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Brownian motion on a square Lennard-Jones lattice: Trapping, hopping, and diffusion
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We studied the Brownian motion of a single probe particle moving through a square array of fixed lat-
tice particles. Brownian motion was simulated via the dynamic Metropolis algorithm. The probe-lattice
particle interaction was th Lennard-Jones potential. In addition to the mean-square displacement and
effective diffusion coefficient studied by previous workers, we obtained such diagnostics as the two-point
density of states p' '(6r), its angular average p (6r), the correlation function I'(6r, ~) for distances 6r
traveled by probe particles during the elapsed time ~, and the probe dynamic structure function S(k, w).

By varying the temperature and density, we observed distinct diffusive, hopping, and trapping regimes;
our computed diagnostics of system behavior reAect different aspects of these regimes in a mutually con-
sistent way.

PACS number(s): 05.40.+j, 66.30.Hs, 83.20.Jp

I. INTRODUCTION

The diffusion of small probe particles through a com-
plex background is a recurring theme in the study of
complex materials, including observations on polymer
chains in fumed silica [1] and Vycor glasses [2] saturated
with solvent, methane and other small molecules in poly-
mer matrices [3], polystyrene spheres and other probes in
polyacrylamide and related gels [4—11], and noble gas
and similar molecules in pillared clays [12]. Experimen-
tal techniques for measuring probe diffusion include gra-
vimetric analysis [12], quasielastic light scattering [4],
forced Rayleigh scattering [1],and fluorescence recovery
after photobleaching [13]. The dependence of probe
diffusion on temperature and matrix structure and densi-
ty has been studied extensively.

These experimental data have been compared with a
variety of computer simulations using molecular dynam-
ics and Monte Carlo methods. For example, Chen et al.
[12] considered an on-lattice computation on a triangular
lattice on which some lattice lines are permanently open
and others, chosen randomly, are permanently closed.
Miiller-Plathe [3] reported a molecular dynamics simula-
tion of a small object (a gas molecule) difFusing through a
high density of potentially mobile model polyethylene
chains. In each case a probe trajectory was computed
and subjected to statistical analysis. Calculated quanti-
ties included ([5r(r)) ), the mean-square displacement
of single probe particles as a function of the elapsed time
~, and the effective diffusion coefficient D.

*Present address: MS-B213, Complex Systems Cxroup T-13,
Theoretical Division, Los Alamos National Laboratory, Los
Alamos, New Mexico 87545.

Here we report results from our simulations of probe
diffusion through a two-dimensional matrix of lattice
points. The probe interacts with the lattice points via a
Lennard-Jones potential. Because we studied a regular
lattice, nonergodic behavior due to local irregularities in
the particle density or placement is excluded. An impor-
tant advantage of computer simulations is that they per-
mit the measurement of quantities that are not readily ac-
cessible experimentally. In addition to the mean-square
displacement and the effective diffusion coefficient mea-
sured in previous simulations [3,12], we report results for
the two-point density of states p' '(5r), its angular aver-
age p' '(5r), the probability density P(5r, r) for distances
5r traveled by probe particles during the elapsed time ~,
and the probe dynamic structure function S(k, r). We
obtain different types of probe behavior, including trap-
ping, hopping, and diffusion, by varying the temperature
of the probe particle and the density of the lattice. A
variety of computed diagnostics are shown to reveal
different aspects of these behaviors in a self-consistent
way.

II. COMPUTATIONAL METHODS

Our system is a square lattice containing 100X 100 lat-
tice points, with periodic boundary conditions imposed.
A rigidly fixed Lennard-Jones particle is placed on each
lattice point. The lattice spacing is a =1/&p, where p is
the lattice point density. We study a single probe particle
diffusing off-lattice in the spaces between the lattice parti-
cles. The probe particle interacts with the lattice points
by the Lennard-Jones 12-6 potential

12 6
0u(r)=
r

where tr =
—,'(o 0+AT&). The probe and lattice radii crz and
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o.
&

are 0.1 and 1.0, respectively, in arbitrary distance
units so that o. =0.S5. In our simulations, we choose a
cutoff interaction radius r „=10.5o. . The total poten-
tial energy U(r) of the probe is computed ignoring the
lattice particles that are more than r „away from the
probe.

The probe particle dynamics is based on the Metropo-
lis algorithm [15]. We generate random steps of max-
imum length ro. The probability that a random step is
accepted is exp[ Pb U—(r)], where @=1 lkttT, T is the

temperature, and AU is the change in the potential ener-

gy between the beginning and the end of the step. To en-
sure the isotropy of the random walk, we separately gen-
erate step components 5x and 5y along the x and y axes,
rejecting steps that do not satisfy the condition

5x +5y &r0 . (2)

(3)

by averaging Eq. (3) over the N0 choices of the time ori-
gin t, . The effective diffusion coefficient D is defined as

The step components 5x and 5y are chosen from a uni-
formly distributed (pseudo)random variable. Over small
numbers of steps and very short distances, the random
walk has a non-Gaussian distribution of displacements;
the central theorem guarantees that the displacement dis-
tribution converges (swiftly in this case) to a diffusive
(5x,5y -N', N being the number of steps) distribution.
Our Monte Carlo simulations were done for a series of
values of the lattice density p and temperature T.

We compute the mean-square displacement of single
probe particles as a function of the time displacement ~

computed by numerical integration. The angular average
p' '(5r) of p' '(5r), used in the following to interpret
P(5r, r), was obtained by a Monte Carlo integration from
exp[ —PU(r)], not by a direct integration of p'2'(5r).

III. NUMERICAL RESULTS AND DISCUSSION

In the following, we present numerical results for three
distinct types of probe behavior, namely, trapping, hop-
ping, and diffusion. This behavior can be observed by
varying the temperature T for a fixed lattice density p.
As the temperature rises, a transition from trapping to
hopping and from hopping to diffusion occurs. We also
identified a second high density, low temperature regime
in which the particles should be trapped in a region of
space different from the region in which trapping occurs
at low densities.

The functions of interest are the mean-square displace-
ment ( [5r(~)] & of the probe particle as a function of
time ~, the effective diffusion coefficient D, the probability
function P(5r, ~), the two-point density of states
p' '(5r) and its angular average p' '(5r), the ratio
P(5r, ~) Ip' '(5r ), and the dynamic structure function of
the probe S(k, ~).

D is conveniently normalized by D0, the diffusion
coefficient of the probe particle in free space. D0 is ob-
tained from the two-dimensional mean-square displace-
ment (r & during t via (r &=4D0t. For a random walk-
er with independent steps, (r & for N steps is N-fold
larger than (r & for a single step. DQ for a random walk-
er at large times can therefore be computed from (r & for
a single step, even if the small steps do not have a Gauss-
ian probability distribution. In particular, for steps hav-
ing a uniform distribution on a disc of radius ra, Do is
given by

(
[Br(r)]'

)
(4)

, f 'r'dr

4 f "'dr
2

8 0

—PU(5r+ r') —PU(r')d

p(2)(5r) (6)

gives the uncorrelated average joint probability of finding
a particle at two points separated by 5r. p' '(5r) was

by a weighted linear least squares fit using weight 1/~.
The determinations of ([5r(r)] & always began with
5 X 10 Monte Carlo steps to thermalize the probe parti-
cle. We then did 2X 10 samples of [5r(r)], P(5r, ~), and
S (k, ~) with 200 Monte Carlo steps between each sample.
All calculations were done on a DEC alpha computer
workstation. The random number generators used in the
simulations were RAN2( ) of Press et al. [14], and routine
RANDoM( ) in the DEC workstation FQRTRAN library.

We also compute the probe dynamic structure function

S(k ) ( ik.[r(t+ ) r(tr)] &—
—f dt ik. [r(t+r) —r(t)]

and the distribution function P(5r, w). The two-point
density of states

The behavior of a probe is determined by the shape of
the potential energy surface. Figure 1 shows the total po-
tential energy surfaces for the lattice density p=0. 09,
0.64, and 0.81. Because the total potential energy U(r)
has the periodicity and rotational symmetry of the under-
lying lattice structure, all the features of the complete po-
tential energy surface appear in one fourth of a unit cell.
The lattice particles are fixed and U(r) as experienced by
the probe varies only because the probe samples different
values of r.

At the lowest lattice density [Fig. 1(a)], U(r) is dom-
inated by the nearby lattice point at the origin; contribu-
tions to U(r) from other lattice points are small because
the lattice spacing a is large relative to o.. U(r) has a
high, steep central repulsive core, surrounded by a circu-
larly symmetric deep minimum due to the attractive r
part of the Lennard-Jones potential. At the higher densi-
ty p=0. 64 [see Fig. 1(b)], a local maximum appears at the
center of the lattice cell in addition to the repulsive cen-
tral core; a localized minimum is found midway between
neighboring lattice points along a lattice line. At the
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temperature (k~T=0. 1), the probe diffuses freely, with
no indication of hopping behavior; the mean-square
probe displacement ( [5r(r)] ) increases uniformly on all
time scales.

The distinction between trapping and hopping
behavior arises purely from the time scale of observation.
If the probe had been observed only at time intervals
~(10 for k&T=0.02, the probe would have appeared to
be trapped, with ( [5r(r)] ) becoming constant. Similar-
ly, at k&T=0.01, it is reasonable to suppose —at time
scales longer than those considered here —the probe
would eventually have escaped and shown hopping
behavior.

In the limit of large sample counts, the symmetry of
our potential energy guarantees that motions along the x
and y axes should show precisely the same behavior.
This requirement is not always precisely satisfied by our
data. There are two effects here. First, our longest delay
times are not arbitrarily shorter than the total length of a
simulation. At the longest delay times that we report, the
number of independent samples of [5r(r)] is relatively
small, so our determination of ([5r(r)] ) becomes in-
creasingly noisy at large ~. Second, in the hopping re-
gime, as the system becomes colder and colder, the inter-
val between hops becomes longer and longer. As a result,
no matter how long a simulation is performed, there will
always be temperatures at which only a few hops occur
during a single computer run; at these temperatures, the
noisy statistics of small numbers will typically cause
([x(r)] ) and ([y(r)] ) to differ from each other.

Figure 3 and Table I give D/Do as a function of T at
values of p. Table I also gives the percent standard devia-
tions of D /Do. If the probe remains trapped on the time
scale of our simulations, we can infer only an upper
bound (not necessarily a least upper bound) for D /Do', in
these cases we give no error estimate. Figure 3 indicates

TABLE I. The effective diffusion coefficient D /Dp as a func-
tion of the temperature T at lattice densities of p=0.09 and
0.64.

0.005
0.01
0.012
0.015
0.02
0.025
0.027
0.03
0.035
0.04
0.044
0.05
0.055
0.07
0.09
0.1

p =0.09

6X 10-'
6X 10-'

1.1 X 10 +53.5%%uo

5.8 X 10 +11.8%
5.1X10 ~+7.44%
2.32 X 10 +2.48%%uo

5.14X 10 +1.30%
0.1215+0.47%
0.1732+0.33%
0.2886+0.21%
0.3449+0.167%
0.6090+0.098%
0.8164+0.072%
0.9112+0.066%

D/Dp
p =0.64

6X10-'
4X 10-'
1X10-'
2X 10
5.1 X 10 +11.6%

4.61X10-'+1.28%

0.1373+0.42%

0.2390+0.24%

0.4471+0.15%

0.7414+0.078%

that the temperature dependence of D /Do approximately
follows an Arrhenius type relation,

D =e
Do

—EA /kB T

B. Time-dependent displacement distribution and the
two-point density of states

at both densities studied. The activation energy E„ is
nearly independent of temperature at both densi-
ties. Least squares fits to the data in Table I
yield 0. 1759+0.0006 (p =0.09), and 0. 1245+0.0009
(p=0. 64) for E~.

10' =

100

0 10
I

20 30
1lkgT

I

40 50

FICx. 3. Effective diffusion coefficient D/Dp versus kBT at
densities 0.09 (0 ) and 0.64 ( ). Straight lines are least squares
fits of data to an Arrhenius form, indicating Arrhenius
activation energies of 0.176+0.0006 (p =0.09) and
0. 125+0.0009 (p =0.64).

Figure 4 shows the probability P(5r, r) that a probe
travels a distance 6r in time ~ for ~ ranging from 200 to
2X10 steps, for a total run of 4X10 Monte Carlo steps.
The temperatures given (k~ T=0.01, 0.02, and 0.1) corre-
spond to trapping, hopping, and free diffusion.

Figure 4(a) shows trapping behavior. At short times,
P(5r, r) is nearly Gaussian. With increasing r, P(5r, r)
becomes nonzero over wider and wider regions. Howev-
er, in the cold system the probe particle is trapped in the
potential energy minimum seen in Fig. 1(a). At long
times (r between 2 X 10 and 2 X 10 steps), the location of
the probe has become uncorrelated with its initial posi-
tion and P(5r, r) becomes virtually independent of r.
The potential energy minimum has a diameter 2 V2o. , so
a thermalized probe never moves farther than 5r=1.5
from its starting point. (A nonthermalized probe placed
randomly on the lattice might initially move more than
6r=1.5, but during the thermalization such a probe
would become trapped in a potential energy minimum, so
that at the start of the simulation the probe would be
trapped).

Figure 4(b) shows hopping behavior. At very short
times, P ( 5r, r ) is approximately Gaussian. At longer
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(b)

P(5r, r) (10)%(5r, r) =

%(5r, r) characterizes the spatiotemporal dkspersion of
the probe with purely static effects divided out. Figure 7
shows 4'(5r, r) at low density (p=0.09) and temperatures
in the trapping, hopping, and diffusive regimes
(k~ T=0.01, 0.02, and 0.1, respectively).

Figure 7(a) shows low temperature trapping behavior.
For very short times (less than 2000 Monte Carlo steps
%(5r, r) appears to be Gaussian. At times r~ 0 steps,
trapping becomes visible, with %(5r,r) increasing as 5r
for small 5r due to the Jacobian converting Cartesian to
polar coordinates, but remaining approximately zero for
5r ~ 1.5. Figure 7(b) shows how the potential energy sur-
face correlates with hopping behavior. As may be seen
by comparing Figs. 7(a) and 7(b) within the trap
5r (1.5), %(5r, r) is no di6'erent for a hopping than for
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I I
(
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I
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FIG. 5. Two-point density of states p (5r) at p=(2) =0.09 and
(a) k&T=0.02, (b} k&T=0. 1, and p=0. 64 and (c) k&T=0.02,
(d) k~ T=0.1.

FICx. 6. Angular average p' '(5r) of the two-point density of
states at p=0.09 and temperatures k& T of (a) 0.01, (b) 0.02, and
(c) 0.1.
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a trapped particle. The barrier occupies 1.5 ~5r ~2.0.
Compare Figs. 4(b) and 7(b); the very deep barrier
minimum seen in Fig. 4(b) [P(5r, r) is depressed by ap-
proximately three orders of magnitude within the barrier]
disappears in Fig. 7(b), showing that the minimum is
purely a density of states effect that is eliminated if the
two-point density of states is divided out. Beyond the
barrier (5r )2.0), 4(5r, r) at fixed 5r grows monotonical-
ly in time, clearly showing hopping by the probe. Final-
ly, at the highest temperature studied [Fig. 7(c)], 0'(5r, rl
remains approximately Gaussian at all times, correspond-
ing to diffusive motion, with no indication of a significant
barrier effect on any time scale.

C. Dynamic structure function

Light scattering spectroscopy and inelastic neutron
scattering measure not P(5r, r) but its spatial Fourier
transform, the dynamic structure function S(k, r). Fig-
ure 8 displays S(k, r) of the probe as a function of k r.
To improve the signal to noise ratio, S(k, r) was obtained
by a direct calculation from the particle positions, not by
a transform of P(5r, r). We examined k&[0.5, 10.0],
which covers wavelengths from a small fraction of the
lattice spacing a =3.3 up to several lattice spacings.

Because the underlying lattice lacks continuous rota-
tional invariance, S(k, r) depends on the orientation of lr.

with respect to the lattice. We therefore obtained S(k, r)
for three different directions of k, using angles between k
and the x axis of 0', 22.5', and 45'. S(k, r) was found to
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FIG. 7. %(5r,~)=P(6r, ~)/p' '(5r) for the same values of ~
used in Fig. 4 at p=0.09 and temperatures (a) 0.01, (b) 0.02, and
(c) 0.1, showing trapping, hopping, and diffusive behavior, re-
spectively. Some curves were smoothed by averaging over near-
by points.

FIG. 8. Dynamic structure function S(k, ~) of a probe parti-
cle as a function of k ~ with k along a lattice line and p=0.09,
and temperatures k&T of (a) 0.1 (diffusive behavior), (b) 0.02
(hopping behavior), and (c) 0.01 (trapping behavior).
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TABLE II. Diffusion coe%cients found by fitting S(k, ~) at
p=0.09 and temperatures 0.01 (trapping), 0.02 {hopping), and
0.1 {difFusion) to A &exp( —Dk ~)+8 or A &exp( —Df k ~)
+ A 2 exp( D~ k 'T ) +8, as appropriate. 8, A &, A &, D, Df, and

D, are fitting parameters.

k~ T=0.01
D

k~ T=0.02
D,

k~ T=0. 1

D

0.5
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
1.0
1.5
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

6.29 X 10
4.38 X 10
3.73 X 10
3.22 X 10
2.81 X 10
2.47 x 10-'
2.19X 10
1.96 X 10
1.76 x 10-'
1.59 X 10
7.30X 10
4.31 X 10
2.39 X 10
2.41 X 10
2.40 X 10
2.77 x 10-'
2.33 X 10
1.66 x 10-'
1.85 x 10-'
1.29 x 10-'

6.89 X 10
4.83 X 10
4.10x 10-'
3 ~ 55 X 10
3.09 X 10
2.71 X 10
2.41 X 10
2.14X 10
1.92 x 10-'
1.74 X 10
7.46 X 10
4.72 X 10
2.86 X 10
3.18 X 10
2.82 x 10-'
3.12x 10-'
2.69 X 10
2.56 X 10
2.75 X 10
1.91 X 10

2.92X10 '
3.38 X 10
2.42 X 10
3.21 X 10

—'
2.88 X 10
1.90 X 10
2.67 x 10-'
1.59 X 10
1.47 x 10-'
1.28 X 10

6.28 X 10
6.36 x 10-'
6.41 X 10
6.47 x 10-'
6.52 X 10
6.56X10 '
6.59 X 10
6.63 x 10-'
6.66 X 10
6.69 X 10
6.78 X 10
6.72 X 10
6.86 X 10
6.89 x 10-'
6.80 X 10
6.67 X 10
6.61 x 10-'
6.42 x 10-'
6.10X 10
5.69 X 10

have a quantitative but not qualitative dependence on the
orientation of k, so we treat in detail only results for
which k lies along the lattice axis.

Figure 8(a) describes the high temperature (diffusive)
regime. To first approximation S(k, r) remains a univer-
sal function of k ~ even though k varies by 400 fold.
This behavior is characteristic of free diffusion, with a
diffusion coe%cient D renormalized by interactions with
the lattice.

At the lower temperature k~ T=0.02 [Fig. 8(b), Table
II], S(k, r) at small k clearly shows decays on two time
scales, corresponding to two aspects of probe motion. At
short times, motion confined by the potential barrier, i.e.,
short time trapping, leads to a rapid decay of S(k, r).
On longer time scales, motion from one lattice site to
another, i.e., hopping, completes the relaxation of S(k, ~).
At large k, only motion within the trap can be detected,
so only a single diff'usion coefficient is obtained (Table II,
columns 3 and 4).

Figure 8(c) corresponding to the lowest temperature
studied, shows trapping behavior. On short time scales,
S(k, r) decays to a nonzero constant with a short time
diffusion coefficient seen in Table II. S(k, r) is approxi-
mately constant on longer time scales. Physically, the
short time behavior reAects thermalization of the probe
position within the trap, while the lack of a long time de-
cay refiects the failure of ( [6r(r)] ) to increase at large
times. The non-zero amplitude of S(k, r) for different k
at large ~ corresponds to the spatially nonuniform equi-
librium density of the trapped particles.

Table II presents diffusion coe%cients obtained by
making nonlinear least squares fits to

S(k, r)=A, e " "+B

or
—Dk~ —D k

S(k, r)= A, e f + Aze ' +B, (12)

where the A; are amplitudes, the D; are diffusion
coe%cients, and B is a baseline; B, the A;, and the D,. are
fitting parameters. S(k, r) for trapping, diffusive, and
large-k hopping regimes are described by Eq. (11);S(k, r)
for small-k hopping probes was fitted adequately by Eq.
(12). These fits are only approximations; S(k, r) is not
perfectly exponential at large ~.

Simple physical considerations explain most of the phe-
nomena seen in Table II. At short times, whether in the
trapped, hopping, or diffusive regimes, a particle is able
to diffuse more or less freely within a potential energy
minimum. Corresponding to this motion, in all systems
there is a relatively rapid (D —10 ) relaxation of S(k, r).
In a diffusive system [kii T=0. 1, Fig. 8(a)], this relaxa-
tion persists out to long times with S(k, r ) going to zero
at large r. In a trapped system [ksT=0.01, Fig. 8(c)],
this relaxation persists until the particle has finished ex-
ploring its trap; at longer times S(k, r) ceases to decay.

In the hopping regime [k~T=0.02, Fig. 8(b)], the
behavior of S(k, r) is more complicated. At short times,
the particle explores its trap, using a "fast" diffusion
coeKcient Df little different from the D characteristic of
trapped probe particles. At longer times, a hopping par-
ticle escapes from its trap. The form of the spectrum
hence depends on k. At large k we see primarily short
distance motions, so motion of the hopping particle
within the trap relaxes S(k, r), leading to single exponen-
tial decay characterized by Df. At small k, we see dis-
tance over small and over large distances, so both intra-
and inter-trap diffusion relax S(k, r), leading to a
double-exponential decay. With increasing k&T, the Df
and D, seen at k&T=0.02 merge into the single decay
seen at k~ T=O 1. Note th.at Tables I and II give D/Do
and D, respectively, so the indicated numbers are not
simply comparable.

Figure 9 shows the k dependence of D. At high tem-
perature (triangles), D is seen to have a weak dependence
on k, fluctuations of larger wavelength decaying slightly
more quickly than Auctuations of lower wavelength. Par-
ticles at intermediate and low temperature each show a
relaxation corresponding to diffusion within a trapping
site; intrasite diffusion coefficients for trapped particles
(circles) and hopping particles (squares) are very nearly
the same. Finally, hopping particles at low k (corre-
sponding to long distance motions) show a very slow re-
laxation (diamonds) corresponding to escape from the
traps. It is perhaps surprising that this relaxation be-
comes slower at larger k; we do not attempt a quantita-
tive interpretation of the k dependence of D here. With
increasing kz T, this slow relaxation would be expected to
become more rapid, eventually merging with the high
temperature free diffusion relaxation (triangles).

At very large k, and all temperatures, D decreases
modestly. In this regime kro is not small and the dynam-
ics begin to be affected by the granularity of the random
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walk process. The decrease in D at large k can be inter-
preted as arising from an anticorrelation of successive
successful Brownian steps for a particle initially attempt-
ing to ascend potential energy surfaces with positive
second derivatives.

IV. CONCLUSIONS

We have used Monte Carlo dynamics simulations to
study the diffusion of a small probe particle through a
square lattice of force centers. The probe-lattice point in-
teraction was the Lennard-Jones potential. Extensive ad-
vantage was taken of the ability of computer simulations
to determine physical quantities that cannot be measured
directly, such as the two-point density of states p' '(5r)
and the displacement probability density P(5r, r).

We found a consistent description of all computed
functions in terms of a three regime description: (i) trap-
ping, in which particles remain localized on a single lat-
tice site on accessible time scales, (ii) hopping, in which
particles are trapped on short time scales but diffuse on
longer time scales, and (iii) diffusive, in which ((5r) ) in-
creases roughly linearly in time at all observable time
scales. The regimes may be identified from the charac-
teristic behaviors of the quantities ([5r(r)] ), P(5r, r),
4'(5r, 7') and S(k, r), and may be understood in terms of
the major features of the total potential energy U(r).

In the trapping regime, P(5r, r) at first broadens with
increasing r and then hits a limit with P(5r, r) for a
trapped particle becoming time independent at
sufficiently large times. Corresponding to P ( 5r, r ),
( [5r(r) ] ) for a trapped particle at first increases linearly
in v and then ceases to increase, while S(k, r) decays
roughly exponentially in time to a substantially positive
plateau value.

I I I I I I I I I I I

10-1 100 10~ 102

k2

FICx. 9. D from S(k, v) of Fig. 8 as a function of k at tem-
peratures 0.1 (open triangles, diffusive behavior), and 0.02 (open
squares and diamonds, fast and slow relaxations characteristic
of hopping behavior). At k& T=0.01 particles do not diffuse at
large times (trapping behavior) and therefore have only ap-
parent short time diffusion coefficients (open circles) that are the
same as the short time relaxations seen in the hopping regime.

In the hopping regime, ([5r(r)] ) at first increases
linearly with w, enters a clear plateau region in which the
mean-square distance traveled does not change appreci-
ably, and then increases linearly with ~ again. This
behavior is reAected by a double-exponential decay of
S(k, r), the fast and slow exponentials corresponding to
motion within and between traps, respectively. P(5r, r)
allows one to visualize how trapping and hopping
proceed. At short times P(5r, r) shows a particle that is
free to move within some domain, but whose presence
beyond the edge of the domain is greatly suppressed.
With increasing r, P(5r, r) gains an expanding shoulder
at larger 5r One. sees in P(5r, r) three spatial regions,
namely, an area with the trap, a barrier region within
which P(5r, r) is very small, and a region at larger 5r that
is gradually populated by particles that have traversed
the barrier region. %(5r, v)revea. ls that the barrier is
caused by phase space rather than dynamic effects; if one
divides P(5r, r) by the two-point density of states p' '(5r ),
the barrier region disappears and %(5r, r) does not have a
deep minimum within the barrier.

Finally, in the diffusive regime, the particle s mean-
square displacement increases nearly linearly in time, so
that S(k, r) is very close to being a universal function of
k2~ over a factor of 400 in k . Correspondingly, P(5r, r)
has a near Gaussian form at all ~, as expected for a
diffusing particle.

In both the hopping and diffusive regimes, the probe
particle has a well defined effective self-diffusion
coefficient D. D is temperature dependent, the depen-
dence being described with reasonable accuracy by an
Arrhenius activation energy E~. E~ is concentration
dependent, varying from 0.18 at a density of 0.09 to 0.13
at a density of 0.64.

In the system studied here, trapping occurred in a po-
tential minimum [Fig. 1(a)] having the form of a circular
annulus centered on individual particles. The trap may
also be seen as a circular annulus in P(5r, r) [Fig. 5(a)]
surrounded by a large area in which P(5r, r) is virtually
zero. At higher potential energies, regions of minimal
potential energy change form [Figs. 1(b) and 1(c)], leading
to new shapes [Fig. 5(c)] for regions within which parti-
cles can be trapped, and between which particles can hop.
We explored hopping behavior in the low temperature,
high density (d=0. 64) regime, in which the form of
P(5r, r) [Fig. 5(c)] is very different from its form at low
density [Fig. 5(a)], but there are no new qualitative obser-
vations apparent from studying this regime.
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