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Density profiles in a diphasic lattice-gas model
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We predict the density profile across a flat interface created in lattice-gas models by the introduc-
tion of an attractive interaction. The resulting theoretical equilibrium densities and surface tension
are in good agreement with direct simulations of the model.
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I. INTRODUCTION

In 1S86, Frisch, Hasslacher, and Pomeau proposed a
lattice-gas model for studying hydrodynamics [1]. It is
a fictitious gas made of pointlike particles moving on a
lattice, which obeys Navier-Stokes equations in the in-
compressible limit. As semidetailed balance is verified
by the microscopic evolution rules, it has been proved in
the frame of the Boltzmann assumption (correlations are
neglected) that there exists a unique uniform equilibrium
distribution of Fermi-Dirac form [2,3].

In this paper, we address such a lattice-gas model, to
which has been added an attractive interaction between
particles [4]. This force mimics the cohesion forces of a
liquid and creates a phase separation into two phases of
diferent densities. The interaction is purely dynamically
defined and is irreversible. Then the system evolves ir-
reversibly in the phase space until it reaches a subspace
where it is dynamically trapped. For our choice of the
interaction, the attractor of this dynamical system cor-
responds to a separated state for a certain range of the
parameters. The model will be referred to as the liquid-
gas model.

An alternative approach could have been to use a ther-
mal lattice gas [5] and to introduce an attractive inter-
action potential. Then the equilibrium state would have
been governed by the minimization of a free energy. Al-
though the latter approach would have more traditional
thermodynamical properties, it, yields more complicated
models. The model studied here, as well as similar mod-
els [6], may be considered as minimal models to simulate
phase transitions in hydrodynamical systems.

Now the challenge is to build a theory for these mod-
els without using semidetailed balance, which is broken
by the irreversibility of the attractive interaction. This
study is akin to recently increasing eÃorts devoted to the-
ories for systems which violate the basic assumptions of
standard equilibrium thermodynamics [7—9].

In previous studies of the liquid-gas model [10], hydro-
dynamical equations governing the fluid behavior in each
homogeneous phase have been calculated. We have also

obtained an equation of state of the van der Waals type.
However until now there was no way to predict equilib-
rium densities. These cannot be found from Maxwell's
construction as the usual thermodyanmics fail here. In-
deed, Shan and Chen [ll] have shown that Maxwell's con-
struction is not verified except for a very specific class of
interaction forces. On the other hand, we have observed
on numerical simulations that some important features of
real systems are preserved in the liquid-gas model. Equi-
librium densities seem unique. For a curved interface,
Gibbs-Thomson relations which relate the equilibrium
pressures on each side of the interface to the curvature
and the equilibrium pressure for a flat interface are ver-
ified, even if the usual proof [12] cannot be performed
anymore.

The aim of this paper is to present a theoretical pre-
diction of the density profile across a fat interface —and
thus of equilibrium densities and surface tension —using
only dynamical arguments. Surface tension has already
been predicted for the lattice-gas model of Rothman and
Keller [13]. The difference here comes Rom the introduc-
tion of nonlocal evolution rules which modify deeply the
solution method.

We will consider a flat interface at rest. An asymp-
totic first-order calculation has already been published
[14]. Here we present a more complete study. Through-
out the whole paper correlations will be neglected. We
assume also that an equilibrium distribution exists for
this problem, but its shape is not determined a priori.
Actually, as the attractive interaction violates a semide-
tailed balance, equilibrium distributions are not bound to
be Fermi-Dirac ones. A counterexample has been given
by Bussemaker and Ernst for another lattice-gas model
with biased collision rules [15].

In the first part of this paper, the reader will find the
definition of the liquid-gas model in two and three di-
mensions. Then in Sec. V A a recurrence method will
be used to predict the density profile and surface ten-
sion. The results will be compared with measurements
on numerical simulations.

II. DEFINITION OF THE LIQUID-GAS MODEL
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Let us first review the definition of the model in two di-
mensions [14,16]. As proposed by Frisch, Hasslacher, and
Pomeau (FHP) [1], we consider point particles moving
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&om node to node on a hexagonal lattice, and colliding
when they meet at a node. Particles may take seven ve-
locities (c;); i q y. Six of them correspond to the direc-
tions of the lattice, and the last one is zero. The nonzero
velocity modulus is such that, at each time step, moving
particles hop to nearest-neighbor sites. This fictitious gas
obeys an exclusion principle: at most one particle with
a given velocity may occupy a given site at a given time.
Then the occupation state of a site x. may be represented
as a boolean vector n(x) = (n;/i = 1 to 7). The symme-
tries of the system, together with mass and momentum
conservation, ensure that the Huid obeys Navier-Stokes
equations in the incompressible limit [2].

In order to produce phase separation into dense and
light phases, we add an attractive interaction mimicking
the cohesion forces in a liquid. The definition of the
latter is purely dynamical, and not derived from a given
potential. The idea is to take pairs of particles separated
by a distance r and moving away &om each other, and
to send them back toward each other. The distance r
is called the range of the interaction. At a microscopic
scale, the evolution equation reads

n',.(x, t) = n; (», t) + 8;(n(x, t) )

III. DEFINITION OF THE PROBLEM

A. Boltxmann equation

The macroscopic behavior of a lattice gas results &om
the average of microscopic events. Thus in the theoretical
approach we will replace the boolean variables n;(») by
the probabilities K;(x) of finding a particle at site x with
the velocity c;.

We define 6 as the total number of velocity states in
one given site, and 6 as the number of nonzero velocity
states. Symbols with a hat denote vectors in the space
of velocity states, for instance N(x) = (N;(x)), i «q

The evolution equation for probability distributions is
called a Boltzmann equation, and is obtained by perform-
ing an ensemble average (noted ()) on the microdynam-
ical evolution equation (1). We neglect the correlations
as postulated by the Boltzmann assumption. Thus prob-
abilities are independent.

The evolution may still be decomposed into three
stages —collisions, interactions, and propagation. A dis-
tribution N becomes, after collisions,

N' = N+ A(N),

n;(»+ c;, t+1) = n',.(x, t) + p, —p;,
where b, is the collision operator and p, is a nonlocal
operator set for the interaction between sites w and x +
rc, It acts. on postcollision configurations (n', (x, t))

'y' = n (»)[1 —n (x)][1—n (x + rc )]n;(.x + roc.),

and, after interactions,

N" = N'+ g(N')

where g is a nonlocal operator defined by

g; = I', —I'

I', [N'] = [1 —K,'(x)]N', (x)[1 —N', (x+ rc;)]
xK (x+ rc, ) .

with c; = —c;. These rules deGne the so-called mini-
mal model, in contrast to a previous more complicated
version called the maximal model [17], which will not be
described here.

The long range interaction is irreversible; it is always
attractive and never repulsive. Then for certain values
of the parameters the system may be driven toward a
subspace of the phase space corresponding to separated
phases. Indeed, starting &om a uniform density, phase
separation is observed in simulations [14].

As the interaction involves only velocities parallel to
the interaction direction, the result is independent of the
order in which interaction directions are explored. It is
also independent of the order in which pairs of sites are
explored in one given direction. Therefore, it is equiva-
lent to performing the interaction sequentially or in par-
allel on all pairs in all directions. This was not the case
for previous versions of the liquid-gas model. The simpli-
Gcation of the rules has allowed to extend the model to
three dimensions (3D) [10,14]. We simply add the inter-
action defined by Eq. (1) to the face-centered hypercubic
(FCHC) model [18]. We have used the algorithm of Rem
and Somers to reduce the size of the collision table [19].
Collisions verify semidetailed balance. Some examples of
three-dimensional decompositions are shown in [14].

Then propagation reads

N; (x + c;, t + 1) = K,"(x, t) .

A and I', respectively, are the ensemble averages of the
microdynamical collision and interaction operators

A;=(b), (7)

B. Description of the problem and symmetries

K;(x) = f(x) Vi .

Here we relax this assumption and allow the probability
distribution N, (x) also to depend on the velocity direc-
tion:~:

N;(x) = N;(x) Vi .

In what follows we consider steady Hat interfaces. In a
previous first-order calculation [14], the probability dis-
tribution was assumed to depend only on the coordinate
x normal to the interface:
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c, =b c/bD,
where D is the dimension of space. Note that the FCHC
model is in fact a four-dimensional (4D) model projected
on SD [18], and thus D = 4.

The number b+ of forward velocities (c; ) 0, c; = c+)
and c+ will be determined &om the two relations

) c,' = b+c+ and ) c,'- = b+c+.
c; &0 c; &0

(12)

The symmetries of the FHP and FCHC lattices impose
that [2]

By symmetry the system is invariant in directions paral-
lel to the interface. To simplify, we will address only the
case where all nonzero velocities have the same modulus
c and the interface is such that c; can take only three
diferent values c+, 0, c = —c+. This implies that the
following calculation will apply for the FHP and FCHC
models only for specific orientations of the interface. Us-
ing cristallographic notations, for FHP the interface must
be parallel to (1,0) and for FCHC it must be normal to
(1,0, 0, 0). For i such that c, ) 0, we note g+ ——g; and
r, =I,-.

We also restrict our study to models having no more
than one rest particle per site, i.e., 6 = 6 or 6 +1. We
will now summarize some additional notations that will
be used in the paper. A synthesis is given in Table I.

The speed of sound c, is given by

IV. SYMMETRIES OF THE SYSTEM

In this section we show that, due to the symmetries of
the system and the assumption of stationarity, the distri-
bution N is a Fermi-Dirac distribution. This was not ob-
vious a priom, as interactions do break the semidetailed
balance.

A. Decomposition on eigenvectors

The probability distribution N(x) can be decomposed
on the basis of eigenvectors of the collision operator. In
the present case, the expression can be simplified, as the
system is invariant by any isometry leaving the x axis in-
variant. Among the 24 eigenvectors, only four are invari-
ant by this set of transformations (Appendix B). Thus

Jh

the generic form for any distribution N having the sym-
metries of the system is

N(x) = f(x)1+h(c)C + q(x)Q + (b —b )m(x)W,

(16)

with Q; p = c; c;p —(c /D)h p and W; = 1 for i = 1
to b, and W0 ———6 if 6 = b + 1. We recall that
N(x), 1, C, Q, and W' stand for vectors in the space
of velocity states. Notice that g,. N;(x) = bf (x). Then
f (x) is indeed the reduced density in site x.

c; &0

2

2D B. First step in the calculation of the collision term

4&X- 4
ix 2 / ia D(D+ 2)c,x&0

(14)

As any distribution having the symmetries of the sys-
tem A(N) may be written in the form

dE(N) = f'1+ h'C + q'Q + (b —b )m'W . (17)

Thus

D+2 2 3
b+ —— b and c+ —— c

6D + D+2

Moreover, collisions conserve mass and momentum

) ~(N) =o, (18)

Some useful relations on velocities are given in Appendix
A. ) 4;(N)c; = 0. (19)

TABLE I. Numerical values of the parameters for the FHP
and FCHC models.

These relations imply, respectively, that f' = 0 and h' =
0, and thus

Parameter

D
b

b

b+

cs
2

c &0 Ci

c &0

FHP III
2
7
6
2

~S/2
+3/7
3/2
1/2
1

Numerical values
model FCHC model

4
24
24
6
1

6
2

4

A(N) = q'Q + (b —b )w'W. (2o)

C. Final form of the collision operator

As it has been explained in Sec. IIIB, we consider
the case where c, can take only three diferent values

(0, c+, c ). From Eq. (16), 1V; can take only four differ-
ent values corresponding to zero and nonzero velocities
parallel to the interface, forward, or backward. We de-
note these values by F0, 1V~~, N+, and W

We are looking for a stationary solution of (6). For the
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velocities parallel to the interface, it reads

NII (x) = NII+ x) and No(x) = No+ (x)

N+(x) = P+ ~,

N (z)=Q —r.
(29)

or

(ifb=b +1) (21)

NII(x) = NII (x) and N (x) = No"(x) .

We replace N" by its expression (4). Then

(b —b )m'(x)WII + q'(x)Q
II

+ gll(N')(x) = 0,

(b —b )u)'(x)Wp+ q'(x)Q p+ gp(N')(x) = 0.

(22)

As Q~~II = c /D, Q p = 0, WII = 1, Wp = b, —and

gII = go ——0, we find q' = iU' = 0, which implies that

A(N) = 0. (23)

The collision operator is the same as for the FHP or
FCHC models without interactions. Then we know that
(again, if correlations are neglected) the only distribution
verifying Eq. (23) is the Fermi-Dirac equilibrium distri-
bution [2,3]. This result will be used in Appendix C. It
will completely determine q and m as functions of f and
h.

Indeed, as for a Fermi-Dirac distribution No ——NI~, it
can immediately be seen that if b = b + 1 we have

If we now express the evolution of the forward and
backward velocity states [Eq. (6)], stationarity implies
that

N+(x+ c+) = N+(x),
N (x —c+) = N" (x) .

(3o)
(»)

We note X = x/c+ in order to recover a unit space in-
terval. An explicit form of the above equations is

p(X + 1) + K(X + 1) —p(x) —r.(X) —g+(z) = 0,
(32)

and

g+(X) = I'+(X) —1"+(X—r) (34)

P(x —1) —r(X —1) —P(X) + ~(x) + g+(X) = 0,
(33)

where

C

D(1+b )

The explicit form of distribution (16) is now

N+(x) = f (x) + c+h(x) + (c+ —c2)q(x),

NII(x) = No(x) = f(x) —c,q(x),

(x) = f(x) —c+h(x) + (c+ —c2)q(x) .

(24)

(26)

F+(X) = (N )x(1 —N+)x(N+)x+„(1 —N )x+„,
=(4- ) (1-4- ) (&+ ) .-

x(1 —4+ ~)x+. .

The sum of Eqs. (32) and (33) provides a recurrence
formula which gives r(x) once the density profile f (x) is
known:

K(X + 1) = r (X —1) —P(X + 1) + 2y(X) —y(X —1) .

(36)
V. DENSITY PROFILE

OBTAINED BY' A RECURRENCE METHOD

The evolution equations for velocity states parallel to
the interface coupled with the symmetries of the system
have been used to determine the form of the density dis-
tribution in each site. Now we shall write the evolution of
the forward and backward velocity states and obtain the
density profile across the interface. It will be compared
with simulations in Sec. V D. The existence of local veloc-
ities at the interface will be discussed in Sec. V E. Section
VF will be devoted to the calculation of pressures and
surface tension and their comparison with simulations.

A. Recurrence formulas

In what follows, we will use the notations

Notice that away &om the interface r(z) tends to zero.
The difference of Eqs. (32) and (33) yields a second

equation

y(X+ 1) —P(x —1) + K(X+ 1)

—2r(X) + v.(X —1) —2g+(X) = 0 . (37)

B. Integration of the equations

Equations (36) and (37) form the system that we will
solve in order to find the density profile. Before doing
so, we shall integrate them and derive two properties of
the equilibrium densities, as a test of the validity of our
calculations.

Equation (37) writes
v(z) = c+h(x),
&(z) = f(*)+(c+ —".)q(*) .

(27)
(28)

z(x) =o. (38)

We choose two points Xq and X2 on each side of the
interface, respectively, in the gas and liquid phases. Then
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X2

) Z(X) = p(X, + 1) + p(X, ) + lc(X2 + 1)
X=X1

—ic(X2) —2 ) I +(X2 —l)
pl=0

—P(Xi) —P(Xi —1) —r (Xi)

+r.(X, —1) + 2 ) I'+(Xi —l)

We have K(Xi) = K(Xz) = 0, P(Xi) = fi, and P(X2)
f2 Th.is is also true for the neighboring sites. Thus

Xg

) &(X) = 2f2 —2«+(f21) —2fi +- 2«+(fil) .
X=X1

which yields
(42)

2 ) Ic(X) = fi —f2 . (43)

From Eq. (38), this sum must be zero. Then

f2 —r f2 (1 —f2)' = fi rfi (1 —fi)' . (4o)

We recognize the pressures of each homogeneous state
[20] and find the well known equality

p(f2) = p(fi) . (41)

Now we shall do the same with Eq. (36). We have

lc(X) + v.(X + 1) = K(X —1) + r.(X —2) —P(X + 2)

+P(X + 1) + P(X) —P(X —1)
= —P(X + 2) + P(X + 1)

The second line is obtained by iteration of the recurrence
formula up to site X2. Thus

X2

) [K(X) + K(X + 1)] = —p(X2 + 2) + $(Xi + 1),
X=X1

to zero [here the left hand side of Eq. (37)]. The nota-
tion fi, stands for the Fourier coefficient of f(x) W. e have
chosen this scheme because in our case W[P] is a gradient.
Thus classical relaxation schemes do not converge. Using
this scheme the density profile will converge from its ini-
tial approached value to a new profile until the equation
W[P] = 0 is verified.

(ii) Then a new function r, may be computed from this
new density profile using the recurrence formula (36).

The whole process (i) and (ii) is iterated until it con-
verges toward an equilibrium profile. Our convergence
criteria is )) X[/] ]] ( 10

This process is unstable toward perturbations of period
2. To avoid the growth of such perturbations, v is filtered
after its calculation:

lc~(X) = 2r(X) + 4[le(X+ 1) + ~(X —1)] .

The filter will introduce perturbations mostly in the re-
gions where the second derivative of K is the greatest.

This calculation provides the functions P(X) and
yc(X). To compare with numerical measurements on
simulations, we need the real density profile f(X)
P(X) —(c~+ —c2)q(X). Indeed q is constrained by the
fact that N is a Fermi-Dirac distribution, and can thus
be calculated from P(X) and lc(X).

The detailed calculation of q is given in Appendix C.
It may also be found in [21].

D. Results on the density distribution

The theoretical density profile has been calculated for
the FCHC liquid-gas model. It has been compared with
a measurement on a direct simulation of the liquid-gas
model (Fig. 1). The latter was obtained on a 192x 32 x 32
lattice, and averaged over 1000 time steps. The simula-
tion box is very elongated to minimize the Huctuations
of the interface. The agreement is much better than the
one obtained for the first-order calculation [14].

The forward and backward corrections (K+ —P) and
(% —P) have also been measured on the simulation. The

As a test we will check this property once the density
profile will be calculated.

r t+1 r't &
-&+1/2

(44)

where X[/] is the expression which must be made equal

C. Numerical solution
We want to solve numerically the coupled equations

(36) and (37). We start from an approached density pro-
file. We have chosen a hyperbolic tangent profile (in fact
a double profile in order to have periodic boundary con-
ditions).

The system is solved in two steps.
(i) For a given function K, Eq. (37) yields a density

profile P(X). As in [14] we use a spectral scheme

0.40
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0.20

0.10

I

40
0.00 = I ~ ~ I

20 60 80 100 120
space coordinate x

FIG. 1. Comparison between theoretical (dashed line) and
numerical (solid line) density profiles. These results have been
obtained for the 3D minimal liquid-gas model mith an inter-
action range r = 8. The inset shovels the absolute di6'erence
between the pro6les.
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and the contribution of interactions is

2

p„(X+ —,) = —2
bc,

bc2
, (X+ 2) = —2

) r(x —I),
l=o
r—1

) I'+(X —l)

bc2' [r(((x) + r(( (x + 1)] .

Notice that Eq. (37) is equivalent to

p„(x+ —,') —p„(x ——,') = 0,
which is a consequence of momentum conservation.

Now surface tension may be calculated as

(»)
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X=X(

where the points Xq and X2 are set in homogeneous
phases on each side of the interface. Some indications
on the calculation are given in Appendix D. We find

+ao

) [2r~~(x) —r (x) —r (x —.)]. (53)

d, d, ( ~'"'+"'~
) (54)

holds for any density, the amplitude of the interactions
normal to the interface is smaller than the amplitude of
interactions parallel to the interface. The contribution
of interactions to the pressure appears with a negative
sign, and thus the total contribution of p turns out to
be superior to the one of p~.

Figure 4 shows the normal pressure p + p„and. the
tangential pressure p~

P + p& as a function of X. Due
to momentum conservation, p is exactly constant [Eq.
(»)1

Several numerical values of surface tension were ob-
tained from the pressure pro6les of Fig. 4 using the rect-
angle, trapezoidal, and Simpson's integration methods.
In all cases we have o. = 1.54. This result is in agree-
ment with the numerical value cr = 1.4 + 0.5 found from
Laplace law on simulations of a cylindrical meniscus [14].
The large error bar is due to the difhculty of measuring
precisely the contact angle on the walls.

In this formula it appears clearly that only the interac-
tions are responsible for the presence of surface tension.
The perfect gas contribution is zero.

The origin of surface tension due to interactions can
be explained intuitively as follows. In most points on
the interface, the interactions in the direction normal to
the interface are performed between sites having quite
different densities di and d2, whereas interactions parallel
to the interface involve almost identical densities d
(dq + d2)/2, at least in the center of the interface. As the
inequality

FIQ. 4. Normal (solid line) and tangential (dotted line)
pressures calculated from the theoretical density distribution,
for the 3D minimal liquid-l, as model, r = 8. The density
profile is indicated by a dashed line.

VI. CONCLUSION

We show that even for a model without classical ther-
modynamics, equilibrium densities can be predicted from
purely dynamical arguments.

The method presented here does not assume a priori a
Fermi-Dirac equilibrium distribution. On the other hand,
we assume that the equilibrium distribution exists. All
our calculations have been done in the frame of the Boltz-
mann assumption, i.e. , we neglect all the correlations.

We have shown from symmetry arguments that, for
the specific orientation of the interface studied here, if
the equilbrium distribution exists it is of the form of a
Fermi-Dirac one.

Prom the evolution equations the density profile across
the interface has been found. Then a value of surface
tension in good agreement with measurements has been
predicted. Similar results have been obtained from a
third-order asymptotic calculation, which has not been
presented here.

Purther work should address the case of a curved inter-
face, using an asymptotic calculation. This should allow
one to recover Gibbs- Thomson relations, which relate the
equilibrium pressures on each side of a curved interface to
the radius of curvature and the equilibrium pressure for a
Hat interface. The usual thermodynamical derivation of
these relations [12] is not valid anymore for these lattice-
gas models. However, it has been shown numerically that
these relations are still veri6ed if a multiplicative coeffi-
cient is added into the expression [20].
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Eigenvectors
1 = (b —b , 1, 1, 1, 1, 1, 1)

= (c )'=o to o

Cy: (ciy)i=o to 6

'Qzz: (qi zz)i= Oto 6 anti Qyy = (qizy)i=O to 6

V = (0, 1, —1, 1, —1, 1, —1)
W' = ( —b /(b —b ), 1, 1, 1, 1, 1, 1)

Eigenvalues
0
0
0
A

7

TABLE II. Eigenvectors of the linearized collision operator
for the FHP model. WV is defined only if the number of rest
particles b —b is nonzero.

These expressions were obtained using

c2). ', +l ): ', = l). ', =,' (A2)

c, & 0 c; =0

c, &0
c, & 0

c,.&0@=1

(A3)

D

) c,' + (D —1) ) c,'„= ) Qc,'p ——b+c'.

APPENDIX A: RELATIONS ON VELOCITIES
FOR THE FHP AND FCHC MODELS

APPENDIX B: GENERAL FORM
OF A DISTRIBUTION

Frozn Eqs. (13) and (11), tve have found that

bc,2
C.j 2Z

c; )0
In our calculations we will also need

bc2
c.

2Q

2

c, & 0

bc2
C.

2'g

c, = 0

(Al)

A basis of the distribution space may be built using
eigenvectors of the linearized collision operator. As there
are several way of choosing this basis, in Tables II and
III we give the sets of eigenvectors that we used here for
the FHP and FCHC models.

Any distribution may be decomposed on this basis. For
example, for the FCHC model

N= f7+) 6. C +) z, q,

TABLE III. Eigenvectors of the linearized collision operator for the FCHC model.

Eigenvectors 1
Coordinates 1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

C Cy C Ct
1 1 0 0
1 —1 0 0

—1 —1 0 0
—1 1 0 0

0 0 1 1
0 0 1 —1
0 0 —1 —1
0 0 —1 1
1 0 1 0
1 0 —1 0

—1 0 —1 0
—1 0 1 0

0 1 0 1
0 1 0 —1
0 —1 0 —1
0 —1 0 1
1 0 0 1
1 0 0 —1

—1 0 0 —1
—1 0 0 1

0 1 1 0
0 1 —1 0
0 —1 —1 0
0 —1 1 0

1 0 0
1 0 0
1 0 0
1 0 0

—1 0 0
—1 0 0
—1 0 0
—1 0 0

0 1 0
0 1 0
0 1 0
0 1 0
0 —1 0
0 —1 0
0 —1 0
0 —1 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 —1
0 0 —1
0 0 —1
0 0 —1

Q*y
1

—1
1

—1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

zt xz
0 0
0 0
0 0
0 0
1 0

—1 0
1 0

—1 0
0 1
0 —1
0 1
0 —1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0 0 0 2

0 0 0 2

0 0 0 2

0 0 0 2
0 0 0 2
0 0 0 2
0 0 0 2

0 0 0 2

0 0 0 —1
0 0 0
0 0 0 —1
0 0 0 —1
1 0 0 —1

—1 0 0 —1
1 0 0 —1

—1 0 0 —1
0 1 0 —1
0 —1 0 —1
0 1 0 —1
0 —1 0 —1
0 0 1 —1
0 0 —1 —1
0 0 1 —1
0 0 —1 —1

V2 V3 V4 V5
0 2 2 0
0 2 —2 0
0 —2 —2 0
0 —2 2 0
0 0 0 2

0 0 0 2

0 0 0 —2

0 0 0 —2

1 —1 0 —1
1 —1 0 1
1 1 0 1
1 1 0 —1
1 0 —1 0
1 0 —1 0
1 0 1 0
1 0 1 0

—1 —1 0 0
—1 —1 0 0
—1 1 0 0
—1 1 0 0
—1 0 —1 —1
—1 0 —1 1
—1 0 1 1

0 1 —1

V6 Vg
0 0
0 0
0 0
0 0
2 0

—2 0
—2 0

2 0
0 1
0 1
0 —1
0 —1

—1 0
1 0
1 0

—1 0
—1 1

1 —1
1 1

—1 1
0 0
0 0
0 0
0 0

Vs V9 V~o
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 —1 0
0 —1 0
0 1 0
1 0 1
1 0 —1

—1 0 —1
—1 0 1

0 0 —1
0 0 1
0 0 1
0 0 —1

—1 —1 0
—1 1 0

1 1 0
1 —1 0

eigenvalues 0 0 0 0 0 A A A A„A A A A A A A A A A A A A A A
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This general form can be simpli6ed thanks to the sys-
tem symmetries when a specific problem is studied. For
a Hat interface, the system is invariant by any re8exion
with respect to the x axis, or by any rotation around it.
Some particular transformations given in Table IV have
been used.

From the resulting relations between the coeKcients,
we find that the only nonzero coefficients are f, h = h,
and ql = q2 = q3 = q. Noticing that '91++2+93 = Qxx,
with Q; p = c; c;p —(c2/D)b' p, we obtain the generic
form for any distribution having the symmetries of the
system

1+Hq' ~~

= '= 1+H' =
1+H/q

(C2)

On the other hand [Eq. (25)], the density distribution
was found equal to

N+(x) = f (x) + c+.h(x) + (c+ —c,')q(x) = P+ r. ,

N~~(x) = mp = f(x) —c q(x) = y —c q, (C3)
~ (x) = f(x) —c+h(x) + (c+ —c,')q(x) = P —K, .

N= f1+hC ~qQ +(b —b )mVV. (B2)
The elimination of H and Q will provide p = c+q as a
function of K and P.

The number of forward velocities (c; ) 0) is b+
(b c2/2Dc2+). Then P may be expressed as

APPENDIX C: CALCULATION
OF THE SECOND-ORDER CORRECTION

1 1
2 1+HQ 1+H/Q

+ (C4)

1

1+exp[n(f, u) + P(f, u)u c;]
' (C1)

We assume there is no more than one zero velocity state.
We note H = exp[n] and Q = exp[Pu . c;]. Then

We have seen in Sec. IV C that the collision operator
applied to the distribution N is zero, and thus N turns
out to be a Fermi-Dirac distribution. This property al-
lows us to express p = c+q as a function of r and P. We
do not need m, which has been expressed as a function of
q by relation (24). We will follow a calculation of Diemer
et al. and adapt it to our case [21]:

1 2[P(l+ H ) —1]

Q H(1 —2P)
(c5)

A second equation is given by

1
2K =

1+HQ
1

1+H/Q

If we take the square of this equation, and use the relation

(G?)

This expression may be seen as a linear equation for the
variable Q + 1/Q. The solution is

TABLE IV. Transformations used to find the general form of any distribution having the symme-
tries of the system, in three dimensions for the FCHC model. The invariance by a transformation
of the second column implies some relations between the coefFicients of N given in the last column.

Transformation type

refiection

reflection

refIection

rotation

rotation

Transformation definition in 4D
1 0 0 0
0-1 0 0
0 0 1 0
0 0 0 1

(1 0 0 Oi0-100
0 0 -1 0
0 0 0 -1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 -1
1 0 0 0
0 0 1 0
0-100
0 0 0 1
1 0 0 0
0 0 0 1
0 0 1 0
0 -1 0 0

Conclusion

I I I
V~y = Qyz = Vy~
= hy
—p4 —p8

I I I
gxz = Qyz = gzt
=6
=ps=pe=0

I I I
9 ~=9„~=9 ~

—p6 —@10

gl = g2

3Pl —P2

gl = g3
3Pl ——P2
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CZ'

Cj
~ ~
V

O

0.0006:

0.0005;

0.0004:—

0.0003 -.

0.0002:-

0.0001:-

0:
-0.0001 - .

0 20
I

40 60 80
space coordinate x

I

100 120

f(X) = P(X) —(c+ —c,)q(X) (C13)

may be compared with measurements on d
tions of th le 1qu1 -gas model.

en s on 1rect simula-

APPENDIX 0: SURFACE TENSION
EXPRESSION

We take two points with X = X d —,p1 an = X2, I espec-
ively, 1n the gas and liquid phases. Thi p ases. e surface tension

Once the correction Xprofile q~ is known, the exact density

FIG. 5. S. Second-order correction q to the occu ationP
or e minimal liquid-gas model, with

appears again only by the term Q + 1 ~~.
the value of iven

We report
o Q given by Eq. (C5) into Eq. (C6). We find

Xg —1

= ) [-(x+-'.)-p(x+-,'))
X=X1

(D1)

K, (1 —H ) = [p(l+ H) —1][$(1—H) —1

It is convenient to note

(C8) The contribution of perfectc gas pressures is

p. '(x+ -') —p '(x+ —.')

2p=c+q=P—1+H (G9) bc2' [r.(X + 1) —p'(X + 1) —r.(X) + p'(X)] .
The elimination of H bf H between expressions (C9~ d 'C '

polynom1al expression of p:
(D2)

with

'p[p] = ap + aip + a2p2 = 0,

ap ——r (1 —2P),
ai ———2[/(1 —P) —r.'],
a2 ——1 —2p .

(C1O)

(C11)

Then

X2 —1

[ GP(x + i) GP(x + i)]
X=Xg

2 t 2

bc2= 3' [ (x ) —p'(x ) — (x ) + p'(x )] = o (»)

Note that in thhe general case we should have foun
cubic equation. Here b h

ave found a
ere y chance it turns out to be onl

quadratic. The interesting root is
e ony

r.'(1 —2P)= ~(1-~)--'+a[~ --][(1-~)--

de
e give the solution in t+in this form in order to avoid the

enominator becoming zero at P =
2

Figure 5 shows the resu
p(X)/c'

e resultmg correction q(X)
+ ~

The contribution of interactions is

p( +2) pt(x+ )—= —2 ' .r (x-bc —l)
L=O

bc2' [r(((x) + r(((x + 1)] .

D4( )

We will sum se
pllq

eparately the two terms. W ll I'g+'e s. e ca + and

+ the values of I'+(X) = I' X = I'+
~~

—( )'

X2 —1 v —1 Xg —v Y' —1

) r, (x —~) = ) .r, (x)+) (r'q+rs-)
l=o X=X

+ +
1 n=1

X2 —r X
P & P

2=- ) r(x)+- ) r (x+1)+ (r"
X=Xi X=X1+v

++ +)
X2 —r r2

[I (x)+r (x+1)]+"—(r" +I-
X=X1+v
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an(i

X,—x

) [r~~(X) + r~~(X+ I)] = ) 2r~~(X) + (2r —1)(r"+ r"').

Then we 6nd

X=X1 X=XI+7

(D6)

The limits of the sum can be sent respectively to —oo and +oo without changing the result.
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