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Topological model of homoclinic chaos in a glow discharge
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We perform a topological analysis of homoclinic chaos in an experimental dynamical system: the
glow discharge (GD). The geometrical model accounting for the stretching and folding mechanisms
in the GD attractor is the horseshoe template. The presence of a homoclinic orbit induces a structure
on this template, allowing us to predict the qualitative dynamical behavior as the GD approaches

homoclinicity.
PACS number(s): 05.45.+b, 52.80.Hc

The knowledge that deterministic equations of motion
may have complex nonperiodic solutions was originated
by Poincaré as he introduced the homoclinic tangle [1].
For instance, considering a three variable dynamical sys-
tem in its corresponding three-dimensional (3D) phase
space, the homoclinic tangle is formed when the stable
and unstable manifolds emanating from a saddle type pe-
riodic orbit () present in the flow approach intersection.
The saddle nature of this cycle forces the phase space tra-
jectory either to approach «y or to diverge from it. Thus,
in the flow, the stable manifold W?(«y) is the collection of
all solutions that approach the unstable orbit v while the
unstable manifold W*() is the collection of all solutions
diverging from 7. The tangency (intersection) of these
stable and unstable manifolds in the flow defines a very
elusive kind of orbit: as it belongs to both manifolds this
orbit must approach the saddle cycle for t — +o0o. This
kind of orbit is called a homoclinic orbit and its presence
in the flow tends to promote erratic behavior, usually
termed homoclinic chaos [2].

Nowadays, the characterization of chaos from the anal-
ysis of observed chaotic data mainly follows two general
approaches [3]. The metric approach extracts metric in-
variants from the dynamics and the topological approach
is concerned with invariants obtained from the topol-
ogy of the strange attractor. Both metrical and topo-
logical invariants are independent of coordinate changes,
but only topological invariants remain invariant under
smooth parameter changes. The central object in the
topological approach is the “template” [4-6], which is es-
sentially a geometrical model of the chaotic dynamics.
We are interested in the topological aspects of the flow
originated by the reported [7,8] homoclinic behavior in
the glow discharge (GD). In this sense the aim of this
paper is twofold: first, to derive the template underlying
the chaotic dynamics of the GD and second, to realize
the structure induced on the template by the presence of
a homoclinic orbit in the dynamics. From this we can
establish a topological model which enables us to pre-
dict the dynamics of the GD as the control parameter
is changed. This prediction concerns, for instance, selec-
tion rules for the symbolic sequence of the orbits. Our
analysis enables us to address two important issues of the
topological characterization of chaos: the pruning [9] of
unstable periodic orbits and the change of the template
induced by a control parameter variation.
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An experimental system will never reach a homo-
clinic orbit because of unavoidable small fluctuations
(noise). But in spite of this, a complex dynamical be-
havior (chaos) may be expected when the system in its
phase space description is near a homoclinic orbit, as was
demonstrated by Gavrilov and Shilnikov [10]. Experi-
mental systems in which the dynamics is strongly influ-
enced by the proximity of a homoclinic orbit, as analyzed
in Ref. [10], are, for example, a laser with a saturable ab-
sorber [11] and a GD [7]. In the latter, while approaching
the homoclinic orbit, there is evidenced a rich bifurcation
sequence known as an alternating periodic-chaotic (APC)
sequence. This is made up of self-induced oscillations on
the GD current displaying an alternation of periodic and
chaotic patterns of large and small amplitude oscillations.
The experimental results presented in this paper are ob-
tained from a dc-excited GD, the setup of which can be
found elsewhere [7]. The operating conditions are such
that the GD presents an APC sequence induced by the
change of a control parameter (voltage feeding the GD).
For a typical bifurcation diagram see Ref. [8].

In order to perform the topological analysis, we con-
sider the C® chaotic window of the APC sequence (see
Ref. [7] for the meaning of the notation) and now ana-
lyze thoroughly the structure of the corresponding phase
space description. A 3D reconstructed phase space is ob-
tained from the GD current time evolution I(¢) applying
the time delay embedding with X = I(¢),Y = I(t + 1),
Z = I(t+27), and 7 = 0.96 pus. At the center of Fig. 1 is
shown an XY projection of the attractor corresponding
to the chaotic C(® regime; the flow is clockwise oriented.
The general feature of the dynamics in phase space con-
sists [8] of an unstable spiraling behavior [near the central
hole in the diagram where a saddle cycle (v) is located)]
connected to a reinjection mechanism. Thus, regarding
the stable and unstable manifolds of the saddle cycle,
a chaotic trajectory approaches the cycle along W?(vy),
then it begins to escape spiraling outward along W*(vy),
and finally the reinjection mechanism, which is due to
nonlinearities present in the flow, brings the trajectory
again very near to the saddle cycle.

We take advantage of the fact that, according to Fig.
1, inside the attractor there is a hole and define a rota-
tion axis centered in this hole and parallel to the Z axis.
Next, we consider a Poincaré section plane ¥ with one
of its borders coincident with the rotation axis and then
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FIG. 1. Chaotic phase space portrait of the glow discharge
(at the center) surrounded by cross sections performed in the
flow along the lines a,b,...,f,g. Cross sections c, d, and e are
enlarged 2x.

sweep X a full revolution through the attractor. In the
phase portrait of Fig. 1 the lines labeled with a,b,..., f,g
indicate transversal cross sections obtained from the flow
proceeding in this way. The intersection points of the
flow with the cross sections are displayed in the boxes
surrounding the attractor’s projection. In all of them,
we realize that the intersections of the chaotic trajectory
with the cross sections scatter along a line, indicating
that the attractor is almost a surface. This usually hap-
pens in dissipative systems. As in the Duffing and Lorenz
attractors [2], we conjecture that this surface is bounded
by an unstable manifold, in our case, W*(y). Therefore,
considering the Poincaré section (a) of Fig. 1, the saddle
cycle v is reduced to a saddle fixed point p of the 2D
map defining the next return to the same section. The
stable and unstable manifolds of p, W*(p) and W*(p),
are formed by the intersections of ¥ with, respectively,
W#(v) and W*(v). Thus, the straight segment TB of
Fig. 1(a) lies on W*(p); p is located to the right of B. The
map is considered to be in the form f(z,y; u). We assume
further that the dynamics is such that the manifolds of p
are about to develop a tangency (i.e., a homoclinic point)
as in Ref. [10]. The parameter p = 0 corresponds to the
homoclinic tangency whereas the values u > 0 quantify
the “distance” to this tangency.

Now we want to follow the iterates of the segment T'B
[Fig. 1(a)] until they intersect it again. For this purpose,
we analyze the complete sequence of Poincaré sections,
beginning from Fig. 1(a). It is possible to identify clearly
the stretching and folding of the attractor’s surface. To
better realize this geometry, we marked in cross section
(a) three points: one at the top (T'), other in the middle
(M), and the third at the bottom (B). Following these
points’ locations at the succeeding cross sections, we see
that, after one revolution, the initial straight interval TB

THOMAS BRAUN, RICARDO R. B. CORREIA, AND NARA ALTMANN 51

is transformed into a line segment that resembles a horse-
shoe. This new conformation of the segment T'B also lies
on W*(p), because the iterates of the initial straight seg-
ment, under the action of f, must remain on W*(p) for
the reason that the manifold is invariant. Therefore, this
transformation may be summed up representing the in-
cipient tangling of W*(p) in the creation of a homoclinic
tangency [2], as shown in Fig. 2. There, the straight seg-
ment T'B corresponds to section (a) of Fig 1. The saddle
fixed point p is located at the origin. After iterating once
this segment, the segment T B appears as the stretched
and folded bold line on W*(p) in Fig. 2, following the
bending of W*(p) while the latter approaches W*(p) and
p. As the GD is strongly dissipative, the segment T'B is
mapped onto its original straight position after just one
iteration. This recurrent behavior, envolving the oper-
ations of stretching and folding, is responsible for the
chaotic dynamics and thus for the geometrical conforma-
tion of the chaotic attractor. Unstable periodic orbits
(knots) that are embedded within the chaotic attractor
[9] are then constrained by this geometric structure and
it is the goal of a topological analysis to establish a ge-
ometrical model that captures this intricate topological
organization. The result is the “knotholder” or template
[4-6].

Usually a template is obtained [6] by first searching for
unstable periodic orbits in the attractor and then deter-
mining topological invariants (linking numbers, relative
rotation rates, etc.) which are related to the knotting
and linking of the unstable periodic orbits on the at-
tractor. On the basis of these topological invariants the
template is identified. We instead capture the global or-
ganization of the unstable periodic orbits by analyzing
their support: the chaotic attractor. A template may
be constructed following a complete revolution of an at-
tractor’s cross section [12]. The succeeding cross sec-
tions evidence the stretching and folding mechanisms of
the attractor and how the flow is reinjected into itself.
That is essentially what the template has to show. We
begin with cross section (a) of Fig. 1 and consider the
segments TM and M B associated to two ribbons; they
will be branches of the template. Now the T M ribbon
is half-twisted and then both, after undergoing a lateral
expansion, are glued together at a line called the branch
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FIG. 2. Geometry for the creation of a homoclinic tangency.
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line. Finally, the branch line is identified with the initial
segment T'B. The geometrical implementation of this
transformation results in the “horseshoe template” [5]
displayed in Fig. 3. Thus, the template is formed by
the projection of the flow along the stable manifold, as
described in Ref. [5]. Orbits of the flow are then pro-
jected onto the template preserving their topological or-
ganization. Therefore, more precisely, the template is a
semiflow (because inverse orbits are not unique at the
branch line) on a branched 2D manifold. The outlined
procedure to obtain the template has already been ap-
plied, for instance, in a numerical investigation of the
Duffing oscillator [12], and in the experimental study of
a modulated laser [13]. Both systems are forced, which
facilitates the topological analysis, while the GD is sub-
ject to no external forcing. The template we obtained
is also confirmed [14] by the knot analysis of the unsta-
ble periodic orbits identified in the GD data, in the same
way that the horseshoe template of a laser with saturable
absorber is derived [15].

In Fig. 1(a), the location of point M in T'B is not ar-
bitrary. M is the frontier between two regions in the
phase space. One (T M) is associated to the reinjection
mechanism, whereas the other one (M B) corresponds to
the looping around the saddle cycle. These two distinct
processes enable us to codify the GD dynamics with two
symbols, R (reinjection) or L (looping), in accordance
whether the phase space flow crosses TM or MB. The
homoclinic orbit corresponds in phase space to one rein-
jection loop followed by an infinite number of loopings
around the saddle cycle [7,8] (this orbit is represented on
the template of Fig. 3) and therefore the symbolic se-
quence RL* will be associated to it. The same result is
also obtained from 1D return maps [8].

The template of Fig. 3 corresponds to the homoclinic
tangency (¢ = 0). In this situation the chaotic attractor
is not yet hyperbolic [2] due to the coincidence between
the stable and unstable directions at the tangency point.
The complete hyperbolic regime sets in after the occur-
rence of the last tangency between W*(p) and W*(p),
when then all possible periodic orbits are described by
the symbolic dynamics on a complete binary (R or L)
tree. For parameter values p prior to the homoclinic
tangency, the GD dynamics is likely not to be hyperbolic

FIG. 3. Horseshoe template supporting an RL* homo-
clinic orbit.

and therefore not all possible combinations of R and L
have a counterpart in the observed periodic orbits (i.e.,
they are “pruned”). As p assumes positive values, the
GD departs more from hyperbolicity and therefore to ac-
count for the associated pruning process, we say that the
unstable periodic orbits of the attractor are constrained
to only a subset of the template of Fig. 3. As u — 0,
the qualitative dynamics of the GD is modeled assum-
ing that a larger extent of the template is visited by the
orbits, permitting a larger amount of combinations be-
tween R and L. Based on experimental observations, we
implemented this idea in Fig. 4 for the C() and C(®
chaotic windows of the APC sequence. According to
the template construction, in Fig. 4 are represented the
stretching and folding mechanisms for the C() (white
drawing) and the C(®) (gray drawing) attractors. It is
important to notice that, by action of f (see Fig. 2),
the fold of the segments T3 B; and T> B>, corresponding,
respectively, to the C(1) and C® windows, is asymmet-
ric because f(T,M) > f(MB,) (n is the superscript of
C™). For the C® regime this is evidenced in Fig. 1(g).
The inequality is still larger for the C(%) regime and it
will become smaller for C(*) regimes when n — co. This
is in agreement with the fact that, according to Fig. 2,
the “parabolalike” bendings of W*(p) depart exponen-
tially from W*(p) as p rises (i.e., n — 0) [2] originat-
ing the growing inequality f(T,M) > f(MB,). On the
other hand, at the homoclinic tangency (¢ = 0;n = o),
we have f(ToocM) = f(MBo) which implies that in
Fig. 2 the location of f(Tw) will then be (zr,0). The
template (Fig. 3) corresponds exactly to this situation.
The RL® homoclinic orbit splits this template into P{™)
strips (n = 0,1,2,...,00; they correspond to the shad-
owed areas delimited by the homoclinic orbit in Fig. 3
and are also represented at the left of Fig. 4). The index
n gives the number of loopings between two reinjections
for orbits leaving a strip P(™). As u — 0, the segment T'B
approaches Th, Boo, and thus increasingly more P strips
are allowed for the orbits. This process determines the
permitted symbolic sequences. For example, in the C'(?
regime of Fig. 4, M B, crosses the strips P(1), P(®) and
P®); therefore a symbolic sequence R(L)* is incompati-
ble with this situation. At the branch line of the template
the semiflow induces a 1D return map [5,8] that reflects

FIG. 4. Stretching and folding in the C¥) (white) and C®
(gray) attractors.
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the metrics of the attractor when pu — 0. The transfor-
mation of this map under the change of p accounts for the
bifurcations in the APC sequence. As u — 0, orbits of
P kind with increasingly higher period are generated
and, having a correspondingly larger reinjection ordinate
[8], they accumulate at T, which is also a homoclinic
point because T, = f;zlo(wT,O). Thus, T is an accu-
mulation point for an infinite family of periodic orbits
according to a theorem by Birkhoff and Smith [16].

Although the template should remain invariant under
small control parameter changes, we have also obtained
experimental results that clearly evidence the alteration
of the template, induced by a control parameter varia-
tion. These results show that the horseshoe template
corresponds to the C(1)| and the C® chaotic windows,
while for the next window, C(®, a template with two ori-
entation preserving branches plus two orientation revers-
ing branches is associated. With our analysis, regarding
Fig. 2, the transition of the two-branched to the four-
branched template is easily explained considering that
the transformation of T'B under f, after the transition,
extends the segment to the marked points (hollow dots)
on W*(p) in Fig. 2 [17].

In conclusion, we have shown that homoclinic chaos
in the GD is modeled by a horseshoe template. The
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template was obtained directly from the flow’s geome-
try resulting from the formation of a homoclinic tangle.
The analysis is independent on the elected embedding;
we have obtained the same result for a differential phase
space embedding [6]. We have made the analysis of ho-
moclinic chaos through a topological approach instead of
the usual technique employing return maps for analyz-
ing the orbit structure near homoclinic orbits [18]. Both
approaches, regarding the information obtained from the
symbolic dynamics, are equivalent. But our topological
analysis achieves a straightforward interpretation of the
dynamical alterations in the GD which are reflected in
the change of the template. In this situation, the ap-
proach based on maps presents the problem that the de-
scription passes from a simple 1D map to a troublesome
2D map. Our analysis is noise robust and there is no
need of an explicit knowledge of the GD model equations.
Therefore the procedure outlined in this paper is also ap-
plicable to other dynamical systems, provided they have
a faithful phase space representation.
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