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EfBcient switching between controlled unstable periodic orbits
in higher dimensional chaotic systems
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We develop an efBcient targeting technique and demonstrate that when used with an unstable
periodic orbit stabilization method, fast and efBcient switching between controlled periodic orbits is
possible. This technique is particularly relevant to cases of higher attractor dimension. We present
a numerical example and report an improvement of up to four orders of magnitude in the switching
time over the case with no targeting.

PACS number(s): 05.45.+b

The presence of chaos, far from being an inconvenience,
allows for a large range of useful behaviors not present in
nonchaotic systems. For example, unstable periodic or-
bits (UPO's) that naturally occur in a chaotic attractor
can be stabilized by applying only small perturbations
to available system parameters [1—3]. This technique has
been experimentally applied to a wide variety of differ-
ent systems including mechanical systems [4], lasers [5],
circuits [6], chemical reactions [7], biological systems [8,
etc. Furthermore, it is possible to switch from one pe-
riodic orbit to another at will [2,4]. In contrast, control
of nonchaotic systems typically requires large control sig-
nals to exhibit similar behavior.

This switching, however, may not take place quickly:
one may have to wait for a considerable time before a par-
ticular UPO is stabilized. This is because the method of
Ref. [1] relies on ergodic wandering of the orbit to bring
it close to the desired state before the controls are ap-
plied. For such a process, the time required to approach
a small region is typically e, where e is the linear di-
mension of the region, and D is the pointwise dimension
at the periodic point [9]. For low values of D this time
can be acceptably small. For systems of higher dimen-
sion, however, these transient times may be prohibitively
long.

In order to reduce these transient times, we employ
a targeting method. Targeting refers to a method by
which a chaotic orbit can be rapidly steered to a de-
sired part of the attractor. Several such methods have
been proposed [10). Recently, a tree targeting method
has been developed that is computationally efficient for
higher dimensional systems [11].In this paper, we extend
this approach and demonstrate that when coupled with a
UPO stabilization method very dramatic improvements
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in switching times between different controlled UPO's
can be realized. Before describing the method we re-
port the result of its application on a simple prototypical
example, in which we obtain improvements of up to four
orders of magnitude in the switching times.

We use the kicked double rotor system, illustrated in
Fig. 1, for our numerical tests. This is an idealized phys-

FIG. 1. The kicked double rotor. A massless rod of length
l& pivots about the stationary point P&. A second mass-
less rod of length 2l2 is mounted on pivot P2, which in turn
is mounted at the end of the first rod. Periodic impulsive
kicks f(t) = g p b(t —n) are applied at an angle
as shown. The state of the system immediately after the
(n + 1)th kick is given by a four dimensional map of the
form X~+g ——MY' + X and Y' +g ——LY~ + R(X„+g),
where X = (Oq, gq) are the two angular position coordinates,
Y' = (Hq, 82) are the corresponding angular velocities, and
C4(X) is a nonlinear function. M and L are both constant
matrices which involve the coefBcients of friction at the two
pivots and the moments of inertia of the rotor. Gravity is
absent. Control parameters at time n are p = 9.0 + Ap
and @ = 0.0+ AP, with ~Ap(/po ( 0.1 and (AP( ( 0.5. We
take lq = 1/~2, and set all other parameters to 1. For further
details, see Refs. [2,12].
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ical system of two connected rods subject to periodic im-
pulsive kicks. The time evolution, sampled immediately
after each kick, is given by a four dimensional map [2,12].
We take our control parameters to be the strength of the
kick p and the angle P at which the kick is applied. Small
perturbations (I+pl/pp + 0 ' I+&I —0.5) are applied
around nominal values (pp

——9.0, Pp = 0.0) at which the
map exhibits 36 fixed points within a chaotic attractor
of I.yapunov dimension 2.8 (see figure caption for further
details). This dimension is to be contrasted with most
experimental and numerical studies where the dimension
was typically between 1 and 2, and often close to 1. Fig-
ure 2 illustrates the results of our numerical tests. We
sought to stabilize a sequence of five fixed points in suc-
cession. The figure displays the 0& component of the state
versus iteration number. In Fig. 2(a) we rely on ergod-
icity to bring the orbit close to the desired fixed point
before it is stabilized. In Fig. 2(b) our tree targeting
method is used. Very large improvements in the switch-
ing times are evident; note the great difference in the
scales on the two horizontal axes. More precisely, in (a)

the switching times t follow an exponential distribution
(t) exp(t/(t)) (this is typical of chaotic systems [13]),
and we find that (t) ranges from 12 000 4 80 iterations to
252 000 + 3000 iterations, depending on the fixed point.
In sharp contrast, our method permits the target to be
attained in 17—19 iterations using one parameter control
(p), and 13—15 iterations using two parameter control (p
and P). Thus, we achieve improvements of 3—4 orders of
magnitude in the switching times.

We now outline the general method that was used to
obtain these results. First, the desired UPO's pq, p2, . . .
are identified (for simplicity, we take these to be fixed
points, i.e. , periodic orbits of period 1). For each such
point we construct targeting trees which will function as
"road maps" of the attractor. To stabilize pq, a chaotic
orbit is directed along the corresponding tree into the
vicinity of p~. The UPO stabilization method is then
applied to stabilize the orbit. To switch to p2, one aban-
dons p~, follows the tree leading to p2, and subsequently
stabilizes the orbit there.

Each targeting tree is constructed by first choosing the
target, say the fixed point pi. The map is then iterated
from a random initial condition while keeping in memory
a short history of the iterates encountered (for example,
10 consecutive points), until the orbit lands within a tol-
erance distance of the target [14]. This point, together
with the recorded preiterates, comprise the trunk path of
the tree, and are stored in memory. The map is then it-
erated again, still keeping track of a brief iterate history,
until the orbit lands near any one of the points already
in the tree. When this happens, we add the new path as
a branch. Continuing in this way, we build a tree with
a hierarchy of branches: the trunk path is level 1; level
2 branches are those that are rooted at some point in
the trunk path; level 3 branches are rooted at a level 2
branch, and so on. The objective is to build a tree with
enough branches such that a typical uncontrolled chaotic
orbit lands near a point in the tree after a small number
of iterations.

The basic targeting procedure is illustrated in Fig. 3.
Assume that a target point t = xylo on the attractor
has been selected, and that the trunk path consisting of
points x.9, xs, . . . , wo has been recorded. Let yo be a
point near xo. Without targeting, the orbit yi, y2,
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FIG. 2. Graphs illustrating switching between five difFerent
fixed points. The 6ii coordinate of the state is plotted versus
iteration. In (a) we rely on ergodicity to bring the orbit close
to the desired UPO. The fifth fixed point required 153485
iterations to be stabilized, and is not shown. In (b), tree
targeting is employed.

FIG. 3. Schematic diagram of the targeting procedure.
Two successive perturbations of the kick are applied at yo
to steer it onto the stable manifold associated with the point
+2 0



EFFICIENT SWITCHING BETWEEN CONTROLLED UNSTABLE. . . 4171

quickly diverges from the path. We seek a series of small
perturbations to available control parameters such that
the perturbed orbit yq, y2, . . . lands on the stable man-
ifold of a subsequent point w, in the path. If this can be
accomplished for a small value of i, then the orbit will
quickly approach the path, and y~o will be very close to
the target wio.

For specificity, we consider the case of our example
(Fig. 1), i.e. , a four dimensional map F with two positive
and two negative Lyapunov exponents. Let S2 represent
the (typically two dimensional) stable manifold associ-
ated with the point x.2. For simplicity we assume that
only one parameter p is available for control. Recall that
two two-planes generically intersect at a single point in

Hence, the vectors gq ——BF(F(yo, pq), pz)/Dpq and
g2 = BF(F(yp, py), p2) /Bp2 typically span a two-plane
through y2 that intersects the two dimensional stable
manifold S2 at a unique point y2. Therefore, we look for
two successive parameter perturbations pq and p2 such
that y2 lies on S2.

The intersection point y2 may not be sufFiciently close
to x.2 to justify using a linear approximation for estimat-
ing S2. This is generally the case in our kicked double
rotor example. To deal with this, we estimate the in-
tersection point on S2 by calculating the inverse images
of points near subsequent points further down the path.
Let sq and s2 denote vectors that span a plane at ws.
A point z = ws + o.ps' + o.2s2 is chosen with o.

g and
o'2 small (typically of order 10 ). The inverse images
F (z), F (z), . . . rapidly approach the stable mani-
folds S7, S6, . . ., because under the inverse map Ss is
an expanding set, and components perpendicular to S8
contract.

Thus, in the case of one parameter control, we calcu-
late two successive parameter perturbations pq and p2,
together with values for oq and o2, such that

F "(x~+2+ ~»i+ ~2s2) = F(F(yo, pi), p2) = yz (1)
In our example, we use k = 6. Equation (1) can be solved
numerically using Newton's method. Once the prescribed
kicks pq and p2 are applied at yo and yq, the orbit lands
on the stable manifold of xz (at y2), and subsequent
iterations of the map approach the path exponentially.

In practice, values of k which yield numerically accu-
rate results can be determined by performing numerical
trials on the particular map being considered. In order to
correct for these and other nonideal effects such as noise,
state measurement error, and an imperfect determina-

tion of the system parameters, the method is reapplied
at every iteration.

If two parameters p and P are available for control, then
only one perturbation step is necessary: typically there is
a two-plane through yq spanned by g~ = OF(yo, p, P)/Bp
and gy = BF(yo, p, P)/BP that intersects the stable man-
ifold Sq of x~. The procedure outlined above can be
similarly extended to different dimensions and different
numbers of positive Lyapunov exponents.

Assume now that a three level targeting tree has been
constructed. The map can be iterated until the trajectory
lands at a point y near a point w in the tree. Suppose x.
is in a level 3 branch. The base of this branch is chosen
as an interim target, and. the orbit is directed there by
the method described above. Next, we set the interim
target to be the root of the adjoining level 2 branch. The
orbit is steered to this new target, and the process is
repeated until the final target is attained. The orbit is
then stabilized at the fixed point by applying the UPO
control procedure.

We now discuss a further improvement that can re-
duce the time necessary to land on a given tree. In the
procedure described above, an initial condition z is it-
erated until the uncontrolled orbit encounters the tree.
Another possibility is to generate a cloud of points by
calculating the image of z under a small random param-
eter perturbation (applied to p), and repeat this many
times. Thus, all points in the cloud are within one itera-
tion of z. This entire cloud can then be iterated forward
a certain number of times, and each time a point in the
cloud encounters the tree, its position is recorded. In
this way, many different paths from the initial condition
z onto the tree can be found, and from these we can se-
lect the path that ultimately reaches the target in the
fewest number of iterations.

This completes our description of the targeting method
used in Fig. 2(b). We emphasize that this technique is
very general and that targeting is essential for fast and
efFicient UPO stabilization when the attractor is of mod-
erate dimension and the parameter perturbations are lim-
ited to be small.
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