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Relying on molecular dynamics simulations, we investigate the state diagram of elastic disks in
two dimensions in the microcanonical ensemble under the new aspect of diferent bidispersities and
polydispersities, i.e. , di8'erent particle radii distributions. We find an Alder transition heralded by a
plateau in the pressure-density diagram. In terms of dispersity, we see a universal liquid branch. The
solid branch and the coexisting region change. The latter vanishes above a critical polydispersity
independent of the radius distribution.
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I. INTRODUCTION

The fIuid-solid phase transition in repulsive-disk sys-
tems [1], now treated for over 30 years by molecular dy-
namics (MD) and Monte Carlo (MC) simulations, is still
a subject of recent interest [2—9]. It is now believed to
be a single first-order transition with the coexistence of
8uid and solid [2,3,9]. Various purely repulsive particle
potentials display the Alder transition, e.g. , hard core
[2,3,9], r [4,5], and Hertzian contact law [8]. The
transition is not limited to the atomic scale nor to iden-
tical particles. The infIuence of size polydispersity on
the Alder transition was first investigated by Dickinson
and Parker [10] in colloidal dispersions. The rather com-
plicated potential forced them to restrict themselves to
small systems of 108 particles in three dimensions (3D).
They postulated the existence of a critical dispersity be-
yond which the liquid and the crystalline states merge.
More recently, Moriguchi et al. [11]have investigated the
efFect of size polydispersity for colloids interacting via the
Yukawa potential, but under nonequilibrium conditions.
Using Brownian dynamics they find an additional glass
phase and critical polydispersity above which no solid
phase exists. For completeness we mention that charge
polydispersity also aKects colloidal systems [12,13].

Size polydispersity is, besides dissipation and arbitrary
shape, one main characteristic of granular media. By in-
vestigating polydispersity the knowledge about equilib-
rium systems will be the base for theoretical understand-
ing of the nonequilibrium situation in granular systems,
where dissipation will be included. Our motivation is a
better theoretical understanding of this field which will
result in explanations of the difFerent phenomena of gran-
ular media [14].

Starting with the equilibrium situation we examine the
infIuence of size polydispersity on the Alder transition
by investigating difr'erent particle-radius distributions. In
particular, we consider (i) binary distributions where par-
ticles are characterized by two distinct radii and (ii) a
continuous distribution allowing a spectrum of sizes. We

use a MD technique with a short-range, repulsive poten-
tial (Hertzian contact law), known from granular simula-
tions, especially monodisperse studies [8], and investigate
systems in two dimensions with a length between 20 and
135 particle diameters.

Confirming Dickinson and Parker we find that there is
a critical degree of polydispersity above which the AMer
transition is destroyed and there is no more plateau in the
state diagram. However, based on our Fourier analysis,
there is still an ordered and a disordered phase above the
critical polydispersity.

After a detailed description of the model and the sim-
ulation technique in Sec. II we define thermodynamic
quantities in Sec. III and present our results in Sec. IV
where we add a theoretical approach intended to explain
the infIuence of polydispersity on the state diagram. Sec-
tion V summarizes the paper.

II. MODEL

A. Particle potential

I et r, represent the radius of particle i. The potential
energy between particles i, j is calculated by the Hertzian
contact law [15]

where x;, x~ denote the center of masses of the two parti-
cles, 0(x) is the Heaviside function, and K~ is the elastic
modulus, which depends on the Young modulus of the
material and the radius of curvature of the particle sur-
faces. Figure 1 illustrates the collision of two particles.

B. Particle radius distribution

We now present the difI'erent normalized distributions
for particle radii that are used in polydisperse simula-
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Here, ro denotes the mean radius and o the standard
deviation. On a computer the distribution is normally
set equal to zero outside a range of 3o. —50 around ro.
As a reference we define a relative standard deviation as
br' = o /r p The. variance is Var [ps (r) ] = cr2 = (br' r p) z.
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FIG. 1. Elastic-particle collision scheme. Particle i and j
experience a repulsive force I',.
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each other. The force acts along the connection line of the
two center of Inasses and is a function of the overlap length
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tions [10,11]. We give the relation between their internal
parameters and their standard deviation in order to have
a criterion to compare these distributions within the con-
text of our simulation and results reported in the liter-
ature. In our simulations, we used the binary and the
uniform distribution. Figure 2 shows all distributions
used. together, employing an identical variance.

Gau88i an dies ibution

The most general distribution is the Gaussian distribu-
tion that was applied to colloidal systems by Moriguchi

This distribution was used by Dickinson and Parker for
modeling the size distribution of colloids [10]. With the
triangular distribution one can approximate the Gaussian
distribution quite well (see Fig. 2). The distribution can
be written as

8«&o —~r —ro~
st(&)=, e(& —(&p —~««))

(b«ro)
x8((rp+ b«rp) —r) .

Here, 2 x br' denotes the width of the distribution relative
to the mean radius «and 8 (x) is the Heaviside function.
The variance of the triangular distribution is Var[p&(r)] =
- (8«rp) 2.

Uni for m distv ibution

Normal random number generators give a uniform dis-
tribution:

1 e(
b~ ~o

xe((., + ~.„.,) —.) .

Again, 2 x br„gives the width of the distribution rel-
ative to the mean radius. The variance of the uniform
distribution is Var[@„(r)]= —(br„rp)
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This distribution has only two diferent radii equally
weighted:
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FIG. 2. Different distributions for particle radii with
the same variance: uniform, triangular, Gaussian, binary
[Eqs. (2)—(5)]. The distribution parameters are given in Ta-
ble I.
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ps(r) = — 8

~

r — brsro
~
+ b r + —pri, «—

~

. (5)) 4 2 )
Here b(2:) is the Dirac b function and hri, is the difFerence
of the two radii of this distribution relative to the mean
radius. In this case the variance is Var[pb(r)] = 4(Harp)

Table I gives information about how to choose the dif-
ferent distribution parameters in order to get the same
variance in reference to the Gaussian distribution. In the
following we refer to the binary distribution parameter
br' as a bidispersity and to the uniform distribution pa-
rameter br„as a polydispersity. In this simulation the
binary distribution allows the largest degree of polydis-
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Distribution

parameter

Uniform br„ Binary brb

2br g

Triangle br~

~os~,

TABLE I. Different radius distribution. How to choose
their parameter compared to the Gaussian distribution pa-
rameter to get the same variance.

persity within a limited radius region for the four difer-
ent distributions.

Dickinson and Parker proposed a critical polydisper-
sity in their colloidal systems for triangular radius distri-
butions in three dimensions of bet' = 0.20 [10] that re-
sults, according to [16], in a two dimensions in hr,' = 0.34,
which is analog to br„=0.24, br& ——0.28, and brg 0 14.

C. Simulation

FIG. 3. Division of space in 2D with helical boundary con-
ditions (here, system L45, 79x79 cells). The whole volume
is sheared a little. This effect vanishes for increasing system
size. Zoom: the particle size is chosen so that only one par-
ticle can be in one cell in order to apply a fast vectorizable
algorithm for the integration of Newton's equation of motion.

We simulated the elastic disks in a two-dimensional
box of area A with helical boundary conditions as
schematically shown in Fig. 3. To integrate Newton's
equation of motion we used a standard molecular dy-
namics technique, namely the Gear predictor-corrector
method of fifth order [18]. Our algorithm for a short-
range interaction [17] uses an underlying lattice that
constrains the particle radii to a certain range (see
Fig. 3). We are able to go up to a bidispersity of

34.31% =" br " = 17.16% and a polydis-
persity in the uniform distribution case of br„"
17.16% =" br " = 9.91% for the zero overlap limit
case. For uniform and especially binary distribution the
variance is rather large if one considers a finite range of
particle radii, as it is necessary in our algorithm. Due to
elasticity we also have to take an overlap security range
of at least 2% into account. More details of this fully vec-
torizable algorithm are given in Ref. [17]. The particles
were initially arranged on a quadratic lattice and the ve-
locities were chosen randomly to maintain a certain mean
kinetic energy. For fast and precise simulations we op-
timized our model and integration parameter by a time
reversal integration test by asking for energy and momen-
tum conservation and reversibility in the phase space for
each particle (more details are given in Ref. [8]). The
parameters we finally used for the production runs after
that optimization procedure are given in Table II.

TABLE II. Simulation parameters for the particle model and the integration algorithm.

Model 1 106 elastic modulus

0.87777 particle mass defining the density

400 to 18225 particle number

A/(2ro) = 20 x 20 to 135 x 135 system area

( kin) 12 8 mean kinetic energy per particle

Integration

COT'7' 0.980

1.0

radius correction factor

(extrapolation from elastic to hardcore particles)

cell size' , ~ & r & 1.0

5 x 10 time step
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III. THEKMDDY'NAMIC QUANTITIKS

During time integration the initial configuration fol-
lows a transient before equilibrium is reached. That is,
e.g. , indicated by the autocorrelation time in the energy
and the pressure. In equilibrium we can measure physi-
cal quantities. For our systems the transient length was
up to 5 x 10 integration steps, that is 100 s simulated
time. After that the sampling of the values of interest
was done over at least 100 s. To improve the statistics
we made runs with difFerent initial configurations deter-
mining the mean value of these independent runs. For
the data presented we have done about 50 independent
runs for one isobidisperse curve in the state diagram and
about 130 for the isopolydisperse curves.

We measure the pressure by sampling every 500 time
steps 10 times the radial distribution function (RDF) g(r)
after the equilibration. g(r) dr is the probability where
we 6nd a particle at a distance between r and r+ dr from
a given particle.

For two-dimensional isotropic fluids one can derive the
pressure, P,

dV r
r'g(r) dr,

dr

in a thermal equilibrium state [19]. P is the pressure, A
is the area the particles are allowed to move in, % is the
particle number, and V(r) is the elastic potential from
Eq. (1). k~T is the temperature measured according
to the equipartition theorem in units of the Boltzmann
constant k~ for two dimensions: E@,~ =

iv p 2m;(v . +
v2 ) = 22k~T Equivale. nt to the partition function, the
RDF contains the entire information about the fIuid.

Systems made of nonat tractive particles like the
present system [Eq. (1)] have a finite pressure even in
the solid phase. Nonzero pressure is necessary to main-
tain the system at a specific density.

In order to compare the literature with hard-core re-
sults we employ the following reduced and hard-core cor-
rected quantities. We introduce a reduced pressure as

2
pcoee = pr edfcoee

g 2
cour P J core

(10)
(11)

All simulational data are presented in the corrected ver-
sion.

Geometrical order as in a local hexagonal structure
and/or neighborhood can easily be seen in Fourier space.
If we view our particles as pointlike objects, the particle
k is represented by

with zA,, denoting the center of mass position and 8(x)
the Dirac b function. The total distribution function is

(13)

The Fourier transformation reduces to a summation,

yr(g f (~) —2rri(q. x)d ) —2rri(q ep)

A:

(14)

If the system is in a solid phase that has crystal character,
we will have six Bragg peaks in a Fourier space placed
symmetrically on a ring around the origin of the q space
at a typical absolute wave vector lql = 1/a, where a gives
the mean nearest neighbor distance for the crystal.

For theoretical reasons (see Sec. IV C) we also mention
an unphysical situation, where the whole systexn would
be occupied by the particles, which is impossible for disks
(p* p&,„).This is the situation of packing fraction
unity, p* = 4/vr. We call this density the ultimate den-
Si ty.

In contrast to the hard-core potential, Hertzian par-
ticles have an overlap during collision. This results in
an efFective radius, smaller than the particle radius r, .
Extrapolation to hard-core behavior can be done by cal-
culating an efFective radius due to temperature and elas-
tic potential [8], see Table II. Pressure and density are
hard-core extrapolated by a correction factor

PAo
k~TK IV. B.ESUITS

with

for the monodisperse case

for the polydisperse case

and the dimensionless density

Ao
P

In monodisperse systems we have for a hexagonal close
packing, hcp, p& „——g4/3, and in the case of a quadratic
packing, p*„=1. Close packing for elastic particles
means that nearest neighbors have a distance of their
diameter o.

A. Bidispersity

We made a system size analysis for difFerent brb
Op/&, 11%, 13%%up, 15% and system sizes from 20 x 20 up
to 135 x 135 particles. We denote the difFerent sys-
tems by their length given in mean particle diameters
op r E.g. , L45 is a system of size (45op) . Results are
presented as a state diagram in Fig. 4.

The liquid branch does not change for difFerent system
sizes. The solid branch moves towards lower pressure for
larger systems, but converges at br' = 13% for systems
larger than system L45. The plateau region shows com-
plicated behavior. For brb = 0% the size of the system
has nearly no effect. At bri, = 11% the plateau pressure
is still unaffected, but for br' = 13% —15% we see a
non-monotonic change in the plateau pressure with in-
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FIG. 4. Reduced pres-
sure over density (PAo/
krrTN, p*) for difFerent system
sizes and bidispersities: brq ——

0%) 11%) 13%, 15%; system
size: L20, L45, L90, and L135.
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creasing system size. System I 135 gives an upper limit
and system I90 the lower limit, while system I45 is in
the middle of the two larger systems.

The plateau shape gets much clearer for increasing sys-
tem size because the statistics get better with increasing
particle number. There is no clear system size efFect that
makes scaling possible. Further investigations were done
with the system I45, which is supposed to have a reason-
able ratio of quality to computer time. From the above
analysis we expect no qualitative change and only a small
quantitative change in the results for larger systems.

For the full state diagram we have done a bidisperse
simulation for brb = O%%uo

—30'%%uo at densities between
p,*,= 0.845 —0.961 (system 145). Figure 5 gives the
isobidisperse lines in the state diagram. For brb = O%%uo we
get a clear Alder plateau as a coexisting zone separating
the Quid branch at lower densities and the solid branch
at higher densities. Increasing bidispersity brb moves the
plateau to higher pressures and densities along the Quid
branch. The coexisting region gets smaller up to a crit-
ical bidispersity brb ——(13.5 + 0.5)%%uo where we have no
longer a plateau nor a horizontal tangent to the pressure
density curve. Still, a small kink can be seen.

The solid branch is shifted to higher pressures falling
on the extrapolation of the fluid branch for brb = 25%.

There, no kink is seen within the error bar. For brb ——

30% and p,
'„)0.900, we see a systematically lower

pressure than for orb = 25%. With our algorithm we
were not able to go to higher bidispersities in order to
clarify this trend.

The behavior looks rather similar to the real gas situa-
tion where in a pressure-density diagram the isothermals
show exactly the same behavior as the isobidispersities
here [see Fig. 5(b)].

We show the pressure-bidispersity dependence in Fig. 6
where we can distinguish three domains that are marked
by different gray levels. Note that the x axis is (orb)
The liquid branch is universal as the horizontal lines in-
dicate in the lower right domain.

The plateau regions are seen in the middle domain
where the isodensity lines meet each other. The end of
this domain characterizes the critical bidispersity brb ——

(13.5 + 0.5)%. This is equivalent to a Gaussian poly-
dispersity of br' = (6.75 + 0.25)%, much smaller than
the proposed critical value br' = 14% of Dickinson and
Parker in colloidal systems compare with the end of
Sec. IIB).

In the third upper left domain we see a (orb) depen-
dence of pressure that is predicted by cell theory [20] and
was found for colloids as well [10].
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FIG. 6. Pressure over square of bidispersity for different

densities: p,' „„=0.845 —0.941. Three different domains can
be distinguished and are marked here with different gray lev-
els. We see the universality of the liquid branch as horizontal
lines (lower right part) which hold longer for larger polydis-
persity br&. We realize the plateau region where the curves
fall on top of each other (middle part) up to a polydispersity
of brb =—13—14% (see arrow). Finally, we see a linear relation
between the pressure and the square of the polydispersity for
the remaining points which are in the solid branch (upper left
part).
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B. Polydispersity

For the uniform particle radius distribution we have
done runs for polydispersities in the range of br„=0'%%up—

15%. Here we did not go to very high densities but we
concentrated on the plateau region p* „„=0.845 —0.922.

FIG. 5. (a) State diagram: reduced pressure versus den-
sity, both hard core corrected for different bidispersities
(br' = 0% —30%, system L45). (b) Zoom of the plateau
region in the state diagram of (a), the gray area points as a
guide to the eye to the coexisting region.

Figure 7 shows the isopolydisperse lines in the state di-
agram for this uniform distribution. Qualitatively they
have exactly the same behavior as in the binary distri-
bution case (compare Fig. 5), but here the statistics are
much better. Polydispersity br„shifts the solid branch
and the plateau regions to higher pressures and densities.
The coexisting zone vanishes at a critical polydispersity
br„' = (11.0 + 0.5)% =" br' = (6.4 + 0.3)%. This criti-
cal polydispersity has the same value for the binary and
the uniform particle radius distribution within the error
bar. For higher polydispersities the isopolydisperse lines
have an S shape without a horizontal tangent that com-
pares with the kink in the bidisperse system above. At
the highest polydispersity, br = 15'%%uo, solid and Huid
branches are no longer distinguishable. There is no tran-
sition detectable within the error bar in the state dia-
gram.

The quantitative analysis of the influence of polydis-
persity on the pressure is given in Fig. 8 [note that the
x axis is chosen as (br„)]. Compared to the bidis-
perse situation (Fig. 6) we see a small influence of br„
on the fluid branch here. The plateaus coincide up to
br„' = (11.0 + 0.5)'%%uo. For the solid branch we are lack-
ing more data points for higher densities, so that we are
unable to draw any conclusion.

In Fig. 7, the fluid branch for the binary distribution
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FIG. 7. Isopolydispersity lines in the state diagram for the
uniform particle radii distribution (hr„=G '%% —15%, system
L45).

seems again independent of the polydispersity, but for
densities slightly smaller than the plateau region it bends
stronger towards the plateau than in the case of the bidis-
perse system.

We want to characterize the Quid and solid phase by
Fourier analysis as described at the end of Sec. III. Fig-
ure 9 gives such an analysis for polydispersity br„=10'%%up

and 15'%%up, that is below and above br' = 11%, for rep-
resentative densities (compare with Fig. 7). The peak of
order zero for q = 0 is not drawn.

For br = 10% we have an Alder plateau in the region
of p* „„=0.887 —0.901 in the state diagram. In Fourier
space for p* „„=0.845 we see a clear ring structure giving
a characteristic, isotropic length. At the densities p
0.895 and p* „„=0.922 there are six peaks on a ring
at a typical length, the latter case having more narrow
peaks with smaller bases. We conclude that p* „„=0.845
belongs to the Huid branch (isotropic), p,* = 0.895 is
in the coexisting region, where solid peaks exist with a
wide basis, and that p* „=0.922 is the solid phase, more
precisely, the ordered phase. This observation coincides
with the previous assumptions on the state diagram for
hr„=10%.

For hr = 15% the state diagram does not show a
Quid-solid transition, respectively, any plateau. But still
the phases can be distinguished via Fourier transforma-
tion. For p* „=0.845 and p,*„„=0.903 we are in the
Quid regime. However for p* „„=0.937 we have a clear
peak structure which we identify with the solid or ordered
phase.

Polydispersity destroys the Alder plateau, but from the
Fourier analysis we conclude that for br„=15%%up there is
solidification without a plateau in the state diagram for
high densities.

13.0
0.913 C. Theory

12.5
0.903

12.0
0.893

11.5
0.884

0.874

10.5
0.864

10.0

9.5

0.855
0.845

50 100
2

150 200 250

FIG. 8. Pressure over square of polydispersity (br ) for
difFerent densities: p' „„=0.845 —0.922. The parameter
range here is not as wide as for the binary distribution. Ana-
log to Pig. 6 the plateau vanishes for br & 11% (see arrow).

In this section we draw an idealized scheme of the state
diagram for polydisperse systems in 2D to explain our
simulational results. The solid branches on the density-
pressure plane strongly depend on polydispersity. It has
singularity at the close-packing density and the close-
packing density is sensitive to different polydispersities.
This effects the whole solid branch. We do not know
the close-packing density for a given polydispersity of our
systems, that is, a system made of nearly hard disks with
distributed radii. We obtain some analytical hint for the
close-packed density by looking at a periodic system of
particles of only two different sizes. In Fig. 10 we present
the analytical behavior of such an artificial system. For a
bidispersity blab & 30'%%up the close-packed density decreases
&om p* = g4/3 to p* —1.083. We assume a similar
behavior for an equilibrium packing in our simulation,
although the maximum packing is different &om the one
shown in Fig. 10. In the thermodynamic limit the close-
packing density is easily proved to be equal or greater
than the hexagonal packing density of the monodisperse
system, that is, g4 j3.

The liquid branches are, however, less sensitive to poly-
dispersity than the solid branch. We do not observe clear
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dependencies. So, within the accuracy of our work, we
can conclude that polydispersity is irrelevant to the pres-
sure of the liquid state. Assuming that the Quid pressure
is the same as in the hard-core system with the same
density, we can understand the disappearance of the co-
existence plateau between liquid and solid phases when

we increase the polydispersity. The pressure of the hard-
core liquid has been studied using perturbation theory
and other methods [22—26,21]. It has been observed that
its singularity is located at packing &action unity, that
is the ultimate density p*«, k,

——4/vr = 1.273. This
is much higher than the hexagonal close-packing density
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FIG. 10. In8uence of bidispersity on peri-
odic, regular dense packing. An infinite sys-
tem consisting of particles of two different
sizes r, ~~ and rq;~ with constant particle
ratio of K,~~n/Nb, s ——1 is considered. If we
do not allow demixing and look at the most
regular periodic packing, we get the analyt-
ical behavior of the close-packing density of
a hexagonal (upper curve) and a quadratic
(dashed curve) lattice. The smaller particles
are gray. Our bidisperse simulations were in
the region of r,~~~1/rb;s = 0.7 —1.0. Here,
bidispersity reduces the close-packing density
p* from g4/3 down to 1.083 (Dp" = 0.069).
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p~,„——Q4/3 = 1.155.
At the phase transition the &ee energy of the solid

becomes more favorable than the liquid when the density
is increased. At a pressure where the &ee energy of the
solid and the Quid are equal we get a region of coexistence
and the change between the two phases is driven by the

density. The mathematical singularity of the liquid is
not meaningful because the Quid does not exist at that
density. This situation is illustrated in Fig. 11 (I) where
the solid line represents the pressure density relation.

The present simulation shows that the polydispersity
is favorable to the liquid state. When the polydisper-
sity is increased, the coexistence plateau starts at higher
densities. The system then follows the liquid branch to a
higher density than that corresponding to the monodis-
perse transition onset. But for the reasons discussed
above the solid branch has its singularity at a lower
density than the singular density of the liquid follow-
ing the above observations for a hard-core liquid. So the
plateau is shifted along the Huid branch to a higher den-
sity having a decreasing density region of constant pres-
sure, see Fig. 11 (II). Finally, at a critical polydispersity,
no plateau will exist, see Fig. 11 (III). The system shows
a kink in the pressure-density relation.

For higher polydispersities we can imagine that the
transition point where the free energy of the solid is equal
to that of the liquid lies at a higher density than the
density where the liquid and the solid branches cross.
Following this scenario on the vanishing plateau, a jump
of pressure may appear for much larger polydispersity
than the critical one.

We have not yet observed either the reverse efFect
or the pressure jump and this may be due to the fact
that our simulations are restricted to a degree of bidis-
persity b'rs & 34.31% and a uniform polydispersity of
b'r„&17.16'%%uo. On the other hand, if we follow the ar-
gument given in Fig. 10 for bidispersities of brs & 32%%uc,

the close-packed density should increase again. Figure 5
has an unsystematic behavior in the solid density region
for blab ——30'%%uo There the pressure is slightly lower than
for br' ——25%. This points to the direction of an again
increasing close-packed density, but new simulations in
this regime are required to give a precise answer.

III) 0 packing fraction

Solid V. SUMMARY

0
0

FIG. 11. State diagram for difFerent polydispersity [(I)
monodisperse case br = 0.0, (II) br ( br', (III) 8r ) hr'].
We assume a universal Quid branch diverging at the packing
fraction unity, respectively, the ultimate density p' = 4/n and
a solid branch whose singularity is dependent on close-packing
density changed by polydispersity (compare Fig. 10).

We have performed MD simulations with elastic disks
obeying the Hertzian contact law in a microcanonical en-
semble. We And the Alder phase transition indicated by
a plateau in the state diagram. The inBuence of binary
and uniform radius distributions on the transition is in-
vestigated.

A systematic system size analysis in the bidisperse sys-
tem of size L20 to L135 does not show a clear system size
trend. For both radius distributions, we give a state dia-
gram for a large degree of polydispersity [mrs = (0—30)%,
hr„=(0 —15)%]. The Alder transition is stable up to a
critical dispersity parameter br' = (6.6 + 0.3)% for both
distributions. The variance of the distributions deter-
mines the global behavior of the system independent of
the form of the distribution. In comparison with colloidal
systems the elastic particles behave more like hard-core
particles and so they are much more sensitive to polydis-
persity and have a smaller br .
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By Fourier transformation we characterized the solid
and liquid phase and above the critical polydispersity
there are still two phases that are distinguishable. The
nature of this phase transition is not clear.

With some basic assumptions we outlined a theoret-
ical argument for the understanding of the mechanism
behind the behavior of the isopolydispersity lines in the
state diagram. The close-packing density and the inHu-

ence of polydispersity on the close packing were the im-
portant points within this argumentation. We explained
the existence of the plateau, the vanishing process for
an increasing degree of polydispersity, and the kink ob-
served in the simulations above the critical value. All
phenomena observed in our simulations are included.

A higher degree of polydispersity is required in the

simulational field to see whether the pressure really goes
down again or a pressure gap occurs due to our theory.
The observed effects should show up in three dimensions,
where polydispersity will have a much stronger effect
than in two dimensions.
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