is

defined as
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The k-space version of Eq. (1) is somewhat more com-
plicated than the corresponding k-space expression for
the pressure tensor because the streaming velocity is a
function of r. It is probably for this reason that it has ap-
parently never appeared in the literature. Therefore, we
include a discussion of the Fourier transform of the heat
flux vector in a fluid with an arbitrary r-dependent
streaming velocity, preceded by a more direct derivation
of the Irving-Kirkwood heat flux vector, in the Appen-
dix.

If the fluid is uniform in space, O;; =1 and Eq. (1) is an
accurate and computationally simple expression to use.
However, previous work [4] has shown that for systems
in which the fluid density is not homogeneous in space,
such as the case of flow through narrow channels or
pores, the higher-order O;; terms cannot be ignored and
the resulting expression for the heat flux vector becomes
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significantly more complex to compute. In what follows,
the O;; =1 approximation to Eq. (1) will be called the IK 1
expression for the Irving-Kirkwood heat flux vector.

This paper was thus motivated by the desire to develop
a simple technique that could accurately calculate the
heat flux vector for a system in which the density is not
spatially homogeneous. We apply our general technique
to the specific case of planar Poiseuille flow through a
narrow channel.

II. THEORY

A. Method of planes expression for the heat flux vector

The technique we develop here is based upon the
method of planes (MOP) derivation we used previously to
calculate the pressure tensor of an atomic liquid [4] and
involves calculating the heat flux through any number of
planes located anywhere in the system whose normals are
parallel to, say, the y axis. It is assumed that the proper-
ties of the system are homogeneous in the two directions
parallel to the planes. This would be the case, for exam-
ple, with planar Poiseuille flow, in which a pressure head
in the x direction drives the fluid into nonequilibrium
steady state and in which heat will only flow in the y
direction.

We begin by writing down the continuity equation for
the local energy density of the fluid [2,5]
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d
Y [p(r,t)e(r,t)]

=—=V-[J,(r,t)+p(r,t)e(r,t)ulr,t)+P(r,t)ulr,z)] .
(3)

In k space, this becomes

—(,?—tpe(k,t)=ik-[Jq(k,t)+f7{peu}+7{P-u}], @)

where J,(k,) is the heat flux vector in k space, P is the
pressure tensor, u is the streaming velocity, and F{ }
denotes a Fourier transform. Note that pe(k,?) is the
Fourier transform of the local energy density, defined as

pe(r,t)=3 e;6(r—r;) , (5)

where the total energy of atom i is given by
2
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and p; is the laboratory momentum of particle i.

From the microscopic expression for the energy densi-
ty and the sifting property of the 6§ function, we find that
the convection term in the Fourier transformed energy
density continuity equation can be written as

peu(k,t)=2eiu(ri,t)eik'ri . (7)

The time derivative of the Fourier transform of the local
energy density is

3] . ik,
gt—pe(k,t)=zk- 2 v,-eie' fi
1

+% 33 v Fe = ) (®
iJ

If we now substitute (7) and (8) into the continuity equa-
tion, isolate the heat flux vector, and take the zero wave
vector limit for the x and the z components of k
(equivalent to averaging over the xz plane), we obtain

. . iky,'
Aik,J,,(k,,t)=ik, 2 (v, —uy,lee

iky,  iky,

1 IJ’_ Yy

72 2Vi'Fjle —e )
i

— Ak, (F{P-u}), , ©

where A4 is the area of the xz plane and we note that
u=u(y). Dividing by ik, and inverse Fourier transform-
ing, we then find

AT ()= (v —u, )e;8(y —y;)

—13 3 vi'Fylsgnly —y;)—sgn(y —y;)]
i
—A(Pw), . (10)

The microscopic expression for the ya element of the
pressure tensor (where a is any of x,y,z) is written as the
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sum of two terms, the kinetic term Pffy (y,t) and the po-
tential term ng( y,t)[4]:

APya(y,t)=A[P}f,(y,t)+Py[é(y,t)]

=z m(vy,; —u, vy — )8y —y;)

3 2 2 F;;[sgn(y —y;)—sgn(y —y;)] .
- (11)

After substituting this into (10) we obtain finally
Tp W )=J5 () +I (y,1) (12)

where the kinetic part of the heat flux vector is given as
1
Jqﬁ(y,t)=72.(vyi—uy)U,-S(y—y,-) (13)
]

and the potential part is given as

TYp,0== 7 3 3 [v,—u(y)]-Fy[sgnly —y,)
i

—sgn(y —y;)] .
(14)

In deriving (12) we have used the definition of the inter-
nal energy of a particle

U=im[v,(—up)P+13¢;, (15)
J

which, unlike the expression for the total energy, ex-
cludes the streaming component of the kinetic energy and
we have also used the following relationships:

u’(r,t) m;(v;—w)d(r—r;)

=u’(r,t)[pu(r,t)—pu(r,t)]=0. (16)

The instantaneous value of the y component of the heat
flux vector is thus the sum of kinetic and potential contri-
butions. It is instructive to view Jqlf,(y,t) and Jq[yj(y,t) as
representing, respectively, the Kkinetic and the
configurational contributions to the conductive part of
the instantaneous internal energy flux. Equation (13)
states that at any time ¢, a particle with internal energy
U; will contribute to the instantaneous energy flux
through the plane if it intersects the plane at y;,=y and
time t; =t, whereas Eq. (14) states that at any time ¢z, even
though no particle may actually intersect a plane at y, the
energy distribution on both sides of a plane may change,
such that a “flow” of energy could be considered to have
taken place across that plane.

We also make the following observation, namely, that
the streaming velocity u(y) used in Egs. (13) and (14) is
interpreted as the streaming velocity of the fluid evalu-
ated at the plane y. It is not to be confused with the par-
ticle streaming velocity wu(y;). Thus all velocities
Xi=V;—u, (defined here as “plane peculiar velocities™)
are not the wusual peculiar velocities, defined by
c;=v;—u(y;), but rather the velocity of atom i relative to
the streaming velocity at the plane. It so happens that
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for the kinetic contribution to the heat flux vector we find
that u(y)=mu(y;), but this is certainly not the case for the
potential component of J ,(y). This is a subtle but poten-
tially important point to note. In regions where the cur-
vature in the streaming velocity profile is significant over
the range of the intermolecular potential function we
might expect the plane peculiar velocities to be
significantly different to the peculiar velocities and using
the latter values in the calculation of J,,(y), instead of
plane peculiar velocities x;, may well glve us the wrong
results. Where the curvature in u is not significant it
would be expected that, averaged over time, there should
be little difference in the calculation of J ,(y) if either
peculiar or plane peculiar velocities were used

Equation (13) can be rewritten into a form that is more
accessible for computer simulation. The & function in
(13) may be rewritten in terms of the sgn function such
that

d_
(y t)——z(vyt zd Sgl’l(y yl) . (17

Making use of the chain rule in differentiating the sgn
function gives us

JE(y,0)= EU,isgn(y —y:) . (18)

24

If particle i crosses the plane at a set of times {z; . ;
i=1,...,N;m=1,2,...}] and if we use the sign of the y
component of the pecuhar velocity to tell us whether the
crossing is from right to left or vice versa, (18) may be
written as

KW, t)———zzUB(t

tm i

lm)Sgn[cyi(ti,m)] > (19)

and the time averaged kinetic component of the heat flux
vector can be thus expressed as

> X Usgn[c,(s,,)].  (20)

JE(y)=lim ——
T 0<ti’m <7 i

T—> 00

B. Mesoscopic derivation of the heat flux vector

There is an alternative route to calculating the heat
flux vector, based on the hydrodynamical continuity
equation for the specific internal energy

dU(r 1) _
dt

For a system such as ours, in which a steady-state fluid
under the influence of an external field in the x direction
is sandwiched between planar walls separated in the y
direction (see Fig. 1), (21) reduces to

=V (r,0)—P(r,1)":Vu(r,?) . (21)

—E(g}f—y)—ny(y y(y), (22)
where y(y) is the strain rate given by
du,(y)
rYy)= —ay—*
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FIG. 1. Simulation geometry for planar Poiseuille flow. The
z axis is normal to the page.

and —P,,(y) is the stress. Thus the heat flux is simply
given by

Tp)== [ dy'Py 'y . (23)

P,,(y) may be calculated by either of two ways, MOP or
by integrating the momentum conservation equation (the
IMC method) [4]. We call this derivation mesoscopic be-
cause it does not explicitly refer to molecular quantities.
We refer to (23) as the IEC method for determining the
heat flux.

III. SIMULATION DETAILS

A. Equations of motion

We have previously described in detail the NEMD
techniques used to simulate planar Poiseuille flow [4] and
here only summarize the important points. The
geometry of the system is shown in Fig. 1, which de-
scribes a fluid under planar Poiseuille flow through a nar-
row channel. We note here that the simulation geometry
is such that the driving pressure head is in the x direction
and heat will flow in the y direction. Our fluid consists of
738 atoms bound by 54 wall atoms, which are three
atomic layers thick (18 atoms per layer). The interatomic
potential function ¢(r) was the Weeks-Chandler-
Andersen (WCA) potential [6] ¢(r)=4(r 12—r~6)+1
for » <21/ and ¢(r)=0 for r >2'/® (we have defined the
WCA potential constants o and € to be unity for simplici-
ty; we also note that the atomic mass has been set to uni-
ty). The wall atoms are fixed in place in an fcc lattice
structure by a combination of restoring forces and a con-
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straint mechanism, which ensures that the center of mass
of the walls remains constant while allowing individual
wall atoms the freedom to vibrate about their lattice sites.
The simulation cell is periodic in three dimensions to en-
sure that the overall symmetry and density of the system
are preserved. There is only one three atom thick wall
per simulation cell. The second wall is simply the period-
ic image of the first wall. This periodicity also ensures
that the total density of the system remains constant.
The equations of motion for the wall particles are

Pi

i'i=— >
m

N (24)

I+ 3 F;;—ap;
j=1

p;=—K(r;— ieL;,

_J}\'Lj:

where )‘L,- is the layer multiplier and a the thermostat
multiplier defined by [4]

: w N
4:L 2 —K(r;—r,;)+ 3 Fy
Ly, €L, k=1
3 Ny,
where > > 1=3N,,
L;=1i€L;
3N, N 3N, (25)
a=73 [ —K(r;—r;)+ 3 Fij—'j)‘L,. o ] Sl
i€EL ji=1 i€EL

Here N, is the number of atoms per wall layer and K is
the harmonic spring constant. Since there is no stream-
ing motion of the wall particles in any direction, there is
no difficulty in distinguishing between laboratory and
peculiar momenta for the wall particles, as they are iden-
tical.

The fluid particles obey Newton’s equations of motion

Pi
m

r.=

1

2 F;; +iF, (26)
ji=1

where F;; is the total WCA force on atom i due to both
fluid-fluid and fluid-wall interatomic interactions and iF,
is the external driving force [4]. It is understood that p;
is the laboratory momentum of particle 7 (i.e., the sum of
the peculiar and streaming components).

B. General simulation considerations

The simulations were conducted using a fifth-order
Gear predictor-corrector scheme with an integration
timestep of 7=0.001. The fluid atoms were initially ar-
ranged in an fcc structure and the system was allowed to
reach steady-state before data were taken. Simulations
were carried out at a fluid density of 7 =N /V =0.844.

We denote the unit cell dimensions as, L,,L,,L,,
which are given as 4.2238,52.3810,4.2238, respectively.
It is important to note that L, includes the fluid and wall
particles (see Fig. 1). For simplicity we make the y =0
plane midway between the walls. We note that it is not
clear how to determine the average density of a fluid be-
cause there is no unambiguous definition of the total
volume that is accessible to the fluid. This issue has been
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addressed previously [4] and we comment here that an
effective pore width was found to be [, =49.0.

The simulations were carried out with ¥, =0.01 and an
optimal wall force constant of K =57.15 [7,8] and were
run at a constant wall temperature of 0.722 and wall den-
sity of 0.844. Once steady state was achieved, five runs of
90 000 time steps each were undertaken and averages tak-
en of the quantities of interest. In Ref. [4] it was shown
that a second-order symmetric polynomial provided a
good representation of the streaming velocity of the fluid
in the zero flow rate limit and we have once again used
such a fit.

The heat flux calculated by MOP, described in Sec.
II A, may be compared with those calculated from the
Irving-Kirkwood real space expression (1) with O;=1,
(i.e., IK1). We note that IK1 involves summations over a
volume V. To find the heat flux as a function of y we thus
need to divide the fluid region into bins, each of which
has a volume V,;,=L,L,Ay, where L, and L, are the
lengths of the simulation box in the x and the z direc-
tions, respectively, and Ay is the width in the y direction
of each bin. The IK1 heat flux, as a function of y, mea-
sured in each bin will then be

2 [vi—u(»)]U;

i€ bin

Jbin(y ,t ) —
i Vbin

-7 2l
ij
[ € bin y

\7 -—u(y)]'Fij , (27)

where now the sum over i includes only atoms that are
contained within the bin and the sum over j includes all
possible atoms within or outside the bin.

We can also calculate other quantities as a function of
y by summing them over bins, such as the velocity, the
temperature, and the density. In all our simulations we
used 251 bins, such that Ay =0.2.

The internal energy U; of atom i at the time of inter-
section with any plane was calculated by an interpolation
scheme in which a polynomial is fit to the energy values
of the previous four time steps. Since the energy varied
slowly over such short times, only a least-squares cubic
polynomial interpolating function was required. The
time of intersection with any particular plane was calcu-
lated by the standard Newton-Raphson interpolation.
The code used to calculate MOP heat flux vector was
checked by calculating J, in a system with a homogene-
ous heat flux generated by the Evans heat flow algorithm
and gave excellent agreement with the zero wave vector
Irving-Kirkwood heat flux vector.

P,,(y), used for calculating the mesoscopic heat flux
vector, was calculated by the IMC method, as this has
been shown to have better statistics than MOP [4].

IV. RESULTS

Figure 2 displays a plot of J,,(y) across the entire pore
width, calculated by both MOP and IK1. Similar to the
case of the pressure tensor calculation [4], MOP is shown
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FIG. 2. J,(y) calculated by MOP and IK1. Also shown is
the value of the heat flux at the walls.

to be a much more accurate method. Indeed MOP impli-
citly includes within it the full expansion of all the O
terms, so it is not surprising that this should be the case.
Also shown in Fig. 2 is J,,(y ) measured at the walls. It
has been shown [2] that Gaussian thermostats remove
heat from a system at the rate
N p?
S pi
ot)y=alt) Y e (28)

i=1 i

where N is the number of particles in the system. Thus
the heat flux at the walls can be determined by calculat-
ing the heat extracted from the walls by the thermostat,
ie.,

<J‘ly(ywall)>=—}{(Kwa> H 29)

where K, is the kinetic energy of the wall atoms and the
angular brackets indicate a time average. We note here
that the y position of the fluid-wall interface y, is, like
the effective length /, of the pore (described in Sec. III B),
an ambiguous quantity to define. For consistency, we
have thus defined it to be yy,;=*1/,/2. Once again we
see good agreement between MOP and J,,(y) measured
at the walls.

Figure 3 compares J,,(y) across the pore calculated by
the MOP and IEC techniques. Both methods are seen to
be in excellent agreement with each other. The IEC
method in fact displays superior statistics, seen more
clearly in Fig. 4, which is a plot of the standard devia-
tions in J ,(y) for both methods. We note here that the
IEC calculation requires a knowledge of the stress and
that we have used the IMC method to calculate this
quantity. In Ref. [4] it was shown that the IMC tech-
nique for calculating P,,(y) is more accurate than the
corresponding MOP method. It was also shown that the
IMC calculation involved a numerical integration of the
density profile. It is because this density profile is so
stable, and thus has very good statistics, that the IEC
method of calculating J,,(y ) is superior to MOP.

FIG. 3. Comparison of J,,(y) calculated by MOP and IEC.

Finally, we make a comment on the use of either pecu-
liar or plane peculiar velocities in the calculation of
Jy(y) via MOP, as shown in Fig. 5. The quadratic
streaming velocity of the fluid in our system does not
have sufficient curvature to generate any difference in
J»(¥) calculated by use of either peculiar or plane pecu-
liar velocities, even though the use of the latter is formal-
ly correct. However, this agreement should be regarded
as a fortuitous consequence of the relatively gentle curva-
ture in our velocity profile and we emphasize again that
higher curvature profiles (e.g., a profile generated from a
high spatial frequency sinusoidal external field) should be
expected to give incorrect values of the heat flux if the
plane peculiar velocities are not used.

V. CONCLUSIONS

We have extended the method of planes derivation that
we first employed to calculate the exact pressure tensor in
inhomogeneous systems, to the formulation of the heat
flux vector. The MOP expression was then applied to the
special case of planar Poiseuille flow and was found to be
much more reliable than the corresponding IK 1 approxi-
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FIG. 4. Standard deviations in J ,(y) for MOP and IEC.
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FIG. 5. Comparison of the MOP calculations of J,,(y) using
the correct plane peculiar velocities and the formally incorrect
peculiar velocities.

mation. It avoids the cumbersome Taylor series expan-
sion of 8 function differences that would be required for
the full Irving-Kirkwood derivation and, in fact, implicit-
ly includes an exact infinite-order summation of the
Irving-Kirkwood O;; operator expansion.

In addition, we have, for the special case of planar
Poiseuille flow, derived another equation for J. e (y), based
upon a mesoscopic integration of the energy continuity
equation (IEC). Both the MOP and the IEC methods are
shown to have excellent numerical agreement with each
other, with the IEC technique having superior statistics,
though we note that the use of the latter is limited in that
it is valid here only for the particular case of planar
Poiseuille flow. The MOP technique is, however, more
general and for this reason is potentially the more useful
of the two methods.

We introduce the curious concept of a “plane peculiar
velocity” ¥, which must be used instead of the usual
peculiar velocity in the calculation of J,,(y) by MOP.
We note that for streaming velocity profiles that are gen-
tle in curvature there is no noticeable difference if the
heat flux is calculated by using either peculiar or plane
peculiar velocities, even though the latter is the formally
correct velocity to use. However, if the curvature of the
streaming velocity profile is significant, we would expect
errors to be introduced into the calculation of the heat
flux if peculiar velocities are used.

Finally, we point out that the techniques developed
here to calculate J ,(y) now give us a means by which to
calculate the spatially dependent thermal conductivity of
a fluid in a nonhomogenous system, in the same way that
the MOP and IMC methods of calculating the P,, com-
ponent of the pressure tensor enabled us to calculate the
spatial dependency of the viscosity of such a fluid. These
calculations are currently being performed.
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APPENDIX

The standard Irving-Kirkwood derivation of the
ensemble-averaged heat flux vector is well known, but it
is rather complicated due to the necessity of introducing
a series expansion for the difference between two 8 func-
tions. We show here that it is simpler to carry out the
first part of the derivation in k space and then inverse
transform to obtain the standard Irving-Kirkwood result.
The Irving-Kirkwood result is simply the ensemble aver-
age of our expression.

We begin our derivation of the expression for the in-
stantaneous heat flux vector by Fourier transforming the
energy continuity equation [Eq. (4)] and solving for the
term involving J,. The right-hand side then consists of
three terms: the first is the partial derivative with respect
to time of the internal energy density, which is expressed
in terms of microscopic quantities as
g?pe(k,t )=ik-Y v,-eied”" +I¥ S v,--F,-j(e’k-r" —e™7)

i i

i

=ik: ZV,-eieik.r"

—ik-1 3 3, Fyviglk e, (A1)

i

where
ikr;;

(e "—1)
k,t)y=————; A2
glk,t) ity (A2)

the second term has already been given in Eq. (7); and the
third term, which is the Fourier transform of the scalar
product of the pressure tensor with the streaming veloci-
ty, will be left in its original form for the moment. Our
equation for J, is then

1, (k0)=3 (v,—u;)ee "

i

—%22rijFij'vig(k>t)eik.ri-g{P‘u}. (A3)
i

The next step is more easily performed in r space, so we
inverse transform and use the r-space microscopic ex-
pression for P-u

P(r,t)-u(r,t)=3 m;(v;—u)(v;—u)-udlr—r;)

—+ 3 3 r;F;u0,;8(r—r;) (A4)
and the relationship o
g(k,t)e=F(0,8(r—r1,)} (A5)
to obtain
J,(r,0)=3 (v,—u)U,8(r—r1;)
(A6)

—+ > X 1;F;(v;—u)0;8(r—r;) .
i
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This is the instantaneous form of the Irving-Kirkwood
expression for the heat flux vector. The k-space version
of this equation is now obtained directly by Fourier trans-
formation. Because u is a function of r, the Fourier
transform of this equation must be performed with the
J

27{uo,.j5(r—r,.)}=f_°° dre™®™0,8(r—r,)

2 (=1 3
,,2 +1)'f dr i r
- __a__ ! ik-r
§ +1)v LAy 2

The final result is then

iker; & 1
TN =2 (i muTie "%‘??’”F"f’éoml‘

where we have also used the relationship

n

a [ lkl‘]

i 3 or

1

ik, _ had
glk,1)e 2 G

n=0 r=r;

i
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Explicit differentiation and resummation of terms in Eq. (A9) results in the expression

1,k 0)=3 (v,—u,)Use""

i

ik-r;
—3 2 2r;Fe
i

51
aid of the identity
J7 daxfix ——S(x—a)—(—l)"f (A7)
giving
8(r—r )=§ — [ _drd(r—r) |r 2 n(e“‘"u)
! (n +1)' “ar
(A8)
D ey, —w] (A9)
i or g r=r; ’
(A10)
T {g(k,t)[v,-—u(r,t)]]iF,i . (A11)

It is easily verified that this equation agrees with Eq. (A9), in both the k=0 and u=0 limits. Equation (A11) is useful

when the velocity profile can be expressed as a polynomial

of known order.
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