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The spectral statistics of two closely related strongly chaotic quantum billiards are studied. Both
are de6ned on the same triangular domain on the hyperbolic plane and differ only in the choice of
the boundary conditions on the edges of the billiards. The fundamental domain is generated by the
action of the re8ection group T*(2,3, 8), which is an arithmetical group leading to an exponentially
degenerate length spectrum of the classical periodic orbits. The boundary conditions on one billiard,
called billiard A, are chosen such that it does not belong to a representation of the refiection group,
whereas for billiard 8 the boundary conditions correspond to an irreducible symmetry representation.
The crucial property of arithmetical chaos, i.e., the exponential degeneracy of periodic orbits having
the same length, is not affected by the choice of the boundary conditions. For both billiards our
analysis of the spectral statistics is based on the first 1050 quantal energy levels, which we have
computed using the boundary element method. It is found that the quantal level statistics for billiard
8 show the peculiar properties typical for arithmetical quantum chaos, as discovered previously for
other arithmetical systems. Billiard A, however, behaves generically in that it shows at short- and
medium-range correlations a behavior in agreement with the random-matrix theory. The periodic-
orbit theory is scrutinized to shed some light on the mysterious differences between these two almost
identical quantum billiards. The trace of the cosine-modulated heat kernel and the spectral form
factor are studied. It is demonstrated that subtle properties of the characters attached to the
classical periodic orbits are very important ingredients in the phenomenon of arithmetical quantum
chaos.

PACS number(s): 05.45.+b, 03.65.—w

I. INTRODUCTION

This paper is devoted to a study of the energy level
statistics of quantum systems whose classical counter-
parts are strongly chaotic. Special emphasis is put on
the so-called arithmetical chaos and the peculiarities of
the quantum spectrum ascribed to the exponential de-
generacy of the length spectrum of the periodic orbits of
the classical counterpart.

General wisdom holds that the statistical properties
of quantum levels of chaotic systems are in accordance
with random-matrix theory [1]. Lacking any analytical
proof that random-matrix theory is applicable to quan-
tum chaotic systems, one is doomed to carry out numer-
ical studies. Up to now only the periodic-orbit theory [2]
has provided access to a satisfactory description of the en-

ergy spectra. The predictions of random-matrix theory
were first tested for the Sinai billiard [3] and the stadium
billiard [4], where the level spacing statistic P(s) and the
spectral rigidity As(L) were studied. Meanwhile, there
are many chaotic systems for which the energy spectra
have been computed and compared with the predictions
of random-matrix theory [2]. However, the investigations
are, in most cases, restricted to the short- and medium-
range correlations in the energy spectra, which seem to
con6rm the agreement with random-matrix theory. The
long-range correlations do not show a universal behavior
since they are determined by the short periodic orbits
that depend sensitively on the given system. According
to a model [5] based on the periodic-orbit theory, the

short-range correlations, in contrast, are determined by
the long periodic orbits whose lengths show no sensitive
dependence on the given system since they are lying ex-
ponentially dense near each other. The mean difference
between neighboring lengths is determined by the expo-
nential proliferation of the number %(l) of periodic orbits
with lengths shorter than l, which is asymptotically given

by N(l) —'&, l —+ oo, v. being the topological entropy.
The exponentially dense lying periodic orbits then blur
the individual properties of a given system.

Thus the applicability of random-matrix theory to
quantum chaotic systems has to be restricted to the
short- and medium-range correlations that are probed by
the level spacing P(s) or the number variance Z (L) and
the spectral rigidity As(L) for small values of I. For
large I values, the individual properties are measured.
This is valid for quantum systems that do not belong to
the class of arithmetical quantum chaotic systems. In the
latter class not even the short-range correlations are in
accordance with random-matrix theory, apart from the
limit I. —+ 0, which is universal for both chaotic and in-
tegrable systems.

The 6rst arithmetical quantum chaotic system for
which the deviation from the random-matrix theory ex-
pectation was observed was a triangular billiard with
Dirichlet boundary conditions that tessellates the hyper-
bolic plane [6]. It is denoted by T*(2,3, 8) because it is
characterized by the three angles —, ~, and — (see Fig.
1). The star denotes that the triangle group is actually
a re8ection group, which needs the complex conjugation
in its representation on the Poincare disk. However, in
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FIG. 1. The quantum billiards A and 8 in the Poincare
disk V. The left triangle defines billiard A with Neumann
boundary conditions on sides a and b and a Dirichlet bound-
ary condition on side c. The right triangle shows billiard 8
with a Dirichlet boundary condition on side a and Neumann
boundary conditions on sides 6 and c. The left corners of the
triangles are at the origin z = 0 of the Poincare disk P whose
boundary ~zi = 1 is not shown.

the first studies, the arithmetical property was not ac-
knowledged and the peculiar behavior was attributed to
the fact that this billiard tessellates the whole hyperbolic
plane. Later studies demonstrated [7] that the energy
spectra of nonarithmetical (asymmetric) hyperbolic oc-
tagons, which also tessellate the hyperbolic plane, behave
in accordance with random-matrix theory with respect to
short- and medium-range correlations. This proved that
the tessellation argument was not justi6ed.

One was led to the special triangular billiard T*(2,3, 8)
by the study of the geodesic Row on compact Riemann
surfaces, represented on the hyperbolic plane, which is
considered the prototypical example of a strongly chaotic
system. A special Riemann surface of genus g = 2, the so-
called regular octagon [8], was investigated, but because
of its high symmetry it has to be desymmetrized. One of
its 96 irreducible symmetry representations corresponds
to this special triangular billiard.

The central characteristic of arithmetical chaotic sys-
tems was discovered at first [9] in the case of the regular
octagon for which the length spectrum of periodic orbits
was found to be degenerate exponentially with increasing

l/2
length l according to the mean behavior (g(l) ) p'&
l ~ oo, with p = 8v 2 [9]. This exponential degeneracy
of the lengths of periodic orbits was rigorously proven
for the regular octagon in [10] and. for general arithrneti-
cal systems in [11,12]. A further arithmetical billiard,
which played an important role in the understanding of
the behavior of arithmetical quantum systems, is Artin's
billiard T*(2,3, oo) [13—16].

In this paper we study the spectral statistics of two tri-
angular quantum billiards, called A and 8, defined on the
above mentioned hyperbolic triangle generated by the ac-
tion of the re8ection group T*(2,3, 8). In the next section
we describe in more detail the two quantum billiards A
and 8. Section III discusses the statistical properties of
the quantal energy spectra with special emphasis on the
differences between arithmetical and generic chaos. In
Sec. IV the periodic-orbit theory is employed to extract
information about the periodic orbits from the quantal
energies using the trace of the cosine-modulated heat ker-
nel and the spectral form factor. It is demonstrated that
subtle properties of the characters attached to the classi-
cal periodic orbits are a very important ingredient in the
phenomenon of arithmetical quantum chaos. Section V
gives a summary and discussion of the results.

gij i i=12

corresponding to constant negative Gaussian curvature
K = —1. This fixes the length scale.

The classical motion (geodesic flow) is determined by
the Hamiltonian II =

2 p; g'~ p~, p; = m g,~ dx~ /dt.
The classical trajectories consist of geodesic pieces where
the geodesics are circles intersecting the boundary of the
Poincare disk P perpendicularly.

The quantum mechanical system is governed by the
Schrodinger equation (z E 7 )

—A4'„(z) = E„@„(z)

(2)

where A denotes the non-Euclidean Laplacian corre-

In this section we shall describe in more detail the two
triangular quantum billiards A and 8. Their fundamen-
tal domains are classically identical to that of the previ-
ously studied billiard T (2, 3, 8) with Dirichlet boundary
conditions. They differ &om that triangle only in the
chosen boundary conditions. Instead of pure Dirichlet
boundary conditions, a mixture of Dirichlet and Neu-
mann boundary conditions is imposed. The classical
dynamics is not affected by the chosen boundary con-
ditions, i.e., the classical length spectra of periodic or-
bits are in all cases identical with respect to the lengths
and the degeneracies of the lengths. From the point of
view of periodic-orbit theory, the boundary conditions
are only reflected by phase factors (characters) in the
amplitudes of the periodic-orbit contributions. Choosing
on the three sides all possible combinations of Dirichlet
and Neumann boundary conditions yields eight differ-
ent quantum systems. In [17] all eight possible bound-
ary combinations were studied. Based on the first 200
eigenvalues computed by the finite-element method, the
energy statistics were shown to be not identical for the
eight systems. Four of the eight spectra behaved in
accordance with random-matrix theory with respect to
short- and medium-range correlations, whereas the other
four showed the peculiar behavior typical for arithmetical
quantum chaotic systems. It is important to emphasize
that all eight billiards possess the same length spectrum,
i.e., the lengths as well as the degeneracies are identical.
Thus the peculiarities must be due to a much more subtle
origin than due to the degeneracies of the lengths.

Let us now discuss the billiards in more detail. They
are conservative Hamiltonian systems with two degrees of
freedom that classically consist of a point particle sliding
freely inside a compact hyperbolic triangle 7 with elastic
rejections on the boundary 07. The Poincare disk 'D

is chosen as a model of the hyperbolic surface, which
consists of the interior of the unit circle in the complex z
plane (z = xi + i2:2) endowed with the hyperbolic metric
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sponding to the hyperbolic metric (1). Here and in the
following units h = 2m = 1 are used. The wave functions

(z) have to obey proper boundary conditions on the
boundary 07 of the triangular billiard 7 .

The hyperbolic triangle 7 is defined by the three angles
a = s, P = s, and P =

2 (see Fig. 1). Since the length
scale is fixed (K = —1), the hyperbolic length a of side
a is given by

cos a. + cos p cos pcosh a
sin p sing

with analogous equations for sides b and c. One has a =
0.764285. . ., b = 0.363519.. ., and c = 0.860706. . .
The area is given by area(7 ) = n/24.

The triangular billiard tessellates the Poincare disk 27

by the action of the re8ection group T*(2,3, 8), which is
generated by the three reflections along the three sides
of the triangle. A close inspection of the action of the
reflection group on the triangle reveals that sides b and
c are mapped onto copies of each other, whereas side a
is only mapped onto copies of itself. The consequence
is that only those combinations of boundary conditions
having the same boundary condition along sides b and
c are compatible with the reflection group, i.e., they
correspond to a representation of the reflection group,
whereas the choice of the boundary condition on side a
is not restricted. Thus four combinations are obtained
that belong to a representation of the reflection group
and four that do not, but all the eight classical systems
nevertheless tessellate the whole Poincare disk V. It has
been pointed out in [17] that the four triangular billiards
that yield subspectra of the spectrum of the regular oc-
tagon and are thus compatible with the reHection group
show the peculiar behavior characteristic for arithmetical
chaos, while the other four behave according to random-
matrix theory at small- and medium-range correlations.
It is worthwhile to note that Gutzwiller's semiclassical
periodic-orbit theory [2] is only exact for the compatible
case since only in that case one can derive the trace for-
mula without any approximation, as Selberg has shown
for general Fuchsian groups [18].

We choose the following two combinations of bound-
ary conditions: For the incompatible case we choose Neu-
mann boundary conditions on sides a and b and a Dirich-
let boundary condition on side c. In the following this
quantum billiard is called billiard A. The other billiard,
which we call billiard 8, is de6ned by a Dirichlet condi-
tion on side a and Neumann conditions on sides b and
c. The quantum billiard 8 represents the compatible
case that corresponds to a representation of the reflection
group. Both billiards are illustrated in Fig. l. We would
like to emphasize that billiard A and billiard 8 pos-
sess the same arithmetical structure leading to the same
length spectrum of periodic orbits. Using the boundary
eleinent method [19] we have computed all quantal ener-
gies 0 & Ei & E2 & ~ ~ up to E = 100000, containing
roughly 1050 levels for each billiard. The ground-state
energies are Ei ——45.58 for billiard A, and Ei ——32.67
for billiard 8. We observe no degeneracies among the
computed quantal levels.

III. LEVEL STATISTICS

A. The W'eyl series

The first step in the analysis of the statistical prop-
erties of the quantal levels of billiard A and billiard 8,
respectively, is the unfolding of their energy spectra. The
quantal energies E are mapped by

(4)

area(7) s a+ E: 6+ s'c

(5)

where area(7 ) = vr/24 denotes the area of the triangle
and a, b, and c are the hyperbolic lengths of the corre-
sponding sides [see Eq. (3)]. The boundary conditions

2 I I I j
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FIG. 2. The spectral Quctuations b are shown for (a) bil-
liard A and (b) billiard 8.

onto a normalized spectrum (x ) having a mean level
spacing of unity. Here X(E) denotes the Weyl series
that describes the asymptotic behavior of the spectral
staircase JV(E) counting the quantal levels up to energy
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8 behaves in an analogous way, we split the energy in-
terval into E 6 [0, 50000] and E E [50000, 100000]. The
result is shown in Figs. 3(c) and 3(d). The distribution
indeed tends at higher energies more to the Poisson curve
and at s = 0 the distribution increases roughly &om 0.4
to 0.7. The numerical results thus may be interpreted to
indicate that the level spacing of billiard 8 approaches
a Poisson distribution in the semiclassical limit. If this
were indeed the case, there arises the interesting ques-
tion of why the semiclassical limit is reached so slowly in
comparison to billiard A, for which the GOE curve is al-
ready a satisfactory description in the low-energy range;
this has often been observed for other systems and, as an
example, we would like to recall the results in the case of
the asymmetric hyperbolic octagons [7] where the energy
statistics were studied for an ensemble of 30 difFerent oc-
tagons. A superposition of their spectra with only the
first 75 quantal levels already shows a striking agreement
with the GOE prediction.

Since the level spacing statistics of arithmetical chaotic
systems are not stationary in the commonly accessible
energy range comprising the first 1000 levels, another
property has been found that distinguishes arithmetical
systems &om the generic class.

C. The number variance Zs(L)

The number variance allows a convenient inspection of
the properties of the energy spectrum over all scales of
correlation lengths. In contrast to the nearest-neighbor
level spacing P(s), which measures only short correlation
lengths, the number variance Z (L) probes the spectrum
over all correlation lengths L. The number variance de-
scribes the fluctuations of the number n(L) of levels con-
tained in a randomly chosen interval of length L and is
defined as

~'(~):= ((-(~) —~)')

where the angular brackets () denote a local averaging
over suKciently many levels. In definition (9) it is as-
sumed that the energy spectrum is already unfolded such
that (n(L)) = L. For GOE matrices the randozn-matrix
theory (RMT) yields for the number variance the follow-

ing exact result:

number variance ZGQE(L) increases logarithmically for
L -+ oo, as determined by the first term in (10).

I et us now discuss the number variance for the two
billiards. We choose a rectangular averaging for the local
average (). In Fig. 4 the number variance is shown for
billiard A (full curve) and billiard 8 (dashed curve) in
comparison with the GOE expectation and the Poisson
behavior given by Zp,.„„(L)= L. In this evaluation all
quantal levels up to E = 100000 have been used. One
observes that billiard A, which already displayed for the
level spacing a generic behavior, is in good agreement
with the GOE behavior up to roughly L 1—2 and Huc-
tuates thereafter around its saturation plateau

Z:= lim (Z (L))

where ( )I denotes an averaging over a suKciently large I
interval. Thus there is only a very small L interval cor-
responding to short-range correlations where the GOE
prediction agrees with the number variance. This small
interval of agreement between Z2(L) and the GOE be-
havior is responsible for the observed GOE-like nearest-
neighbor level spacing P(s), which measures essentially
the range L ( 2. This small range is also the range in
which a difFerent behavior is revealed by billiard 8, which
there matches much better a Poisson behavior. Up to
L 2 the number variance of billiard 8 lies well above
the GOE curve. For larger I. values there are again the
characteristic Auctuations around a plateau. Thus both
billiards show a difFerent behavior only for the short-
range correlations, while the medium- and long-range
correlations are very similar in both cases. If one stud-
ies only the nearest-neighbor level spacings one might be
misled to the conclusion that billiard A shows GOE be-
havior and billiard 8 Poisson behavior. However, this is
only true for I & 2.

1.0

Z'(L}

O. B

ZGQE (L) = — in(2 irL) + p + 12 =2
1 .2 JV+—Si (~L) ——Si(vrL) —cos(2vrL)
2 2

2 / 2—Ci(2m-L) + vr2L
~

1 ——Si(2vrL)
7r )

0.6

0.2

0.0
10 20 30 40 L 50

where p denotes Euler's constant. Many quantum
chaotic systems show reasonably good agreement with
(10) for short- and medium-range correlations. In the
large I range they typically display a Buctuating be-
havior around a plateau, whereas in the GOE case the

FIG. 4. The number variance Z (L) is presented for billiard
A (full curve) and billiard 8 (dashed curve) in comparison to
the GOE expectation (10) and the Poisson expectation. All
quantal levels up to E = 100 000 have been used.
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D. The spectral rigidity As(L)

1 L/2
2As(L):= min — de [A'(x + e) —a — e]

x:=X'(E) (12)

where () again denotes a local average. The constants a
and 6 can be eliminated, yielding the well-known expres-
sion

L/2
As(L) = — deed'(x+ e)L L/2

L/2
deA'(x + e)

I /2
—12

L —I

- 2

deeJV(x + e) (13)

The spectral rigidity As(L) is, in the case of random
matrices, closely related to the number variance by the
equation

2~RMT (L) ( L —2L r + r ) ZRMT(r) dr .

(14)

The GOE behavior of the spectral rigidity is determined
by Eqs. (10) and (14). Based on Gutzwiller's periodic-
orbit theory [2] Berry gives in [5] arguments why the
spectral rigidity shows, for energy spectra of chaotic sys-
tems, a saturation for L )) L and a behavior con-
sistent with random-matrix theory below I „, where
L „=2nd(E)/T;„with T;„being the period of the
shortest periodic orbit and d(E) the mean level density.
Furthermore, it is expected that the saturation value

:= limr~ As(L) increases logarithmically with in-
creasing energy E. According to the arguments given by
Berry [5], for billiards A and 8 one expects the energy
dependence

A similar statistic that has also played a major role
in the study of the properties of quantal energy spectra
is the spectral rigidity b,s(I) introduced by Dyson and
Mehta [20]. The spectral rigidity is defined as the average
of the mean square deviation of the staircase A (x) of the
unfolded energy spectrum (x ) = {~&„( ))
best-fitting straight line a + bE:,

values one obtains c(lp) = —0.18336.. . . For mtegrable
systems one expects instead the semiclassical behavior

In Fig. 5 the spectral rigidity Es(L) is shown for bil-
liard A (full curve) and billiard 8 (dashed curve) in com-
parison wi eth th GOE and Poisson expectations using

ll quantal levels up to E = 100000. As in the case ofall quanta eve s up o
the number variance, one observes, at small correlation
lengths L ( 4, reasonable agreement with the GOE curve
for billiard A and with the Poisson curve for billiard
The spectral rigidity of billiard 8 lies clearly above the
GOE curve for L & 15 so that a saturation effect cannot
be claimed as the cause for the deviation from the GOE
curve. The saturation behavior is similar for both i-
liards except that the saturation value is slightly larger)

for billiard 8.
Since the spectral rigidity shows a much smoother be-

havior than the number variance, it is more suited for
a study of the energy dependence of the saturation o

is shown for different energy intervals where Fig. 6(a)
deals with billiard A and Fig. 6(b) with billiard 8. The
available energy range has been split in four intervals of
length AE = 25000, i.e., E E [0, 25000] (full curve),
E C [25000, 50000] (dotted curve), E E [50000, 75000]
(dashed curve), and E E [75000, 100000] (dash-dotted
curve). It is seen that the GOE and the Poisson behav-
ior match, respectively, over an increasing interval with

~ ~ ~ ~

increasing energy until the spectral rigidities drop below
the GOE or the Poisson behavior to approach their satu-
ration values. The saturation values show a tendency to-
wards higher values with increasing energy. One observes

curve belonging to the energy range [25000, 50000] lies
above the dashed curve belonging to [50 000, 75 000].

If arithmetical quantum chaotic systems behave more
like integrable systems with respect to their spectral
statistics, one would expect that the saturation value

0.5

0.4

0,3

0.2

1
(E) = lnE + c(ip)

27r2 (15)
0.1

0.0
20 60 80 L 100

where the constant is in its crudest approximation given
by c(l ) = —,1n[4med(E) jlp] —

s with lp ——0.6330. . . be-
ing the length of the shortest periodic orbit. The mean

l d t d&~E~~is for two-dimensional billiards, a con-
stant plus nonleading terms and for our i iar s i is
given by [see Eq. (5)] d(E) = ps+0(E ~ ). With these

FIG. 5. The spectral rigidity &3(I ) is presented for bzlhard
A (full curve) and billiard 8 (dashed curve) in comparison
to the GOE expectation and the Poisson expectation. All
quantal levels up to E = 100000 have been used.
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goes like b, (E) = n~E+ P in the case of billiard 8
and like b, (E) = 2, lnE + p in the case of billiard
A. To test this hypothesis we computed the satura-
tion values over an energy range [E,E„+AE] with
E = 10000(n —1), n = 1, 2, . . . , 8, and AE = 30000
yielding eight intervals in the available range [0, 100 000].
The saturation value 4 itself was determined from a
fit of b, s(L) in the range I C [15,50] to the function

f&(I) = E (1+ —+ ) (16) 0.1

where L, cq, and c2 are the fit parameters. In this
way we obtained eight saturation values for each billiard,
which in turn allows a fit of b, (E). The fit parame-
ters obtained are n = 9.7633 x 10, P = 0.11569, and
p = —0.24998. The results are shown in Fig. 7. The
values for billiard A are shown as full circles in compar-
ison with the logarithmic fit function (full curve), using
the above value for p. The fit is reasonably good. The
main deviation occurs for billiard A at E = 65 000, where
the saturation value drops somewhat below the fit. It is

0.0
20000 40000 60000 80000 E 100000

FIG. 7. The energy dependence of the saturation value A
of the spectral rigidity is shown. The full dots and the full
curve, i.e., the fit result, belong to billiard A, whereas the
circles and the dotted curve belong to billiard 8.

0.5

n, (L)

0.4.

0.3

0.2

0. 1

0.0

0.5

a, (L)

10 20 40 L 50

the same anomaly that we have already observed in Fig.
6(a). However, over the whole energy range considered,
the logarithmic increase is con6rmed. The fit constant p
difFers from the approximation c(lo) given below Eq. (15)
by a value of 0.066 62. This may appear as a small differ-
ence; however, a look at Fig. 7 reveals that the constant
c(lo) would yield too large saturation values.

The saturation values 4 (E) of the arithmetically be-
having billiard 8, shown as circles in Fig. 7, are in almost
perfect agreement with a "~E behavior" characteristic
of integrable systems, which is shown as the dotted curve.
A logarithmic behavior seems to be excluded. Arguments
based on the diagonal approximation of the spectral form
factor lead to a "~E/ ln E behavior" [12], but since this
gives an unsatisfactory description of our data, we use
in the following the more appropriate ~E behavior. A
knowledge of the energy dependence of the saturation
value of the spectral rigidity is of crucial importance for
the mode Buctuation distribution, which we discuss in
the following subsection.

0.4

0.3

0.0
10 20 30 40 L 50

E. The mode 8uctuation distribution P(W)

We have seen in the previous sections that the hy-
pothesis [3,4] that quantum chaotic systems display level
Huctuations according to random-matrix theory holds at
small- and medium-range correlations only. Thus one has
to seek other statistical measures that are able to uncover
the "6ngerprints" of classical chaos in quantum chaotic
systems. To this aim the distribution P(W) of the mode
fiuctuation W(E) has been proposed in [21,22] as a novel
quantity to measure quantum chaos. The (normalized)
mode fiuctuation W(E) is defined by

FIG. 6. The energy dependence of the spectral rigidity is
shown for (a) billiard A and (b) billiard 8 The four cur.ves
correspond to the four energy intervals as explained in the
text. In addition the Poisson and the GOE expectation are
displayed.

Ag(E)
gZ „(E)

where As(E):= lV(E) —X(E) is the fiuctuating part
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of the mode number JV(E) (spectral staircase function).
Since the Weyl series X(E) [see Eq. (5)] describes the
mean mode number, it follows that A&(E) fluctuates by
definition around zero [AE )) 1/d(E)]

R+AR/2
dE'JVg(E')

)
-+ 0, E m oo, (18)LE

which in turn implies that the value distribution of
W(E), P(W), has zero mean. Furthermore, the second
moment of As(E) obeys asyinptotically [12]

R+b, K/2
ds'A„(E')) E (E), E -+ oo

E—AE/2

and thus the division by gA (E) correctly normalizes
the distribution of W(E) having unit variance. Since the
distribution P(W) has zero mean and unit variance, its
specific form is the important measure. In [21,22] the

0 4 t I I

P(w)

0.1

0.0

0.4

P(w)

conjecture has been put forth that classically strongly
chaotic systems should display, for E ~ oo, a universal
Gaussian behavior

PG „„(W)
1 1~2

2

2' (20)

independently of whether the system shows generic or
arithmetical chaos, whereas classically integrable systems
should reveal themselves by a non-Gaussian distribution
P(W). In addition to numerical tests for three differ-
ent systems, there are further theoretical arguments in
support of this hypothesis that have been given in [22].
For some integrable systems, a non-Gaussian distribu-
tion has been rigorously proven [23] to hold, whereas
the Gaussian is proven to be the exact limit distribution
for the nontrivial zeros of the Riemann g function using
Selberg's moment formalism [24]. The Riemann zeros
are interpreted as quantal levels of an unknown quan-
tum chaotic system without time-reversal symmetry. It
should be noted that a Gaussian distribution corresponds
to maximally random spectra being in agreement with
the intuitive prejudice one has on chaotic systems.

We have computed the distribution P(W) for both bil-
liards A and 8 using, for A (E) in the definition (17),
the corresponding fits shown in Fig. 7. In Fig. 8(a) the
result is shown for the generically behaving billiard A,
while Fig. 8(b) presents the results for the arithmetically
behaving billiard 8. The histograms are computed by
evaluating W(E) in steps of AE = 5, which gives 20000
data points up to E = 100000. The parameter-&ee ex-
pectation (20) is shown as a full curve. The agreement is
impressive and underscores the fact that this statistic is
universal in that it yields the same distribution for arith-
metical and nonarithmetical quantum chaotic systems.
We have also applied the Kolmogorov-Smirnov test to the
cumulative mode Quctuation distribution testing the cu-
mulative version of the prediction (20). The Kolmogorov-
Smirnov test yields the approximate significance level 7
of the maximal distance between the cumulative distri-
bution and the theoretical prediction, i.e. , 7 is the prob-
ability to obtain a maximal distance greater than the
one observed. For both billiards we obtained high signif-
icance levels P )) 1%. We get P = 23/0 for billiard A and
P = 44%%uo for billiard 8. Thus the Kolmogorov-Smirnov
test confirms the expectation (20).

IV. PERIODIC-ORBIT THEORY
0.2

A. The trace formula

0.1

0.0
3 W 4

FIG. 8. The mode fluctuation statistic P(W) is shown for

(a) billiard A and (b) billiard 8 in comparisoii with the pre-
diction (20) (full curve).

It is most interesting to inquire into the periodic-orbit
theory with respect to the level statistics of billiards
A and 8. Since both systems have the same classi-
cal periodic orbits, i.e., the same lengths and multiplic-
ities, the difFerences in the level fluctuations over small-
and medium-range correlations must be explained by the
phase factors attached to the periodic orbits. The start-
ing point is the Selberg trace formula [18] for such bil-
liards. The Selberg trace formula has been specified in
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[8] for hyperbolic billiards with identical boundary con-
ditions on all sides, i.e. , either only Dirichlet or only
Neumann boundary conditions. For the case of mixed
boundary conditions compatible with a reflection group

I', e.g. , I' = T*(2,3, 8), i.e., billiard 8 or a billiard with
Neumann boundary condition on side a and Dirichlet
boundary conditions on sides 6 and c, the trace formula
was derived in [25] and is given by

area yt lt
dp h(p) p tanh(m p) + ) g(0)

—OG

x (t) exp( —2np —")
+ „dp h(p)

4m, sin(P) 1 + exp( —2vrp)
~ellip

+ l(t) X (teven) X(todd) X (teven)
4 sinh[kl(t)/2] cosh[kl(t)/2]

&"(t) l(t)
exp [kl (t) /2] —[o.(t)]"exp[ —kl (t) /2]

(21)

The left-hand side of the trace formula (21) contains the

sum over the quantal levels where p~ = E„—4 is the
momentum of an eigenstate; it is the quantum mechan-
ical side of the trace formula. The function h(p) is an
even test function that is arbitrary, except that it must
be holomorphic in a strip

~

Im p
~

& 2 + e, e ) 0, and
must decrease faster than ~p~ for ~p~

—+ oo. The Fourier
transform of h(p) is denoted by

g(x) = — dp e'" h(p)
27

The right-hand side of (21) is the classical side of the
trace formula containing only classical quantities such as
the lengths l(t) and the characters y(t) corresponding to
the elements t e I . The sum over the conjugacy classes
of the reflection group I' is split according to the spe-
cial properties of its elements t. The first term on the
right-hand side is the so-called zero-length contribution
arising &om the identity element of I'. This contribution
is also present in Gutzwiller's semiclassical trace formula
[2]. The following term is due to the inversion elements

of I'. The next term deals with the elliptic elements
ll p E I where t,ll;p corresponds to a rotation around

at a corner point having an angle of —.The summt mt
over t„.„g goes over the singular periodic orbits that are
running along the edges of the billiard and deserve a spe-
cial treatment. Elements t belonging to an even or an
odd number of reflections are denoted as t, ,„and t gg,
respectively. The last sum over thyp is the usual periodic
orbit contribution also occurring in the generalized trace
formula [26], where o (t) = 1 for t direct hyperbolic and
o (t) = —1 for inverse hyperbolic elements t 6 I'.

The trace formula (21) is an exact relation between
quantum and classical mechanics in the case of billiard
8, whereas an exact derivation is not possible for billiard
A for which the boundary conditions are not compati-
ble with the reflection group I'. In this case one is left
to use Gutzwiller's semiclassical trace formula. A com-

parison shows that only the two sums over t;„and t ll;p
are missing in the standard form of the Gutzwiller trace
formula. A further contribution arises from nonperiodic
orbits starting and ending in the corner point with angle
7r/3. Since in this paper the trace formula is evaluated in
terms of the quantal levels, all these terms are included.
In the following we shall assume that possible missing
terms in the trace formula (21) in the case of billiard A
do not alter our main conclusions. To make this plausi-
ble, consider for h(p) the admissible function [27]

h(p) = — erf~
~

+ erf~ ~, e) 0
f p' —p i l' p'+ p )

(23)

which yields together with (21) the spectral staircase
JV(E) in the limit e ~ 0. It is instructive to derive
Weyl's law (5) with (23). The area term proportional to
E is provided by the zero-length term. Furthermore, this
term produces a constant contribution of —

288 to Weyl's
law. The pe."imeter term proportional to ~E is generated
exactly by the sum over the inversions t;„.An additional
constant contribution is eventually produced by the sum
over the elliptic elements t ll;p. The sums over the peri-
odic orbits, i.e. , over t„„g and Chyp yield the oscillatory
fluctuations around Weyl's law, which describes only the
mean behavior. The first two terms of Weyl's law ob-
tained in this way are identical to the first two terms in
(5) for billiard A as well as for billiard B. For the constant
o. one obtains o. = —

576 ———0.1267. . . in the case of bil-
liard 8, which is in excellent agreement with our fit value
of —0.125 (see Sec. III A). Applying trace formula (21) to
billiard A, where it cannot be derived exactly, gives for
the constant term o = —

~~~
———0.1128.. ., which does

not agree so well with our fit value —0.188; nevertheless,
the order of magnitude is well matched. This may pro-
vide a hint that the unknown corrections are small in this
case.
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B. The trace of the cosine-modulated heat kernel

The trace of the cosine-modulated heat kernel was in-
troduced in I28,29] to investigate the questions related to
"inverse quantum chaology, " i.e., the study of the peri-
odic orbits in terms of the quantal levels. (For applica-
tions, see [30].) It is obtained from the test function

h(p) = cos(pL) e

whose Fourier transform reads

(~) — ~
—Ã )'—/4// y ~

—W+ L'/48
)4+vr p

(25)

where p ) 0 and L g III'. The Fourier transform (25) has
the nice property that it generates, on the right-hand side
of the trace formula (21), Gaussian peaks of width AL
2/2P exactly at the lengths t(t) of the classical periodic
orbits. The peaks are positive or negative depending on
the character y(t) of the periodic orbit. Thus one can
obtain the length spectrum by evaluating the left-hand
side using the computed quantal levels.

I et us consider for fixed P ) 0 the following function
of L:

N PN

O~(L):= ) cos(p„L) e ~ "—
n=1

k (t)+

~u cos(vL)e ( +
4 ) x(~)/(~)

~inv

camh]xp]L —2k/rn, )]

)cosh(harp)
(26)

where we have subtracted &om the sum over the com-
puted quantal levels, i.e. , the left-hand side of Eq. (21),
the zero-length term, the sum over the inversion elements
t;„, and the sum over the elliptic elements t ~~;p. It fol-
lows from the trace formula that 8 (L) is given by the
remaining two suIns over t„„gand thyp on the right-hand
side and thus should show Gaussian peaks at the loca-
tions of the various periodic orbits. Ideally, one would
like to consider the limit P —+ 0, but since only a fi-
nite part (E j &~ of the energy spectrum is known, the
smallest value of P is determined by the largest com-
puted quantal level, in our case E~ 100000, yielding
P = 0.000 05. Figure 9 presents 8+(L) for billiard A (full

40 I I I
I

I I I I I I
I

20

L,gI/Ip/I

L 10

FIG. 9. The trace of the cosine-modulated heat kernel
0 (L) is presented for billiard A (full curve) and billiard 8
(dotted curve) with P = 0.00005 computed from the quantal
levels.

curve) and billiard 8 (dotted curve) up to L = 10 com-
puted from the erst N quantal levels. The erst lengths
of periodic orbits are well resolved, but with increasing
length the length-spacing between neighboring lengths
decreases and the peaks soon overlap. The differences
between the two curves are due to the diferent charac-
ters y(t) for billiards A and 8 determined by the differ-
ent boundary conditions. The only possibility for further
difFerences is the fact that the trace formula (21) is not
exact in the case of billiard A.

The peculiar properties of arithmetical chaos are as-
cribed to the exponential increase of the mean multiplic-
ities of their length spectra [9,12,14,15]. But the mean
multiplicities with respect to the lengths are identical for
billiards A and 8 and there arises the delicate question
about the origin of the di8'erent level statistics for bil-
liards A and 8, as discovered in Sec. III. There is the
possibility that in the case of billiard A the "efFective"
multiplicity g„:=g+ —g is not exponentially increas-
ing in the sense that for a given length the number of or-
bits with positive character nearly equals the number of
orbits of negative character such that the effective multi-
plicity g does not show any exponential behavior. Since
it is the efFective multiplicity that enters in the spectral
form factor, the different spectral behaviors would be ex-
plained by this difference. In the case of such a can-
cellation efFect for billiard A, the periodic-orbit theory
for this billiard would. "see" many fewer periodic orbits
and Huber's law for the number of effective periodic or-
bits would be the standard one, but with a topological
entropy of one-half. If such an eKect is occurring in bil-
liard A, the trace of the cosine-modulated heat kernel
should behave completely diH'erently in both cases. The
peaks at the locations of the lengths of periodic orbits
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d(E) j ( a(E —~/2) dz(@+ e/2) )

2~id(@),~ (2S)

K,.(~) =

( ) and dt((E) are the mean and the flu t

g a y its periodic-orbit expression
e formula and inserting this into Eq. 28 allows

quantal level statistics. Evaluat' h
b t

va ua ing the integral in 28
y he method of stationary phase leads to

FIG. 10. 7 o( - ( ) ) xs shown for billiard A (full curve)
and billiard 8 (dashed curve). A(t, k A* t', k'

eiy[A,'lit) k'l(t') —j

are proportional to ' . Thug„. us one would expect for bil-
iar much smaller peaks than for bill d 8,or i iar, where

exponential g is needed. To test this ossi i i

in 1 bot
o I. iard and the dashed one to bill' d 8. Si iar . urpris-

I )5aro
g y, ot curves behave very similarl d fli ar y an uctuate for

around a plateau. Thus our data da a o not seem to
ppor e idea that a cancellation eKect betw

odic orbits of the
n e ec etween peri-

i s o he same length occurs in billiard A. One
therefore concludes that solely &om the ex

h enve oissoniane mu tiplicities one cannot d
level Quctuations. Since the
d D

e e penodic-orbit theory should
escribe the level fluctuauations correctly, it seems that th

simple models 12 15
s a e

much. It a
considered so far are sim 1'fi d t

appears that a refined model would re uire

ic or y s; the different level statistics for billiards A
and 8 must be determined by the subtle d 8'

pect to their characters and, ~or the
e su e i erences with

contributions
n,~or e nonperiodic-orbit

x b'
(

E —-[kl(t) ~ k't(t')] (, 29(
f ~J

/:= 47rpd(E) v. (30)

The prime at the k sum countin ositive

e average '' a Gaussian avera e aroun
7

(f(p))- dp e»~' f(p), (31)

one obtains

K„(~) = 1
oo oo

A(t, k) A*(t', k')

4' d(E) A;= —oo t' A. "=—oo p

i [kl (t)—I 'l(t') I
—'1

e &~s (32)

where the amplitudes A(t k of h~ o t e periodic orbits can
e rea ofF from the trace formula (21) and

C. The semiclassical spectral form factor

The spectral form factor K(7) was introduced in the

ere ~&w~j is the Fourier transform of the two-

er variance by the integral transform [20]

7t p 7
(27)

The s ectral f
tuation

p form factor allows a stud. of th l
ns in terms of the period b . A

' las
y o e evel fIuc-

approximation leads to 5
ic or its. semiclas' lassical

with ((t:= 4vrd(E)w and I:= 2 [kl(t) + k'l(t')].
Now we would like to discuss the so-called dia ona a-

p anations of the peculiar behavior o
um c aos. e diagonal approximation K

of replacin the
'T consists

p
'

g the quadruple sum in (32) by the double
sum over the diagonal elements t = t' and A: = k'

„(~) K„(w) in the range of validity. In the case of
a chaotic system possessin onl
wi out arithmetical properties, one has K, (w

factor K~oE(r) 27", see Eq. (43) below. In 5 it
was demonstrated that this beh
t

is e avior arises from a con-
s an mu tiplicit = 2t i y g = of the periodic orbits and that
or systems without time-reversal symmetr a co

xpects in contrast an ex-ari me ica chaos one e
ponentially increasing spectr l f fra orm actor at least for
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those small values of w where the diagonal approxima-
tion is justified. This is the basis for the explanation
of the special properties of arithmetical quantum chaos
[12,15]. Ta derive the diagonal approximation in the
arithmetical case, we replace A(t, k) by its asymptotic
value A(t, k) [y(t)]"l(t)e "l l) and sum over distinct
lengths, i.e., we take into account the mean degeneracy
(g(l)) = «e')' /l and use N~;.t;„,t(l) = —, e')', which
leads to

(38)

which by means of (30) corresponds to a "length width"
of Alt = ~l. Since the distance between neighboring

lengths is approximately given by Ll = cue '/, one ob-
tains overlapping Gaussians at a length given by the tran-
scendental equation

Ll/ p p~
K~(~) = — dl e') 2&P2

4~d(E)

where to denotes the shortest length. This is the diagonal
approximation for a 6nite energy averaging. To obtain
the result in [12,15], the limit Ap -+ 0 has to be consid-
ered, in which the Gaussian in the integral including its
prefactor gives a b function. This leads to

C
cp 2~d(~) p7-

4vrd(E) p
(34)

In [12,15] it is assumed that the true spectral form factor
shows for small w exactly this exponential behavior until
it reaches the saturation value 1 and thus one arrives
at the following simplified model for the spectral form
factor:

IC .e.|(e):= eeie
~

1, —" e' e( )e
) . [35)

4' d(E)p

e'/' = c
Lp

This determines the maximal length and with (30) the
maximal 7 value w at which the diagonal approximation is
an appropriate description of the spectral form factor. To
justify the model form factar (35), it is necessary that the
diagonal approximation is valid up to wg, defined in (36).
Thus, for a given energy averaging at p with width Lp,
one must require r~ ( ~. Fram condition (39) it follows
that in the limit Lp ~ 0 the diagonal approximation is
valid for an increasing r interval such that (35) is justified
in this limit. However, the breakdown can be caused by
a 6nite value of Lp as it is required for any application.

For a numerical evaluation of the spectral form factor
K(~) in terms af the quantal levels it is convenient to
employ a semiclassical approximation that is obtained
from (29) by a Gaussian averaging in p followed by an
additional Gaussian averaging in v yielding the relation
[32,33]

7d
1 f 4~d(E)p )

2~d(E)p 5 «)
One sees that (35) reaches the value one at K,.(r) =

(2vr)')"p d(E)

x exp [ipkl(t)] exp
l

—Ap P —k[l(t)])
(

which is the maximal w value up to which the diagonal
approximation must be employed. With (27) one can
predict the number variance using the model form factor
(35) and the spectral rigidity using (14).

Let us now turn to the crucial question of whether
the diagonal approximation is justified at all in the
case of finite-energy averaging Ap ) 0. Equation (32)
shows that each term contributes a Gaussian exp[ —(l/p-
p) /(2Ap )]. Thus the diagonal approximation breaks
down if the width of the Gaussian is comparable to the
distance between neighboring Gaussians. Since we need
the width of the Gaussian in ~, we Taylor expand the
argument of the Gaussian having the form

(1
exp 2o. )r 7o j

1
exp

l

—— (7 —~o )20 To )
1=: exp

l

— (& —&o )

(40)

Although formula (40) was originally derived to extract
information from the periodic orbits, one can also reverse
the point of view with the help of the trace formula (21).
This is possible because the quadruple sum that naturally
occurs in the periodic-orbit expression for K„(r) is effec-
tively reduced in Eq. (40) to a double periodic-orbit sum.
(Note, however, that a quadruple sum is still present be-
cause of the modulus square. ) An exact periodic-orbit
expression for K(v') has been derived in [34]. But since
it is not possible to reduce the quadruple sum in this
exact expression, one cannot evaluate the exact formula
using the quantal levels via the trace formula (21). Thus
we shall now use the semiclassical expression (40). To
express the periodic-orbit sum in terms of the quantal
levels we choose, in the trace formula,

h(p) = exp —— —e'(p —p)g )
v ~ (p —p)'
Ap 4Lp2

+ exp
I
—,—i(p+p)&

l
(41)

(p+ p)'
r4Ap'

whose Fourier transform reads

which is valid up to O((w —ro) ). One cancludes that
the Gaussian has a width of approximately

g(x) = exp[ —Ap (E —x) + iyx]

+ exp[ —Ap'(l+ x)' —ipx] (42)
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FIG. 11. The spectral form factor is shown for billiard 8
with the parameters p = 270 and Ap = 10.

The Fourier transform (42) is exactly the expression that
occurs in (40). Thus we can identify the periodic-orbit
sum in Eq. (40) with the corresponding sum in the trace
formula (21), which in turn allows us to replace the sum
over periodic orbits by the left-hand side of the trace for-
mula, i.e. , by a sum over the quantal energies. In our
numerical evaluation we subtract from the sum over the

quan auantal levels the zero-length contribution, the sum over
the inversion elements t;„,and the sum over the elliptic
elements t ~~;p. Then only the periodic orbit sum is ob-
tained. To justify this subtraction note that ds(E) occurs
in Eq. (28). Since the zero-length term corresponds to the
area term and part of the constant in Weyl's law, the sum
over the inversion elements to the perimeter term, and
the sum over the elliptic elements to the other part of the
constant, one has indeed computed the contributions to

The obtained spectral form factor is connected with
the number variance defined by a Gaussian averaging at
momentum p and width Ap (instead of the rectangular
averaging used in Sec. III C). In the following two differ-
ent energy ranges are studied: a low-energy range de6ned
by p = 150, Ap = 15 and a high-energy range de6ned by
p = 270, Ap = 10. The spectral form factor is a rapidly
fluctuating function. As an example Fig. 11 presents the
spectral form factor for billiard 8 at p = 270. The strong
fluctuations are not an artifice of the employed approx-
imations since this behavior has also been observed for
the exact spectral form factor [34]. Because the strong
fluctuations hide the mean properties, we average the
spectral form factor such that the wildest fluctuations
are suppressed. The result is shown in Fig. 12 for the
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curve) discussed in the text.
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two billiards in the low- and in the high-energy range. En

all four cases the spectral form factor saturates for w ) 1
and Buctuates around the value one, which exemplifies
the fact that formula (40) deals in fact with a quadru-
ple sum, i.e., it includes nondiagonal contributions since
it would otherwise display the behavior of the diagonal
approximation that always increases with 7. The GOE
spectral form factor

27 —w ln(1 + 27), 0 ( v. ( 1

2-~in "+'
2r —1 )

(43)

is also shown in Figs. 12(a) and 12(b) dealing with bil-
liard A. Despite the fluctuations, rough agreement is
observed. This also demonstrates the stationarity of the
level fluctuations for billiard A.

A completely difFerent behavior is revealed for w ( 1 for
billiard 8 where the spectral form factor increases in gen-
eral much faster than the GOE behavior. In Figs. 12(c)
and 12(d) the model form factor (35) is shown where the
value cl —— ~ is used. Surprisingly good agreement
with the mean behavior of the spectral form factor is
observed. Note, however, that the same model spectral
form factor should also describe billiard A. There re-

mains the question of why this argumentation leads to a
satisfactory description for billiard 8 and not for billiard
A having the same multiplicities. Using Eq. (39) one ob-
tains for p = 150 and Lp = 15 the value w = 0.0885, up
to which the diagonal approximation is justified, whereas
in the case of the model form factor the diagonal ap-
proximation is employed up to 7g ——0.393. This shows
that the diagonal approximation is not valid over prac-
tically the whole w interval. The inapplicability of the
model form factor is even more obvious if one notes that
K„(7) 0.050, whereas the GOE form factor is at the
same 7 value already as large as KQQE(7) 0.177. Here
arises the odd situation that the diagonal approximation
of the form factor, which should explain by its fast in-
creasing behavior the peculiar spectral statistics, is actu-
ally smaller than the GOE form factor. One faces a sim-
ilar situation in the higher-energy range, i.e., for p = 270
and Lp = 10, where one gets w = 0.0787 and vg ——0.256
together with K„(7) 0.047 and KQQE(T) —0.157.
One thus concludes that the diagonal approximation is
not valid in both cases. Nevertheless, it is very strange to
observe in Figs. 12(c) and 12(d) much better agreement
with the model form factor than with the GOE form fac-
tor, which is in contrast to Figs. 12(a) and 12(b), which
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FIG. 13. The number variance Z (L) is shown for billiard A in (a) (p = 150, Ap = 15) and (b) (p = 270, Ap = 10). The
full curve is obtained from the approximate spectral form factor (40) using the integral representation (27), whereas the dots
are obtained directly from the quantal spectrum using 5000 sample points. (c) (p = 150, Ap = 15) and (d) (p = 270, Ap = 10)
display the same quantities for bijiliard 8.
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show good agreement with the GOE form factor. Since
the model form factor is neither applicable nor able to
explain the differences in the energy spectra of the two
billiards, there must be another origin of the difFerences.
One possibility could be a strange correlation between
the characters of neighboring orbits in such a way that
the difI'erent spectral form factors are generated, where,
however, the contributions of nondiagonal elements must
play a significant role.

Since the spectral form factor (40) is based on a semi-
classical approximation, it is important to check also the
validity of (40) at least numerically. To this aim we com-
puted the number variance Z (L) using the spectral form
factor (40) in the integral equation (27). The results are
compared with the "true" number variance, which is ob-
tained by averaging the number variance of the quantal
levels at 5000 random sample points p, which in turn are
Gaussian distributed according to p and Lp. The results
shown in Fig. 13 demonstrate that the approximation is
at least numerically justified.

V. SUMMARY AND DISCUSSION

We have studied the level statistics of two strongly
chaotic quantum billiards. Since the billiard ball table
v as for both billiards the same non-Euclidean triangle,
the two billiards are classically identical in that they pos-
sess the same classical periodic orbits. They only differ
in the boundary conditions imposed on the quantum me-
chanical wave functions, which is reflected in difFerent
characters, i.e., in difI'erent signs of the amplitudes at-
tached to the periodic orbits in the trace formula. For the
triangular billiard domain we have chosen the fundamen-
tal domain of the reflection group T*(2,3, 8). Since this
group is an arithmetical group, the periodic orbits pos-
sess an exponentially degenerate length spectrum. The
boundary conditions have been chosen in such a way that
billiard A does not belong to a representation of the re-
flection group, whereas the boundary conditions imposed
on billiard 8 are compatible with an irreducible symme-
try representation.

A previous analysis [17] based on the first 200 energy
levels revealed for billiard 8 the peculiar level statistics
characteristic for arithmetical quantum chaos. It turned
out, however, that the level statistics of billiard A are
at short- and medium-range correlations in accordance
with the GOE behavior of random-matrix theory typi-
cally found for generic systems. There remained the im-
portant question of whether this mysterious difFerence be-
tween these almost identical billiards is only a low-energy
efI'ect or whether it could be confirmed over a much larger
energy range and with much better statistics.

In this paper we have extended the previous analysis
using now for both billiards the first 1050 levels, which we
have computed using the boundary element method. Our
analysis covers the full energy range up to E = 100000.
In Sec. III we presented a detailed analysis of the level
statistics that shows clearly that billiard A indeed be-
haves like a generic chaotic quantum system, while bil-
liard 8 shows the typical behavior of arithmetical quan-

turn chaos.
Since the level statistics of quantum billiard A show all

properties of generic quantum chaos, although the classi-
cal counterpart possesses the strange arithmetical struc-
ture typical for arithmetical chaos, we call this dynamical
system pseudoarithmetica/ in order to distinguish it &om
systems such as quantum billiard 8, which is a genuine
arithmetical system, showing the exceptional level statis-
tics characteristic for arithmetical quantum chaos.

The number variance E (L) and the spectral rigidity
As(L) show for both billiards a saturation plateau at
long-range correlations and thus a breakdown of the uni-
versal behavior derived for random matrices. Of special
interest is the energy dependence of the plateau height

(E), which we have computed in Sec. IIID. As ex-
pected, we find that the energy dependence of A (E) is,
for the pseudoarithmetical billiard A, in good agreement
with a logarithmic increase (see Fig. 7), in accordance
with Berry's semiclassical analysis [5] for generic chaotic
systems being invariant under time reversal. It turns out,
however, that a flt of the form 6 (E) = 2, lnE + p,
shown as the full curve in Fig. 7, gives, for the con-
stant p, a value that does not agree with the constant
c(lo) in Berry's formula (15) that is solely determined by
the length /0 of the shortest periodic orbit. This agrees
with an earlier analysis [34] that already showed that the
precise saturation value is determined by the lower part
of the length spectrum of periodic orbits, but not just
by the very shortest orbit. In the case of the arithmeti-
cal billiard 8 we find that the energy dependence agrees
well with the simple ansatz A (E) = o.~E+ P (see the
dotted curve in Fig. 7), which generically holds for inte-
grable systems. In [12] a ~E/ln E behavior was derived
from a simple model of arithmetical quantum chaos, a
behavior that is, however, excluded by our data. This
gives a first hint that there are subtle properties of arith-
metical systems that require a modification of the simple
model proposed in [12].

Knowing the correct energy dependence of A (E)
gave us the opportunity to calculate the value distri-
bution P(W) of the mode fluctuation W(E) defined
in Eq. (17). According to a recent conjecture [21,22],
P(W) should display, for both billiards in the semiclassi-
cal limit, the parameter-free universal Gaussian behavior
(20). The comparison presented in Figs. 8(a) and 8(b)
gives strong support to this conjecture. The important
point is that the distribution P(W) gives us a universal
measure for quantum chaos that depends only on whether
the corresponding classical system is strongly chaotic or
not, independent of whether the system is arithmetical,
pseudoarithmetical, or generic.

In Sec. IV we employed the periodic-orbit theory to
shed some light on the observed level statistics for bil-
liards A and 8. In the case of the arithmetical quantum
billiard 8, one has the exact Selberg trace formula (21)
recently derived in [25], whereas for the pseudoarithmeti-
cal quantum billiard A, one has to rely on Gutzwiller's
semiclassical trace formula [2] appropriately generalized
to the non-Euclidean geometry of billiard A. In our anal-
ysis carried out in Sec. IV we assumed that the trace for-
mula for the pseudoarithmetical system was again given
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by Eq. (21), but that in this case it was only semiclassi-
cally valid, i.e. , we assumed that the unknown correction
terms, which have to be added to the right-hand side of
Eq. (21), were subdominant in the semiclassical limit and
thus did not alter the main results of our analysis.

Using the computed quantal levels up to E = 100000,
we computed in Sec. IV 8 the truncated trace of the
cosine-modulated heat kernel 8 (L) [see Eq. (26)] for
fixed P = 0.00005 as a function of 1. The idea, of
course, was that this function would exhibit a different
behavior depending on the arithmetical and pseudoarith-
metical case, respectively. Since 0 (I ) has an alterna-
tive representation, derived from the right-hand side of
the trace formula, as a sum over periodic orbits, it could
be expected that the different behavior seen in the level
statistics would find its correspondence in a different be-
havior of the function 0 (I) for the two billiards. The
results presented in Figs. 9 and 10 show, however, that
billiard A and 8 behave in a very similar way.

To settle the question concerning the characters, we
investigated in Sec. IVC the semiclassical spectral form
factor K„(r) defined in Eq. (28). (For a critical discus-
sion of this approximation, we refer to [34].) Since the
expression (28) does not allow a meaningful computa-
tion using the known energy levels, we employed a fur-
ther approximation leading to the expression (40), which
can now be completely expressed in terms of the energy
levels using the test function (41) in the trace formula.
Using this formula we obtained, for the form factor, the
results shown in Figs. 11 and 12. Figure 11 shows that
the form factor is a very spiky function, and we have
shown in Figs. 12(a)—12(d) a smoothed version where the
wildest ffuctuations have been suppressed. Figures 12(a)
and 12(b) show that the mean behavior of the smoothed
form factor for the pseudoarithmetical billiard A is in
good overall agreement with the GOE form factor and
thus in conformity with the generic level statistics that
we have found for this billiard. In contrast, the mean
behavior of the smoothed form factor for the arithmeti-
cal billiard 8, represented in Figs. 12(c) and 12(d), is
in good overall agreement with the model form factor
(35) whose derivation made essential use of the exponen-
tial multiplicity of the periodic orbits. Thus the spectral
form factor behaves very differently for the two billiards
in accordance with the different level statistics observed
for billiards A and 8. This proves that the spectral form

factor is a sensitive measure for the delicate differences
between the two almost identical billiards. In particular,
it demonstrates that the main difference between arith-
metical and pseudoarithmetical quantum chaos is caused
by subtle properties of the characters attached to the
classical periodic orbits and/or by the nonperiodic orbit
contributions, which are not taken into account in our
trace formula.

It is worthwhile to mention that the observation that
the characters attached to the periodic orbits show,
for arithmetical systems, a different behavior than for
generic ones has already been made in a previous paper
[35]. There it was shown that the signs of the coeflicients
of the Dirichlet series expansion of the dynamical ( func-
tion behave completely differently in the case of Artin's
billiard, which is arithmetical, compared to generic sys-
tems. (The signs of the Dirichlet coefficients are directly
related to the characters. )

Future progress towards a deeper understanding of the
subtleties of arithmetical and pseudoarithmetical quan-
tum chaos may be achieved in the following three steps.
In the first step one has to justify the approximate repre-
sentation (40) for the spectral form factor, which yields
numerically reasonable results, as we have demonstrated
in Fig. 13. In the second step one has to incorporate
the properties of the length spectrum of periodic and
nonperiodic orbits and, very importantly, the subtle be-
havior of the characters attached to them. Finally, in
the third step, one has to extract from formula (40) the
mean behavior of the spectral form factor. As a result
one would obtain an improved model for the form fac-
tor that would include nondiagonal contributions, which
are very essential as we have emphasized in Sec. IVC.
From the improved form factor one could then compute
the various level statistics. We hope to return to these
points in a future paper.
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