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Flame propagation in random media
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We introduce a phase-Geld model to describe the dynamics of a self-sustaining propagating
combustion front within a medium of randomly distributed reactants. Numerical simulations of this
model show that a Game front exists for reactant concentration c ) c* ) 0, while its vanishing at c* is
consistent with mean-Beld percolation theory. For c ) c*, we Bnd that the interface associated with
the di8'use combustion zone exhibits kinetic roughening characteristic of the Kardar-Parisi-Zhang
equation.
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The behavior of a nonequilibrium system is often lim-
ited by a reaction front between one metastable or un-
stable phase and another more stable phase. A common
but spectacular example of this occurs in slow combus-
tion where a Game front forms and can propagate [1—6].
Here we study a phase field model of combustion in the
absence of convection and apply methods developed in
the study of phase transitions to the asymptotic behav-
ior of a self-sustaining combustion front growing within
a medium of randomly distributed reactants. Both the
formation of the front as well as its universal dependence
on length and time are examined. We find numerically
that the combustion front exists for reactant concentra-
tion e ) c' ) 0 in d = 2 dimensions, where the behavior
at c* is consistent with that of mean-field percolation.
For c ) c*, we find that the dift'use combustion zone
exhibits kinetic roughening characteristic of the Kardar-
Parisi-Zhang interface equation [7].

While we expect our phase-field model to describe the
universal features of combustion or reaction &onts in the
absence of convection, we shall motivate it below in terms
of a specific example, forest fires. The physics associ-
ated with forest fires has recently received attention [2—4]
due to the potential relationship with the concept of self-
organized criticality, introduced by Bak [5] and collabo-
rators. In most cases studied to date, cellular automaton
models on a lattice have been used [2—4]. In these works
a collection of forests which can burn and subsequently
reappear is considered. In contrast, this paper focuses
on systems in which the reacting element cannot sponta-
neously reappear. It is worth noting that although our
paper is partly motivated by this work, we shall not di-
rectly address issues such as self-organized criticality.

Our model consists of two coupled reaction-difI'usion
equations, one governing the concentration of reactants,
and the other the dynamics of a thermal field. Unlike
discrete lattice models, this model incorporates the in-

terplay between long-range thermal difFusion and local
random concentration fields. Within our model, varia-
tions in the local temperature field T(z, t) at position
x and time t are due to three effects: (i) therinal dif-
fusion through the medium; (ii) Newtonian cooling due
to coupling to a heat bath; and (iii) generation of heat,
limited by activation, from the reactants. Explicitly, the
temperature field obeys

Bt
= DV' T —I' [T —To] —V VT+ R(T,'C),

where D is the diff'usion coefIicient, I' is the thermal dissi-
pation constant, and To is the constant background tem-
perature of the bath responsible for Newtonian cooling.
For completeness we have included convection due to an
external forcing V, but we shall hereafter set this term
to zero.

Nonlinearities enter through the reaction rate R(T, C),
which is limited by a field C describing the local concen-
tration of reactants. Activation implies that this term
is proportional to exp( —A/T), where A is an activation
energy, and Boltzmann's constant has been set to unity.
Furthermore the rate is limited by the local Hux oc ~T,
so that the local energy produced per unit time is propor-
tional to q(T) = TsI2 exp( A/T), where th—e additional
factor of T sets the scale of energy. In the combustion
literature [1], the multiplicative prefactor is T, where
n = O(l) varies according to the conditions present.
However, the particular form is relatively unimportant
since the dominating temperature dependence is the ex-
ponential activation. Hence, on measuring temperature
in units of the activation energy, we model the reaction
rate as

where A~ is a dimensionless constant. This completes the
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formulation. Initial conditions on the field C determine
the random distribution and concentration of reactant.
Here we have initially distributed the reactant at ran-
dom, with the probability that a given system site is oc-
cupied being c, where the field variable C equals 1 on an
occupied site and zero if the site is unoccupied.

For the remainder of this paper, we consider d = 2,
where a &ont initially parallel to the y axis propagates
in the x direction. The dimensionless parameters are set
to D = 0.2, I' = 0.05, Tp ——0.01, and Ai ——8, time is mea-
sured in units of those for the reaction A2/Ai, and length
in units of the dimension of the reactant. In our numer-
ical work, the mesh size in space is set to Ax = 1, while
the mesh size in time is Lt = 0.01; tests of smaller mesh
sizes give qualitatively similar results. It is useful to re-
late these choices of parameters to the specific example of
a forest fire. For example, the constant A2 in Eq. (2) can
be found in terms of the density and specific heat of air
and the activation temperature of wood [10]. In physical
units, we have D 1 m s, I' 0.05 s, Tp 10 K,
cp 5 3 g K, and 4 500 K. With the exception
of Tp, these are comparable to real systems. Our small
Tp has been chosen to give enhanced cooling and hence
keep diffusion Gelds relatively short ranged. This allows
us to perform our numerical integrations with good accu-
racy without having to simulate extremely large systems.
Test runs show that our results are relatively insensitive
to the choice of Tp.

Due to the activated nature of the combustion process,
a self-sustaining propagating combustion front requires a
sufIicient amount of heat to be released during combus-
tion. The source for this heat is the reactant concentra-
tion c. Since activation limits the production of this heat,
we expect existence of a nonzero concentration c*, below
which the fire will spontaneously burn out due to insufIi-
cient heat production. That is, for c ( c* the velocity of
the front v(c) = 0, while v is nonzero for higher concen-
trations. For quantitative analysis the position h(y, t) of
the front, where v = Oh, /Ot, is defined as the position x
where the temperature is maximum at a given time and y
position. The variable 6 is then a single-valued function
of y.

For large concentrations, v is constant after an initial
transient, and increases with c. The transient increases as
c* is approached. In the vicinity of c*, the asymptotic ve-
locity approaches the relationship v(c) (c—c*)~, where
P is an exponent similar to that obtained in percolation
theory [9].

To determine the scaling exponent in the case of a
random background, Eqs. (2) and (3) were numerically
solved on a lattice using periodic boundary conditions
in the y direction and Gxed boundary conditions in the
x direction. The dimension of the system is L in the
y direction, and well exceeds vt

„
in the x direction,

where t is the maximum time studied. At every site,
the concentration variable C is initially either zero or
1, and randomly distributed with average c. The fire
is started at the far left by igniting a complete row of
"trees" at y = 0. After a short transient, the propa-
gating fire &ont assumes a steady-state average velocity
v(c). In Figs. 1(a) and l(b) typical configurations of the

propagating temperature field are shown at c = 0.65 and
0.225. For lower densities, the front becomes very ir-
regular and Gnally stops propagating. Calculating the
velocity numerically for L = 200 we Gnd c* = 0.19+ 0.02
and P = 0.46 6 0.09.

Mean-field theory is useful to understand these per-
colation results. Consider a uniform distribution of re-
actants, whose d.ensity variable C is everywhere equal
to c. In this description there are no longer varia-
tions in T in the y direction. Assume there exists a
mean-field temperature front T moving with constant
velocity v (c). Using BT/Ot = vdT—/dx, we ob-
tain a nonlinear consistency relation between T and
v (c). We have solved this mean field model numeri-
cally, revealing a dependence of v (c) in c of the form
v (c) oc (c —c*)~, near c* = 0.19, where P = 0.5. The
exponent P = 1/2 is also a consequence of the follow-

ing argument. I et xq be a point sufIiciently ahead of
the peak of T, beyond which dissipation exceeds ac-
tivation in the thermal difFusion equation. Expanding
B(T) to linear order around Tq;~ = T (xq), we find
that the leading edge of T goes as T exp ((—v

gv —4D[A, C,.;)q'(T,.;i) —I']/2D)x), wl ere C,.;i
C(xq). The requireinent that T does not develop any
oscillatory components gives, for c near c*, v & A(c-
c*) ~, with c implicitly defined by c* = I'/[q'(T~*,.i)Ai],
and where Tt',.

&
implies evaluation at c = c*. This anal-

ysis is analogous to the method used in Ref. [11] to find
front velocities in the context of epidemic models, and
we expect that near c = c*, v will approach its lower
bound.

To incorporate finite-size e8ects, we use a scaling form

v(c, L) - L ~i O[(c —c*)L'i ].

This is the same as that used in percolation theory [8].
Here v is the correlation-length exponent ( (c —c*)
and the scaling function O(x ~ oo) x~. We relate P
to the percolation transition exponents through v(c)
(/w (c —c*),where A is the critical slowing down
exponent, so that P = A —v. In Fig. 2, we show numerical
results for v(c, L)L~~" vs (c —c*)Li~ for nine difFerent
system sizes ranging from I = 4 to L = 200. Using
c* = 0.19 and P = 0.46, we find that the best collapse
occurs for v = 0.6 + 0.1, as shown in Fig. 2.

The results for the critical exponents are consistent
with the mean-field exponents of percolation, for which

P = v = 4/2 = 1/2 [9]. Qualitatively, heat propagation
in our model is limited by a percolation lattice, provided
by the random density field C. Below c*, the connected
cluster available for front propagation breaks down, and
the Gre spontaneously dies out. The mean-field nature
of the critical exponents is due to the extended nature of
the difFusion Geld associated with T. We see no numerical
evidence for a crossover to non-mean-Geld exponents for
the realistic parameters we have used.

For c ) c', it is clear from Fig. 1 that the propagating
interface associated with T develops large fluctuations
and appears rough. We define the width of the interface
by iv = ((h —(h))2)i~2. Rough interfaces often satisfy
the scaling relation [7,12] iv(t, L) t~f(t/L') for large
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FIG. 1. The temperature field T(x, y, t) for a moving fire front in a uniform, random forest with (a) c = 0.65 and (b)
e = 0.225. The dark pixels correspond to the temperature field; the higher the temperature the darker the pixels. The interface

h(y, t) is defined by the curve outlined by the darkest pixels. The light grey pixels to the right of the interface represent
reactant.

I and t. An important example of this is the Kardar-
Parisi-Zhang (KPZ) interface equation [7], for which the
exact and nontrivial exponents are P = I/3, z = 3/2, and

y = zP = I/O, in d = 2. In our case, for any given value
of c ) c*, we expect the width to obey this scaling form,
i.e., for large t, we expect m t~ in the limit t && I
where finite-size effects can be neglected. To account
for the dependence of the width on concentration in this
limit, we propose

ee

where iv, (t m oo) t~, and for c near c*, ((c)
(c —c') " and 7 (c) (c—c*) . It is straightforward to
generalize this form to include finite-size effects. In Fig.
3 we show the scaled width m, plotted vs the scaled time
t, = t/r, for seven difFerent values of c with L = 200. For
this I, finite-size effects play no discernible role. The
inset shows the original data set. A transient time to
has been subtracted, which has been determined from
the point where v(c) reaches a constant value. From the
fitted ((c) and r(c) for the data collapse we cannot ac-
curately estimate v and L, although they are consistent
with the mean-field values.

0.2 0.4 0.6 0.8
C

6 —4 —2 0
ln[(c —c')L'r ]

FIG. 2. Finite size scaling of v(c, L). The main figure shows

ln (v(c, L)L~ ") vs ln ((c —c')I "). The inset shows the
unscaled data for system sizes L = 4, 6, 8, 24, 44, 54, 64, 104,
and 200, from right to left. Sizes larger than L = 24 lie

almost on the same curve.
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FIG. 3. Crossover scaling function ia, plotted vs t, = t/r
The inset shows the concentration dependent width ia(c, t),
for c = 0.4, 0.5, 0.6, 0.7, 0.75, 0.80, and 0.85 from top to bot-
tom. The roughness increases with decreasing density. A
transient time t0 and the corresponding ofFset mo have been
subtracted from each ur(c, t)

Prom the scaled data of Fig. 3, we determine the rough-
ening exponent P. The running slope of the data from a
ln tII vs lnt plot gives an effective P(t), which is shown in
Fig. 4. After an initial transient the slope clearly tends
towards P = 1/3, which is the exact KPZ value. We
have also analyzed the data by calculating the di8'erence
ill(bt) —tU(t) = A(bl —l)tl, where b is a constant (e.g. ,
b = 2). From this we find P = 0.34 + 0.04, which is our
best estimate of this exponent.

In the limit where the width saturates due to finite-size
effects, i.e. , t )) L', the scaling relation gives uI(c, L)

Using system sizes I = 50, 76, 100, 150, 200, 300,
400, and 600, we obtain y = 0.5 + 0.1 for c = 0.5 and
y = 0.5 +0.2 for c = 0.85, as compared. to the exact KPZ
value of g = 1/2. Our results for P and y are therefore
in good agreement with those of the KPZ equation [7,6].
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FIG. 4. A log-log plot of the scaling function m, of Fig. 3.
The inset shows the efFective P as a function of time. The
straight line represents P = 1/3.
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To summarize, in this work we have developed a real-
istic phase-field model for combustion fronts. We find
a percolation transition at a critical reactant density
c* 0.19, below which the fire will spontaneously die.
We have analyzed the nature of this transition and found
critical exponents which are consistent with those of
mean-field percolation. Furthermore, above c*, we found
that the disuse combustion front displays kinetic rough-
ening. By an appropriate generalization of the usual scal-
ing form for interfaces, we have shown that the roughen-
ing exponents are compatible with the KPZ universality
class.
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