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The main purpose of the paper is an essentially probabilistic analysis of relativistic quantum
mechanics. It is based on the assumption that whenever probability distributions arise, there exists
a stochastic process that is either responsible for the temporal evolution of a given measure or pre-
serves the measure in the stationary case. Our departure point is the so-called Schrodinger problem
of probabilistic evolution, which provides for a unique Markov stochastic interpolation between any
given pair of boundary probability densities for a process covering a axed, 6nite duration of time,
provided we have decided a priori what kind of primordial dynamical semigroup transition mech-
anism is involved. In the nonrelativistic theory, including quantum mechanics, Feyman-Kac —like
kernels are the building blocks for suitable transition probability densities of the process. In the
standard. "free" case (Feynman-Kac potential equal to zero) the familiar Wiener noise is recovered.
In the framework of the Schrodinger problem, the "free noise" can also be extended to any in6nitely
divisible probability law, as covered by the Levy-Khintchine formula. Since the relativistic Hamilto-
nians

~

V'~ and g—A + m2 —m are known to generate such laws, we focus on them for the analysis of
probabilistic phenomena, which are shown to be associated with the relativistic wave (D'Alembert)
and matter-wave (Klein-Gordon) equations, respectively. We show that such stochastic processes
exist and are spatial jump processes. In general, in the presence of external potentials, they do not
share the Markov property, except for stationary situations. A concrete example of the pseudodif-
ferential Cauchy-Schrodinger evolution is analyzed in detail. The relativistic covariance of related
wave equations is exploited to demonstrate how the associated stochastic jump processes comply
with the principles of special relativity.

PACS number(s): 05.40.+j, 02.50.—r, 03.65.Pm

I. THE ANALYTIC CONTINUATION IN TIME
OF HOLOMORPHIC SEMIGROUPS

AS A MAPPING BETWEEN TWO FAMILIES
QF STOCHASTIC PB.OCESSES

A. Gaussian exercises
The Schrodinger equation and the generalized heat

equation are connected by analytic continuation in time.
The link (casually viewed as a kind of analogy or cor-
respondence) can be implemented by a rotation in the
complex time plane, taking the Feynman-Kac kernel into
the Green function of the corresponding quantum me-
chanical problem, which is an exploitation of properties
of holomorphic semigroups generated by Laplacians and
their sums with appropriate potentials.

For V = V(z), x C R, bounded from below, the gen-
erator H = —2mD L+ V is essentially self-adjoint on a
natural dense subset of I, and the kernel k(x, s, y, t) =
(exp[ —(t —s)II])(x,y) of the related dynamical semi-
group is strictly positive. The quantum unitary dynamics
exp( —iHt) is a final result of the analytic continuation.

As repeatedly emphasized [1—3], any temporal evolu-
tion that is analyzable in terms of a probability measure

iB,vP = —D&g ; g, o, = D&0„

; g,e= —D&0,

may be interpreted as a stochastic process. In view of
the Born statistical interpretation postulate for quantum
mechanics, the analytic continuation in time discussed
above induces a class of probability measures, namely,
consider p(2:, t) = ~@(x,t) ~2 as the density of a probabil-
ity measure associated with a given solution g(x, t) of the
Schrodinger equation. Then, it is possible to address the
problem of that stochastic dynamics that would be either
(i) measure preserving or (ii) induce the time evolution of
the measure proper. Keep in mind that the Schrodinger
equation itself i8 not a genuine partial differential equa-
tion of probability theory; rather it is the Born postulate
that embeds the unitary evolution problem into the prob-
abilistic framework.

A simple illustration of the analytic continuation in
time is provided by considering the force-&ee propaga-
tion, where the formal recipe gives rise to the equations
of motion (one should be aware that to execute a map-
ping for concrete solutions, the proper adjustment of the
time interval boundaries is indispensable):
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itmt.
Here g denotes the complex conjugate of g, while the
notation 0, and 0 refers to real functions which solve the
time adjoint parabolic equations. Then

1063-651X/95/51{5)/4114(18)/$06.00 Qc1995 The American Physical Society



SCHRODINGER PROBLEM, LEVY PROCESSES, AND NOISE. . . 4115

g(z, t) = [p ~ exp(iS)](z, t)

dz'G(x —x', t)g(z', O),

densities for arbitrary intermediate times.
For example [2], if for convenience we set n2 = 2, D =

1, the transition density for two arbitrary times, t & s,
reads

G(x —x', t) = (4~iDt) ~ exp
(x —x')2

4iDt (2) p(y, s, x, t) = [4vr(t —s)] ' exp
(x —cy)
4(t —s)

0.(z, t) = dx'k(x —x', t)0.(x', O),

c = c(s, t) = (1 —t)'+ 2s
1+s

k(z —z', t) = (4vrDt) exp
(x —x')'

4Dt

p(x, t) = dye(y, s, x, t)p(y, s).

where the imaginary time substitution

k(x —x', it) = G(x —x', t)

k(x —x', t) = G(x —x', —it)

x' )
Q(z, o) = (7m ) ~ exp ~—

2n

the free Schrodinger evolution iBqg~ = DZ@ impli—es
that

n2
@(z,t) =

~

—
~

(n + 2iDt) '~ exp
vr j 2(n'+ 2iDt)

(5)

with

p(z t) = I@(»t)I' =
[7r(n4 + 4D t2)]'&2

( x'n'
x exp 4+ 4D

seems to persuasively suggest the notion of "evolution in
imaginary time, " which in the usual interpretation relates
quantum theory to an "imaginary time diffusion. " Here
we shall emphasize a diferent viewpoint in which the
quantum dynamics and the so-called Euclidean dynam-
ics [4] (dealing with the Wiener process and conditional
Brownian motions, for example) may both be seen as real
time diB'usions.

At this point let us observe that given the initial data

Notice that the s $ 0 limit of the transition density (7)
does not coincide with the rescaled form of (6), ~1 —t~

instead of (1 —t) appears in the exponent. It refiects the
nonuniqueness of the definition of the transition proba-
bility density as long as we do not insist on having de6ned
all intermediate densities as well [2]. Anyway, while in-
tegrated with p(x, 0) they give the same output at time
t)0

X2
po(z) = (2') ~ exp ———', p(x, t)

2

x'= [2~(1+ t )]
'~ exp 2(1+ t')

Clearly p(x, t) admits a factorization p(x, t)
~@(z, t)

~

= O(x, t)8, (x, t) . The standard Madelung ex-
ponents R(x, t), S(x, t) such that @(z,t) = exp[R(x, t) +
iS(x, t)] are given by

X2
R(x, t) = —-' in[2~(1+ t')]-') 4 4(1+ t') '

x' t
S(z, t) = — ——arctan (t),

4 1+t2 2

BgO = —68+ QO,

Bg8 = EO —QO (10)

and allow us to define the real functions 8(z, t)
exp[R(x, t) + S(x, t)], O„(x, t) = exp[R(x, t) —S(x, t)]
which solve the pair of time adjoint generalized difFusion
equations

p(y, 0, z, t) p(y, O)dy (6) ~pl/2
Q(x, t) = 2

P

p(y, 0, x, t) = (47rDt) '~ exp
(x —y —2, yt)2

4Dt

where p(y, 0, x, t) is the (distorted Brownian) transition
probability density for Nelson's diffusion [2,3]. The tran-
sition density p(y, 0, x, t) is not uniquely specified by (6),
but the nonuniqueness problem for the diffusion process
involved may be resolved when v"e consider transition

The diffusion governed by the pair of adjoint equations
(10) belongs to the category of "Nelson's diffusions" [3],
but only in the &amework presented here can it be sin-
gled out uniquely. It is exactly due to the "Schrodinger
problem" uniqueness theorem [5]. It is really amazing
that Schrodinger originated the problem of a stochastic
interpolation between the prescribed input-output statis-
tics data long before the modern probability theory was
created.
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An interesting observation is that we can give the tran-
sition density (7) another form [2,4]

p(y, s, x, t) = k(y, s, x, t)
0(x, t)

(11)Oy, s '

1
lim 1 — k y, s, x, s+As dx = y, s .

&BING Qs

Since p(x, t) trivially factorizes into a product of so-
lutions of time adjoint heat equations (set 0(x, t)
[k(0, —no, 0, ao)] / k(x, t, 0, no)), we have in hand the
microscopic transport recipe [4]

p(y, s, x, t) = k(y, s, x, t)
9(x, t)
9 y, s

On the other hand, coIning back to the previous nota-
tion and (5), we can straightforwardly pass to

with the heat kernel k(y, s, x, t), (16), and the property
[to be compared with (11)]

e.(x, t): = @(x,—it)

( 2) i/4

7I
(n +2Dt)

1
lim 1—
&8/0 Qs k(y, s, x, s + Es)dx = 0. (18)

X exp
2(n2 + 2Dt)

8~0. = Dag. ,

Ogg = —D&0)

T T
2 2'

1/4

8(x, t) =
~

—
~

(n' —2Dt)
—'/'

7l

x exp
2(n2 —2Dt)

where [we use an overbar to distinguish between the prob-
ability densities (14) and (6) or (7), respectively; notice
also that 0 replaces 0]

p(x, t) = 0(x, t)0.(x, t)

0!

~(n' —4D't2)

- i/2
X

o.4 —4D2t2 (14)

with the interesting and certainly unexpected if one fol-
lows traditional Brownian intuitions —outcome that

p(* t) = p( t)

I et us confine t to the time interval [ T/2, T—/2] with
DT & o. . Then we arrive at

The resemblance of formulas (ll) and (17), (18) is not
accidental, and suggests that any given Feynman-Kac
kernel can be used to generate a probability measure.
In addition, we should keep in mind that the two levels
of probabilistic description, i.e. , (ll) and (17), are in
directly linked by the analytic continuation in time of a
holomorphic semigroup with the Laplacian as its gener-
ator.

Remark 1. The time development of a density p(x, t)
(p, respectively) is dictated by the Fokker-Planck (sec-
ond Kolrnogorov in the probabilistic lore) equation. It
is instructive to notice that i'@ = —Eg upon set-
ting e = 2Re

&
and u = 2Im

&
gives rise to Bqp =V'Q Vg

—9'(v p), which may be rewritten as Bip = Ep—
V'(bp) with b = u + v. Proceeding analogously with
p = k(xi, ti, x, t) k(x, t, x2, t2)/k(xi, ti, x2, t2), where
k(y, s, x, t) is the heat kernel, and s ( t, ti
t & t2) while t»x»t2) x2 are fixed, we immediately
recover Dip = Ep —V(bp) with b = b(x, t)
2V'k(x, t, x2, t2) /k(x, t, x2, t2).

Furthermore to this remark, let us emphasize that the
emergence of the nonvanishing drift field b(x, t) is not
connected with any external force. It is a traditional as-
sumption when studying the Brownian motion in a con-
servative force field to define the drift as being propor-
tional to the force itself (Stokes law); these Smoluchowski
diffusions form a subclass of problems we are considering
[1], however the previous drift is an exclusive effect of the
conditioning.

B. The Schrodinger problem: from Feynman-Kac
kernels to probability measures

k(O, -~„x,t)k(x, t, o, n, )
p x, t

k(0, —~o, o, ~o)

k(y, s, x, t):= [4mD(t —s)] '/ exp , (16)
4D(t —s)

2D

for all ~t~ & T/2. The density (14) refers to a condi-
tional Brownian motion, and the interpolating probabil-
ity density can be represented as the conditional proba-
bility density (identifiable as the Bernstein density [4])

The previous examples are very particular solutions of
what we call [1,2] the Schrodinger problem of deducing
the probabilistic interpolation (stochastic process) con-
sistent with a given pair of boundary measure data at
fixed initial and terminal time instants ti & t2. Origi-
nated by Schrodinger himself [6], the problem was solved
much later [4,5] by invoking the machinery of Bernstein
stochastic processes; see also Ref. [7]. For our purposes
the relevant information is that [5], if the interpolating
process is to display the Markov property, then it has to
be specified by the joint probability measure (A and R
are Borel sets in R)
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m(A, B) = dz dy m(z, y),
A B

m(x, y)dy = p(z, tg),
R

(19)

m(x, y)dx = p(y, t2),
R

where we assign densities to all measures to be dealt with,
and the density m(z, y) is given in the functional form

m(z, y) = f(z)k(z, tj, y, t2)g(y) (2o)

ti ( s & t & t2. (21)

Hence the transition densities are intrinsically entangled
with the dynamical semigroup kernels in the solution of
the Schrodinger stochastic interpolation problem. The
crucial step in the construction of any explicit propa-
gation consistent with the boundary measure data is to

I

involving two unknown functions f (z) and g(y) which
are of the same sign and nonzero, while k(x, s, y, t) is any
bounded strictly positive (dynamical semigroup) kernel
defined for all times t q & 8 & t ( t2 continuous in vari-
ables. The integral equations (19) determine functions
f (x), g(y) uniquely (up to constant factors) in this case
[51

By denoting 0, (z, t) = f f (z)k(tq, z, z, t)dz and
0(x, t) = f k(x, t, z, t2)g(z)dz it follows [1,2,4,5] that

p(e t) = tt( t)tt.e( t) =eJ p(p, s, e, t)p(ps)dp, ,

()) x, t
p(y, s, x, t) = k(y, s, x, t)

0(y, s)
'

decide what is the appropriate dynamical semigroup.
We shall address the issue in its full generality. Strictly

positive semigroup kernels generated by Laplacians plus
suitable potentials are very special examples in a surpris-
ingly rich encompassing family. First of all, the concept
of the "&ee noise, " normally characterized by a Gaussian
probability distribution appropriate to a Wiener process,
can be extended to all infinitely divisible probability dis-
tributions via the Levy-Khintchine formula [8,9]. It ex-
pands our &amework &om continuous diffusion processes
to jump or combined difFusion-jump propagation scenar-
ios. All such (Levy) processes are associated with strictly
positive dynamical semigroup kernels, and all of them
give rise to Markov solutions of the Schrodinger stochas-
tic interpolation problem (19)—(21).

Bemarl 8. Apart &om the wealth of physical phenom-
ena described in terms of Gaussian stochastic processes,
there is a number of physical problems where the Gaus-
sian toolbox proves to be insufBcient to provide sat is-
factory probabilistic explanations. Non- Gaussian Levy
processes naturally appear in the study of transient ran-
dom walks when long-tailed distributions arise [10—12].
They are also found necessary to analyze fractal ran-
dom walks [13], intermittency phenomena, anomalous
diffusions, and turbulence at high Reynolds numbers
[10,14,15].

Let us consider Hamiltonians of the form H = E(p),
where p = —i V' stands for the momentum operator
and for —oo & k ( +oo, E = E(k) is a real val-
ued, bounded &om below, locally integrable function.
Then, exp( —tH) = f exp[ —tE(k)]dE(k), t ) 0, where

dE(k) is the spectral measure of p.
Most of our discussion will pertain to processes in one

spatial dimension, and let us specialize the issue accord-
ingly. Because [(E(k)f](x) =

&
—f exp(ipz) f (p)dp,

where f is the Fourier transform of f, we learn that

(esp( —tH)lf(*) = (f
'..f=

exp( —tP(k)]dE(k) f) (e)

+oo Ic

exp[—tE(k)]— exp(ipx) f (p) dp dk
dk

exp[—tE(k)] exp(ikx) f (k) dk = (exp[—tE(p)]f (p) ) (x), (22)

where the superscript V denotes the inverse Fourier trans-
form.

Let us set kq ——
&
—[exp( —tE(p)], then the action

of exp( —tH) can be given in terms of a convolution:
exp( —tH) f = f*kq, where (fag)(z):= f&g( zz) f(z)dz.

We shall restrict consideration only to those E(p) that
give rise to positivity preserving sernigroups: if E(p) sat-
is6es the celebrated Levy-Khintchine formula, then k& is
a positive measure for all t ) 0. The most general case
refers to a contribution from three types of processes:
deterministic, Gaussian, and an exclusively jump pro-
cess. We shall concentrate on the integral part of the
Levy-Khintchine formula, which is responsible for arbi-
trary stochastic jump features,

exp(ipy) —1 — v(dy), (23)
ZPQ

1 + y2

where v(dy) stands for the so-called Levy measure [8,16].
The disregarded Gaussian contribution would read

E(p) = p /2; cf. Refs. [1—4,7] for an exhaustive dis-
cussion of related topics. In this case we know in detail
how the analytic continuation in time of the Laplacian
generated holomorpic semigroup induces a mapping to a
quantum mechanical (since the Schrodinger equation is
involved) diffusion processes.

Our further attention will focus on two selected choices
for the characteristic exponent E(p), namely: Eo(p) = IpI
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and F (p) = gp2 + m2 —m, m ) 0, where we have cho-
sen suitable units so as to eliminate inessential param-
eters. (The relativistic Hainiltonian is better known in

the form gm2c4 + c2p2 —mc2 where c is the velocity of
light. )

The respective Hamiltonians (semigroup generators)
Ho, H are pseudodiKerential operators. The semigroup
kernels k~, kP in view of the "free noise" restriction (no
potentials, will be defined in below) are transition densi-
ties of the jump (Levy) processes regulated by the corre-
sponding Levy measures vo(dy), v (dy). The affiliated
Markov processes solving the Schrodinger problem (19)—
(21) immediately follow. It is instructive to notice that
as in the case of Gaussian derivations (1), it is [1] the
case 0(x, t) = 1, 0, (x, t):= p(x, t) for which the pseu-
dodiKerential analog of the Fokker-Planck equation, as
a consequence of [exp( —tH) p](x) = p(x, t) and in view
of the identification F(p + —iV'):= H takes the funda-
mental form

i+is, t ) 0 so that exp( —o'H) = I& exp[ —oF(k)] dE(k).
Its action is defined by

[exp( —~H)]f = [(f exp( —o.F)] = f * k (28)

Fp(p):-i', @(x,t) = lV'lQ(x, t) (29)

F-(p) :- iB,Q(x, t) = g—A+m' —m g(x, t) (30)

to be compared with (22). Here, the kernel reads k

=[exp( —oF)] . Since H is self-adjoint, the limit t $ 0

leaves us with the unitary group exp( —isH), acting in the
same way: [exp( —isH)] f = [f exp( —isF)], except that
now k;, :=

&
—[exp( —isF)] in general is not a measure.

In view of unitarity, the unit ball in L is an invariant
of the dynamics. Hence density measures can be associ-
ated with solutions of the Schrodinger pseudodi8'erential
equations,

or

F-(p)

Fo(p) :- ~is(x t) = —17lp(x t) (24)

;- O,p(x, t) = — Q—A+ m.2 —m p(x, t), (25)

provided with the appropriate initial data functions
y(x, o).

An obvious consequence of (29) and (30) is that the
partial differential equation of the second order (26) takes
on a familiar relativistic form

Fo(p) ~ ~p(x, t) = (n, + W)p(x, t) = 0. (26)

Alternatively, if we set p(x, t):= p(x, t) exp(mt) in (25)
then

respectively. Let us emphasize that the existence and
uniqueness of solutions proof for the Schrodinger prob-
lem extends to all cases governed by the infinitely di-
visible probability laws, and has nothing to do with the
"nonrelativistic" or "relativistic" options. The particu-
lar choice of semigroup generators, which are called "rel-
ativistic Hamiltonians" links the standard Schrodinger
problem discussion with relativistic dynamics. But only
after an analytic continuation in time, unless only sta-
tionary problems are studied (see the forthcoming dis-
cussion .

Although the pseudodifferential generator of the semi-
group implies that the Fokker-Planck equation is no
longer exclusively differential but an integro-differential
equation, each solution p(x, t) in the present case is nev-
ertheless a solution of a partial differential equation of
higher order. Specifically, the respective partial diKeren-
tial equations are of the second order,

Fo(p):- @(x,t):= (—E+ Et,)Q(x, t) = 0 (31)

F-(p) :- (n+ m')@(x, t) = 0,

where the D'Alembert operator = —A + Lq replaces
its Euclidean counterpart — ~ in (27).

We have thus reached a point, at which the main ques-
tions addressed in the present paper can be precisely
stated.

(i) What are the stochastic processes consistent with
the probability measure dynamics p(x, t) = lg(x, t)l2 de-
termined by pseudodifferential Eqs. (29) and (30)?

(ii) Can we extend. the Schrodinger problem idea to
the special relativistic domain and be able to reproduce
the interpolating stochastic process from the given input
p(x, ti) and output p(x, t2), ti ( t2 statistics data, just as
in the nonrelativistic (Laplacian generated motion) case'?

(iii) To what extent can we attribute a definite proba-
bilistic meaning to solutions of the relativistic wave equa-
tions (31) and (32)?

while after setting Q(x, t) = @(x,t) exp(imt), we arrive
at the Klein-Gordon equation,

F-(p) ;. (6,, + A) p( t) x= m p(x, t)

(27)

II. CAN WE ASSOCIATE FEYNMAN-KAC
KERNELS WITH THE

PSEUDODIFFERENTIAL-SCHRODINGER
DYNAMICS ?

(— ~+m')P(x, t) = 0,

where ot~p = —g—A + m2p holds true instead of (25).
Our two semigroups are holomorphic [17], hence we

can replace the time parameter t by a complex one o =

Given the Schrodinger equations (29),(30), to set them
in the Schrodinger problem framework of Sec. I 8 we need
to choose any normalized solution and then take the as-
sociated probability density p(x, t):= lg(x, t) l

as the
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boundary data at times t1 & t2. However, as stated be-
fore some additional requirements must be met, specifi-
cally the Markov property is necessary [4,5]. One should
keep in mind that if we do not insist on the Markov prop-
erty for the interpolating process, then a solution of the
problem involves the general Bernstein processes [5] for
which a reformulation in terms of a pair of time adjoint
generalized difFusion equations no longer exists.

We have chosen two rather special pseudodifferential
counterparts of the Laplacian guided by two reasons:
(i) their similarity on analytic grounds (the same cri-
teria [18] for the existence of the bound state spectrum
if summed with suitable potentials, which we shall need
in the sequel), (ii) the claim of Ref. [19] that the perti-
nent stochastic process in the mass m ) 0 case actually
displays the Markov property.

If the Markov property would hold true for the rel-
ativistic Hamiltonian generated dynamics, we would be
able to repeat almost all steps of the previous Schrodinger
problem analysis [1,2,4,7]. However, the situation is not
that simple, and the subsequent argument excludes the
Markov property, in all nonstationary situations, in a Bat
contradiction with general statements by De Angelis [19].

Before embarking on this issue, let us introduce some
probabilistic notions, which will tell us how to work with
pseudodifFerential operators. We shall notice that for ex-
plicit computational purposes, the Cauchy generator IV'I

is much more suited than the m ) 0 relativistic Hamil-
tonian. It is a real disadvantage when dealing with Levy
processes that rather limited number of concrete exarn-
ples is available, in contrast to the wealth of the general
theory.

The Levy-Khintchine formula (23) tells us that the ac-
tion of the Hamiltonian H = E(—iV') on a function in
its domain can be represented as follows [8,16]:

(H &)(x) = — &(x + y) —J(x) — , v(dy).
yT f(x)

R 1+ y2

It is important to observe that for the free noise
processes whose semigroup generators are IVI and

g—A + m2 —m we do know explicitly their kernels (tran-
sition probability densities) and the involved Levy mea-
sures, as well as about the extension of the Feyman-Kac
path integral construction of the semigroup kernels to
these particular Levy processes [18,20,21], in case of ar-
bitrary space dimensions. Therefore, we feel free to use
the Feynman-Kac kernel notion instead of the semigroup
kernel.

For the Cauchy process, whose generator is IV'I, we
deal with a probabilistic classics [8,16]:

p(x, t) =—:-k (y, s, x, t)
1 t p

7r t2+ X2

(34)
vr (t —s)' + (x —y)' '

0&8&t,
(exp[i@A (t)]): = exp(ipx) p(x, t) dx

R
= exp[ —t+o(p)] = e»( —I&lt).

The characteristic function of ko(y, s, x, t) for y, s fixed,
reads exp[ipy —Ipl(t —s)], and the Levy measure needed
to evaluate the Levy-Khintchine integral reads [20,22,23]:

vo(dy):= lim —k (0, 0, y, t) dy =o d

tgO t 7ry2
(35)

In the case of the relativistic generator g—D + m2-
m, formulas determining the stochastic jump process are
much less appealing [20,21],

(exp[ipX(t)]): = exp[ —tE (p)]

= exp t g—p2 + m2 —m

m t exp(mt)
p( t) = ~1 m ~2+ t2

7r gx2+ t2 (36)

(exp[—(t — )& (— 7)1)(x —y)

= k (y, s, x, t):= p(x —y, t —s),

(dy) ~1 (mlyl )dy,
7rlyl

(HexpC)(x) = — expC(x+ y) —exp@(x)

y4'(x) exp 4(x)
1+ 2

= exp 4(x) exp[4(x+ y) —O(x)]
R

—1 — v(dy), (
yC'(x)
1+y

where 4'(x) = V'4(x). Since (H4)(x) = —J&[4(x +
y) —4(x) —y4'(x)/(1 + y )]v(dy), we can make a safe
rearrangement of (37):

(H exp C )(x) = exp C (x) (He) (x) —f (exp C' „

—1 —4 „)v(dy) (38)

C y.——C(x+y) —C(x).

In application to the pseudo difFerential dynamics
i(iv)�(x,t) = (Hg) (x, t) with @ = exp(R + iS), we

where K) (z) is the modified Bessel function of the third
kind of order one.

We are interested in acting with the pseudodifFerential
generators H = E(—iV') on functions in the exponen-
tial form (recall the familiar Madelung procedure in the
Gaussian case) f (x, t) = exp 4(x, t):
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shall investigate its implications for the real functions
8 = exp(R + S) and 8, = exp(R —S); our argument
will admit a trivial extension from H to H + V situa-
tions.

Rema)"k 8. Experience [1,24] with the Gaussian
(standard Laplacian generated) noise proves that the
Madelung substitution g(x, t) = exp[R(x, t) + iS(x, t)]
would associate with the Schrodinger equation a pair
of time adjoint generalized diffusion equations where
the Feynman-Kac potential (time dependent in the gen-
eral case) equals 2 ~ [2Q(x, t) —V(x)]. Here Q(x, t) =

1/22ID ~&2 (x, t) and V(x) is taken as an external con-

servative force potential. Let us emphasize that V(x)
actually was the Feynman-Kac potential of the dynami-
cal semigroup prior to the analytic continuation in time
procedure. The mapping V(x) + 2Q(x, t) —V(x) is an ef-
fect of the analytic continuation in time, as manifested on
the level of the associated Feynman-Kac kernels. Previ-
ous comments suggest that the nonrelativistic formalism
can be viewed as a kind of probabilistic reinterpretation
of Bohm's point of view [25]. Specifically, the function
—Q(x, t) is the familiar de Broglie —Bohm "quantum po-
tential. " The analogous connection is generally invalid in
the context of the Klein-Gordon equation, as explained
in Ref. [25].

To this remark, let us add that the analytic contin-
uation in time as outlined in Sec. I is not a well-known
procedure although it is repeatedly mentioned in the pre-
vious publications [1,2]. It is new as a regular method.
Also, it is not a part of Nelson's "quantum Huctuations"
[3] point of view, just as the Feynman-Kac kernels were
not ingredients of Nelson's theory. The idea is developed
on the basis of Zambrini's [4] and Carrnona's [7] research.
References [1,2,4,5,7] give a complete description of the
state of the art in this respect. Therefore, we do not
propose to indicate any further connections with Nel-
son's stochastic mechanics than by referring to Nelson's
monograph [3]. The paper itself proposes a self-contained
probabilistic analysis which, in addition to Zambrini's
work is motivated by the paper due to De Angelis [19].

In view of (38), the pseudodifferential-Schrodinger
equation i 82/(x, t) = H@(x, t) implies the following time
evolution of the Madelung exponents:

ass = —q d. f exp(R „)]cos(S „) —1]dv(p). (41)

The same procedure can be repeated for 0 = exp(R+
S) and 0, = exp(R —S), where Eqs. (39) and (41) imply

OqO=H8+ 8 —2 + exp B &
—sinS &

+ coo S s + exp(S „)—2]dv(p)),

88 = —H8 +0 2 exp(R „)[sin S &

+ cos S „+exp( —S „) —2]dv(p)).

In contrast to the Gaussian case [1,24], Eqs. (42) do not
take the form of a time adjoint pair, unless some addi-
tional restrictions are imposed on the Madelung exponent
S(x, t) (notice that we have restored time dependence,
skipped before for convenience). An obvious demand is
S(x + y, t) = S(x, t) for all y, t, and any fixed x. But
then, Eqs. (42) would manifestly refer to the stationary
(measure preserving) random dynamics, governed by the
pair of equations

o)28 = H8 —2QO,

(928, = H8, + 2Q—8, (43)

which are mutually time adjoint. Hence they would fall
into the Schrodinger problem framework, with a triv-
ial implication that the measure preserving process is
Markovian. This, however, cannot be a property of the
"free" dynamics since we need external potentials to se-
cure stationarity. Let us, therefore, make an essential
amelioration by performing the previous analysis for the
case i'@ = (H + V)g with V = V(x). Then, the sta-
tionary system of Eqs. (43) would take the form

[exp(R „) sin S „—S y]dv(y)
(9,8 = H8 —(2Q+ V)0, (44)

c)28, = HO„+ (2Q+ V—)0„
BgS: HR + [exp(R—y) cos S y

—1 —R y]dv(y)
R

(39)

where H = E(—iV').
By employing (38) with respect to p ) = exp(R), we

arrive at

which upon substituting S(x, t) = Et, where F is a con-
stant, yields a pseudodifferential version of the Sturm-
Liouville problem

»2
H~~ ( ) — 2

~
+V( ) —@ )(2~ ( )=O (45)

H~»'Q:=,1, ——RR —f (exp (R „) —1 —R „]dv(p)

and hence

H p'~2 (x)



SCHRODINGER PROBLEM, LEVY PROCESSES, AND NOISE. . . 4121

to be solved (for a chosen value of E) with respect to
the square root of the probability density p(z), once the
external force potential V(z) is selected.

This problem has its Gaussian counterpart in the study
of the measure preserving dynamics [1,26], and in the
present context it can be solved by invoking those poten-
tials for the original pseudodiKerential Schrodinger equa-
tion, for which the bound states (i.e. , stationary solu-
tions) have granted the existence status. The relevant
analysis has been carried out in the studies of the rel-
ativistic stability of matter [18,27—29]. In addition we
know [18,21] that in the stationary case, the Feynman-
Kac path integral generalization to Levy semigroup ker-
nels is available.

However, the Markov property cannot automatically
be attributed to the nonstationary dynamics, as de-
scribed by (42). Below, we shall make a careful anal-
ysis of the Cauchy-Schrodinger (II = ~V'~) dynamics, to
produce a defInite counterexample, for which the unre-
stricted equations (42) would hold true, but the associ-
ated random dynamics would be non-Markovian.

III. THE CAUCHY-SCHRODINGER DYNAMICS

Because of

1 dy

1+ (x —s —y)' y
= Aln gl+ (x —s —y)2

—A (x —s)
x arctan (x —s —y), (51)

where

Let g(z, 0) = f(x):= —i+, be a I2 normed func-

tion, which we take as the initial data for the Cauchy-
Schrodinger evolution.

With the unitary kernel k;, in hand, we can define the
pertinent evolution in terms of a convolution vP(z, s):=
f *k;, = &' f—* (b, —b, )] * P( —). Let us consider

i (11 i + f(z —s —y)—f*b, *P
~

dy
2vr

'

(zan

2' y

i . ' f(z —s —y)= —hm dy
2K &$0 ~ y

+ dy
f (z —s —y)

6 y

A. Construction of an explicit nonstationary
solution 1+ (x —s)' ' (52)

While it is clear that exp( —t~V~) and exp( —it~ 7'~) have
a common, identity operator limit as t $ 0, an analytic
continuation of the Cauchy kernel by means of (28) gives
rise to

' f(x —s —y)
dy A ln

Ql+ (x —s+ e)2

—(x —s) arctan(x —s+ e)

the definite integrals in (50) read

= 1 1 28
k;, = 2[8(z —s) + b(x+ s)]+ —P

X —8

Here, we use the usual notation for the Dirac b function-
als, and the new time label 8 is a remnant of the limiting
procedure t $ 0 in a = t + is. The function denoted by
is/vr(z —s ) comes from the inverse Fourier transform
of —

&
—sgn(p) sin(sp). Because of

f f (*—s —y)
dy

y

+ —(x —s)
2

A —ln
Ql + (x —s —e)2

+—(*—s) + (*—s)
2

x arctan (x —s —e)

Isgn(p)] (47)
and, therefore,

where P( —) stands for the functional defined in terms of
a principal value of the integral. Using the notation b~,
for the Dirac b functional b(x ~ s):

+ f (x —s —y) v 2ir(z —s)
p dy = 1+ (x —s)~

(54)

[sin(sp)] = i (b, —b , ) (48)

By proceeding analogously [with 8, replacing b, in (50)]
we find

we realize that

1 'E8 z

, = —(b. —b-. ) * P
I

—
Iir x —s 27r (z) (49)

is given in terms of the implicit convolution of two gen-
eralized functions.

P
+ f(x+ s —y) i/2~(z+ s)

dy
y 1+ (x+ s)'

All that finally implies [remembering that f(x)

/(1+ *') = @(*,0)],

(55)
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g(x, s) = [exp( —isH) f](x)
= —,

' [f(z+s) + f(*—s)l
Z+- [( — )f(*— ) —(*+ )f(*+ )] (56)
2

with an interesting formula for the time development of
the probability density,

p(z ):= I&(z s)l' = (1+")v'po(x+ )po(* — )

1
Re @(x,t) ——Im g (x, t)

(1+ t)'
[1+(*+t)'] [1+(x —t) 2]

= V'2vr p(x, t). (61)

In view of (61), we have

pe(x) = I&(z o)I' = [f(*)1' = —,+, ,

(57)
p(p t) = 1

i/27r

1

i/2vr

exp(ipz) p(x, t) dx

exp (ipx) Re g(x, t)

Notice that by a direct evaluation, we can check the nor-
malization identity f p(x, s)dx = 1.

Now, we can address the problem of whether the
stochastic process, implying the propagation (57) of the
probability density, is a Markov process.

B. The nonstationary Cauchy-Schrodinger
stochastic process is not Markov

1. Candidates for the transition probability density

1——Im @(z,t) dx, (62)

where

g(x, t) = 1

27r

So that

exp(+zqx —
I q I

—i
I q It) dq. (63)

1 1
&(p ') = p(p t) = exp( —lpl) «s(tlpl)2~

' '
i/27r

We are interested in representing the time evolution
of p(x, t), (57), in the integral (probabilistic transport
rule-looking) form

1+—sin (tlpl)t (64)

p(z, t) = p(y, 0, x, t) pp(y) dy

p(y, s, x, t) p(y, s) dy
cos (tlpl) + —,

' sin(tlpl)
pp po»' (65)

Finally, in view of po(p) = (1/Q2vr)(1 +. Ipl) exp( —lpl),
we find (t ) 0)

without bothering at the moment whether we can assign
to p(y, 0, x, t) or p(y, s, x, t), s & t, any true meaning of
the transition probability density of a stochastic process.

Since p(x, t) is a probability density, we can evalu-
ate its characteristic function (Fourier transform [30]):
P(p, t):= i/2ap(p, t) Of cour. se, P(p, 0) = f (p)
fR[l/7r(1 + x )] exp(ipx) dx = exp( —lpl) is a characteris-
tic function as well.

By observing that [g(x, 0):=Qo(x)]

—,
' X.(*+t)+4.(*-t)]

(1+t') + x'
[1+(x+ t)'] l1+ (z —t)'1

while

—,
'

[( —t)@.(*—t) —(*+t)@0(*+t)1

—(1+ t') + x'
l1+ (*+t)'ll1+ (*—t)'] (60)

we arrive at [cf. (56) for the definition of vP(x, t)]

and (0 & s & t)

cos(tlpl) + —, sin(tlpl)ppt = pps
cos(slpl) + -' sin(slpl)

'

Ignoring the issues of existence and positive definite-
ness of Fourier transformed integrands, we can proceed
in the standard way,

1
p(x, t) = exp( —ipx) p(p, t) dp

271 R

p(y, s, x, t)p(y, s)dy

exp[ip(y —x)]
270

«s(tlpl) + —,
' »n(tlpl)" ( Iul) +! ' ( Is I) )

where the formal, homogeneous in space "transition
probability density" p(y, s, x, t), s & t, trivially satisfies
the formal Chapman-Kolmogorov identity: p(y, s, x, t) =
JR p(y, s, z, u)p(z, u, z, t)dz s & u & t

To go beyond formal arguments,
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2. Existence of the probabilistic transport
from time 0 to time t & 0

In agreement with (65)—(67), we can introduce an in-
tegral kernel p(y, 0, x, t) eB'ecting the transport of p(y, 0)
into p(z, t), t ) 0,

1
p(y, 0, z, t) =

27r
exp[ip(y —x)]

(i) We need to prove that the function p(y, 0, x, t), t )
0 is a well defined transition probability density of the
stochastic process transporting the initial (time 0) den-
sity into the terminal (time t & 0) one.

(ii) We need to demonstrate that the would-be tran-
sition density p(y, s, x, t), s & t, is a well defined proba-
bility measure, and actually we shall prove that it is not,
which excludes the Markov property for the stochastic
process under consideration in agreement with our pre-
vious conclusions of Sec. II.

P(* t) = 2[g(*+ t) + g( —t)] + 2t &[—~,~](z)

1—
2, (g * X(-~,~))(z) (72)

In view of (72), properties of p(z, t) are completely de-
termined by those of g(x).

Equation (70) suggests that g(x) itself might be a prob-
ability density. For this to hold true, 1/(1+ Ipl) must be
a characteristic function, and we are in the framework
covered by the classic Bochner theorem [8,31,32]. Our
integrand 1/(1 + Ipl) is continuous on R and equals 1
when Ipl = 0. It is well known [8] that such a function is
a characteristic function if and only if it is positive de6-
nite. To be a positive definite function h(p) must satisfy
the inequality

where y~ i ~~
= 1 if lxl & t, and = 0 if lxl ) t, we can

rewrite p(z, t) as follows:

cos(tlpl) + —,
' »n(tlpl)

1+ lpl
(68)

n

) h(p, —p, )AA, & 0
i,j,=1

(73)

~2rrp x, t cos(tp) Ipl sin(tp)+
. 1 + Ipl 1 + lpl

The function

(69)

At the moment, its status as the transition probabil-
ity density of a stochastic process is not settled. We
must know whether its Fourier transformed integrand
is positive-definite function and satisfies a normalization
identity f& p(y, 0, x, t) dx = 1 for all times t & 0.

In view of the homogeneity in space we observe that
p(y, 0, x, t) = p(0, 0, x —y, t) and so we pass to the nota-
tion

for any Gnite sequence of complex numbers A1, A2, ..., A

any sequence of points pi, p2, ..., p in R, and any n =
1) 2 ) ~ ~ ~ ~

The identity (73) is trivially satisfied by h(p) = 1/(1+
Ipl), and as a consequence it is a characteristic function
of the probability density g(x), (70). Then f& g(x)dx = 1
follows.

The function p = p(x, t) is real and even in x, which
allows us to consider a nonnegative semiaxis x ) 0 for
the moment. Let 0 & x & t. Because f g(z) dx = 1, we
find that

g(x):
1

v'2 &1+ lplr
1 dp

exp( —ipx) 1+ IJ I

(70)
f

z+t 1
g(y)dy & 1:-———(g*X~-~,~j)(z) & o (74)

2t 2t

which implies that
will play a distinguished role in what follows. Indeed,
because 1

p( t) = -[( +t)+ (*—t)]+—
[cos(tp)] (h, + b ,), (71) 1——(g * X(-~,~j) (z) & o .

2t
(75)

(sin(tp) ) 1

tp ) t X[—t, tj)
If x ) t it suKces to consider

1 *+' g(x+ t) + g(x —t)
2t gydy &

2
:- —, [g(z+ t) +g(z —t)] ——[g*X~-~,r~(z)] & 0 —:p(z t) & o.1 1

2t
(76)

Hence, p(x, t), (72) is strictly positive on R, and more-
over it has a unit normalization. This implies that
p(0, 0, x —y, t) is a well defined probability density.

Let us add that lim~ ~~ p(x, t) = 0 and

limggp p(z t): b(z). At the points x = +t, p(x, t) de-
velops singularities in view of lim gp g(x) = oo. The lo-

cation of the singularities is quite significant, since they
make a clear distinction between the random propaga-



4124 GARBACZEWSKE, KLAUDER, AND OLKIEWICZ 51

8. Violation of Mar kov property

In view of our previous discussion we have specified
consistent distribution functions for the process, which
in principle permits its construction ( [8], Chap. 15). For
the Markov process what needs to be specified [8,32,33]
are the transition probabilities for all intermediate times
of the considered evolution and the initial distribution
(which is given in our case). We shall investigate the
existence of the consistent transition probability densities
for the process in question.

If the Cauchy-Schrodinger process is to be Markov, the
integral kernel

1
p(y, s, x, t) =-

27r
exp [ip(y —x) ]

cos(tlpl) + —,
' sin(tlpl)

cos(s l pl) + -' sin(s
l pl)

(77)

must be the Fourier inversion of a characteristic function.
A necessary condition for

cos(tlpl) + -', sin(tlpl6 p, s, t
cos(slpl) + —sin(slpl)

to be a characteristic function is the positive definiteness
of h(p, s, t) as a function of p E B for all intermediate
time instants 0 ( s & t.

We shall prove that for each terminal time instant t we
can single out earlier time instants s, such that h(p, s, t)
is not a positive-definite function. As a consequence, the
intermediate propagation cannot be Markov.

To this end, let us notice that for a Axed t, and 8 ) 0
we can rearrange the denominator in (78)

1
cos(slpl) + —sin(slpl) =

S os o.'s
cos(slpl —n, ),

tan o., :=
8

(79)

Notice that

tion regimes with jumps of size less than t, and those of
size greater than t, for each terminal time instant of the
evolution of p(x, t)

Notice also that as a suitable probability density
p(x, t) leads to several finite moments: J& xp(x, t)dx =
0, J&x p(x, t)dx = t . On the other hand, the long-
tailed Cauchy transition density (34) has no finite mo-
ments at all. To have det[h, z. ] ) 0 we need lMl & 1. This condition can

always be violated by choosing any pair pq, p2 for which,
at a given time s, the numerical value of lpi —p2l = lpl
is close to any of those introduced in the formula (80).

Therefore, the considered stochastic process [with the
transition mechanism (67)] is not Markov, as anticipated
on the basis of arguments of Sec. II.

IV. MEANING OF THE PSEUDODIFFERENTIAI
STOCHASTIC PROPAGATION: AN INSIGHT
INTO JUMP FEATURES OF THE PROCESS

A. Fokker-Planck equations

The probability density p(x, t) [respectively, p(x, t)]
was a fundamental entity in all our previous consider-
ations: either (i) providing the input-output statistics
data for the Schrodinger-random dynamics reconstruc-
tion problem, or (ii) providing the time evolution of the
probability measure for the whole time interval of inter-
est, so that the transition probability densities could be
sought for.

In the Gaussian case of Remark 1 we dealt with the
temporal evolution of the probability density given in its
traditional Fokker-Planck form appropriate for Markov
diR'usion processes. In connection with the pseudodif-
ferential (free noise) dynamics, Eqs. (24) and (25) are
an obvious extension of the previous notion to a class of
jump processes. We shall extend the usage of the name
Fokker-Planck equation to any first order in time differ-
ential equation determining the space-time properties of
p(x, t) or p(x, t).

Let us investigate the time development of p(x, t)
0(x, t) 0„(x,t), where 0(x, t), 0, (x, t) come out as solutions
of the temporally adjoint pair of equations of the form

6,0 = H0 —Vo,

t9g~, ———HO, + Vo„
(82)

with the initial (terminal) data f (x), g(y) of the
Schrodinger problem (19),(20) and a Feynman-Kac po-
tential V. Then, in view of (37) and 0 = exp(R+ S),
0, = exp(B —S), we get an evolution equation for the
probability density [the usage of the overbar was ex-
plained preceding (14)]

consider Z2 ih(p, —p~)A;Az ) 0. Because of (78), the
two by two matrix h;z .——h(p; p—~), i, j,= 1, 2 has matrix
elements kgb ——1 = 622 and hq2 ——hgq ——M with

M = cos(n, )
' . (81)

cos(tlpi —p21) + —', »n(tlpi —p21)

cos(slpi —p2l —n, )

1 f 2m+1
)

:.cos(slpl —n. ) = 0

(80)

a,p(x, t) = 0, (x, t) (II0)(x, t) —0(x, t) (a0.)(x, t)

—0.(x, t)0(x + y, t) + 0(x, t)0.(x + y, t)

for all integer ¹

Our h(p, s, t) should satisfy the condition (73). Let us
choose the simplest case of n = 2 in this formula, and

+2p(x, t)V'S(x, t) dv(y).1+g (83)
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Following the traditional recipes when dealing with
Levy measures [8], let us consider an open neighborhood
of the origin ~e~ (( 1. Instead of integrating over all
possible jump sizes, let us integrate over jumps of size

~y~ ) e & 0. The removal of this lower bound as e ~ 0
will eventually amount to evaluating the principal value
of the integral. In case e & 0, we can safely remove the

I

compensating term including y/(1 + y2) from the jnte-
gral, and restrict considerations to the contribution from
the erst two terms only.

Our purpose is to establish a connection between (83)
and the conventional theory of jump stochastic processes,
as developed in [33]. Integrating over a Borel set A C
B, x&Aweget

dx [ 0, (x—, t)0(x + y, t) + 0(x, t)0, (x+ y, t)]dv(y)
/y/).

dx p(x, t)

»(z) —p(x, t) ' + p(x + y, t) di (y)
0(z + y, t) 0(x)

0 x, t 0 x + y

0(x+ y, t) [»(z+ y) —»(z)] d~(y)i), 0x, t (84)

Ogp, (A, t) = q(z, t, A) p, (x, t) dx

where we interchanged the order of integrations, and
made appropriate adjustments of integration variables
(x + x —y and y -+ —y), while exploiting the prop-
erty dv( —y) = —dv(y) of measures (35),(36); »(z) is
an indicator function of the Borel set A C B, equal to 1
when x E A and 0 otherwise.

In the present case, (82), we deal with a Markov pro-
cess with transition probability densities given for arbi-
trary time instants: p(x, t) = I& p(y, s, x, t)p(y, s) dy, s (
t. By invoking the standard wisdom about jump Markov
processes [33], and exploiting liming, p(y, s, A, t) = »(y),
for any Borel set A C B away from (—e, +e), we can
define the jump process running with jumps of size
~y~ ) e & 0. It should be viewed as an approximation
of the original stochastic process governed by (83), with
the initial data p(z, 0) common for both

Here q(z, t, A) & 0 for all x that are not in A, in agree-
ment with [33]. We have also introduced a pseudodiffer-
ential counterpart of the current velocity field v(z, t) =
2V'S(z, t), previously attributed to diffusion processes
(cf. Remark 1), where the probability conservation law
(a continuity equation in another lore) Bqp = —V'(vp)
plays the role of the Fokker-Planck equation.

Notice, that in the particular case of 0(z, t) = 1 for all
x, t, and V = 0, Eq. (82) reduces to the free noise sit-
uation covered by the Fokker-Planck equations (24) and
(25). Then, p(t, z'A) ~l I& [»(z+") —»(z)]di ly),
while B = —S, p = exp(2R) = 0, implies (v)~(t)
—p(z, t)

~

where [a, 6]]:=A c R.
Now, let us address the Fokker-Planck equation for the

pseudodifFerential-Schrodinger dynamics case, which we
consider in the form analogous to (82); see also (1) for
coIIlparisoIl

+ (~)~(t) , d~(y)
y

(85) iB& =H@~V@, (87)

where
1

q(z, t, A): = lim [p(z, t, A, u) —» (x)]

0(x+ y, t) I»(z+ y) —»(z)]d~~y)0 z

(86)
(v) ~(t):= p(x, t) [2V'S(z, t)] dx.

i Bt@ = II@—VQ. —

We reemphasize that to deGne the probability density
p(x, t) = ~g(z, t)~ one actually employs solutions of the
time adjoint pair of Schrodinger equations.

In view of (87), the pseudodifferential continuity equa-
tion follows:

~ p(, t) = —[4(,t)(H@)( t) —@( t)(~&)(
—@(,t)g( +y, t)+0(, t)0( +y, t)+2 p( t)&S( t), d (y).

R 1+y2

Our next step is a repetition of the procedures behind (84), which implies

(88)

ctqp(z, t) = 21m[@(z,t)@(z + y, t)] + 2p(z, t)&S(z, t) 2 di'(y)
R 1+y2
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21m[ad(x, t)g(x + y, t)]
I'tI

I &~

A~(x) 2p )' (x, t) p'~ (x + y, t) sin[S(x, t) —S(x + y, t)]dv(y)

p'~'(x+y) .
pl/2(x)

»n[S(x + y, t) —S(x, t)][y~(x + y) —y~(x)]dv(y). (89)

So, a counterpart of (85) reads

o),p, (A, t) = q(x, t, A)p, (x, t)dx

I

bility of X = ky is given by P(X = ky) =
&, exp( —A).

The characteristic function of 'P(A) reads

+( ) (t) , +,dv(y) (90)

QC) I

E[exp(ipX')] = exp[A(e'"" —1)] = ) e ",e*"""
0

where, however

q(z, tA): = f, Im ' jy„(T+ y)
4( +y, t)

vP(x, t)
—y~(x)]dv(y) (91)

no longer can be derived from transition probability den-
sities of the process, as in the previous discussion (86),
because in general our process is not Markovian. At least
in the case of nonstationary dynamics, the only transi-
tion probability density that is at our disposal connects
an initial instant of the evolution with any later one. In
fact, we might even not be sure that q(x, t, A) is a well
de6ned probabilistic object, because of the presence of
sin[S(x + y, t) —S(x, t)] in the integrand. At this point
an observation of [19] helps. Namely, in view of the iden-
tity

= ) '"1»1P(X = ky)
0

(94)

If we consider n independent random variables Xj, 1 &

j ( n such that X~. has Poisson distribution 'P(A~) with
jump size yj, then a new process X can be introduced
with the distribution of Xq + -. + X~ so that its char-
acteristic function reads

and its first moment equals E[X] = A. Notice that
P(X = 0) = exp( —A), hence the numerical value of A & 0
tells us what is the probability of a jump not to occur at
all for a given Poisson process. For the Poisson random
variable with values 6+ ky, k = 0, 3, ..., we would get

E[exp(ipX)] = exp[ibp + A(e'"" —1)] .

I&(x+ y t)0(»t)~[X~(x+ y)
E[exp(ipX)] = exp ) Az. (e'""' —1)

j=l
(96)

q(x, t, A) = @(x+ y, t)
vP(x t)

+

—y~(x)]dv(y) = 0 (92)

valid for Borel sets A C B, which are away from (
—e, +e),

we can always pass from (89) to the rearranged form of
(91)

The exponent in (96) would include an additional term
ipPr 6~ if nonrandom shifts of each jump kyi by b~

would be allowed.
We can admit not only jumps of Axed magnitudes

yq, ..., y„but also jumps covering an arbitrary range in
B+. I.et the distribution function of the magnitude of
the jump be P(x ( y) = p, (y). A possible generalization
of (96) to this case is

x [y~ (x + y) —y~ (x)] dv(y)

implying that q(x, t, A) is positive for all x that are not
in A, as should be the case [33].

E[exp(ipX)] = exp (e*""—1)dp(y)

B. The jump processes toolbox.
assuming that the integral in the exponent exists. Notice
that (96) is recovered, if we set

To have a better insight into stochastic jump processes
associated with the Fokker-Planck evolutions (83), (85)
and (88), (90), respectively, some further knowledge of
the general theory is necessary. We shall try to minimize
the level of sophistication by invoking arguments based
on the exploitation of the standard Poisson process.

A random variable X taking discrete val-
ues 0, y, 2y, 3y, ..., with y ) 0 is said to have Poisson
distribution 'P(A), A & 0 with jump size y, if the proba-

dp, (y) = ) A, b(y —y, ) dy.
j=l

(98)

The convergence of the exponent in (97) may be jeop-
ardized in cases when jumps of very small amplitude are
allowed to occur very often, while we take for granted
that jumps of very large size seldom happen. On the
other hand [8], for any Borel set A c R bounded away
&om the origin, the process X~ of jumps bounded by A,



51 SCHRODINGER PROBLEM, LEVY PROCESSES, AND NOISE. . . 4127

has the characteristic exponent j&(e'"" —1)dp(y), and
the expected number E~[X] of jumps of size A is equal
to p(A). We can say that the processes of jumps of dif-
ferent sizes proceed independently of one another, and
the jump process of jumps of size [y, y + Ey), Zy « 1
contributes a Poisson component with exponent function
approximately equal to (e'i'v —1)p([y, y + Zy) ). At the
moment the processes have only upward jumps, hence
their sample paths are nondecreasing.

For a process with the characteristic exponent I" (p—),
(23), we can consider its restriction to upward jumps of
size y & e & 0

ability law again. This feature readily extends our dis-
cussion to time-dependent stochastic processes (time ho-
mogeneous with independent increments, associated by
us with the free noise). Obviously, for such processes
E[exp(ipX(t) j] = exp[tP(p)] while E~[X(t)] = tv(A),
and our previous arguments retain their validity with re-
spect to

E[exp(ipX(t))], = exp[tP, (p)]

= exp t (e*""—1)dv(y)
ly l&~

(1o3)

, +„. d (y)P+ (p) — e~Pw 1

y)e

[e'"" —1]dv(y) —ipb+,
y)6

(99)
O, p(z, t) = (Hp)(—x, t):.B,p, (A, t)

X» + 9'
R lyl&e

b+ = dv(y).
y)~ &+ 9

Clearly, we deal here with a process of the type consid-
ered before, and might try to isolate contributions from
jumps of size [y, y+ Ey) by considering a coarse graining
of a Borel set A of interest. A formal substitution of (98)
in (99), with dp replacing dv, gives rise to

xx(*—)1~~(x)
I

p, (*,&).

Remark g. In fact, (102) means that the Fokker-
Planck equations (85),(90), if specialized to Levy mea-
sures (35),(36), involve exclusively the integral term on
their right-hand side

E[exp(ipX)] = exp ( ) A. (e'""' —].) —ip ] + /g2
2=1 2

Ogp, (A, t) = q(x, t, A) p, (x, t)dx,
R

(1o4)

P, (p) = [e'"" —1]dv(y) —ipb„
lyl&~

(101)

where in the case of the Levy measures given in (35),(36)
the deterministic term identically vanishes in view of

b, = b+ + b, = dv(y) + dv(y)) 1+y2 1 +g

(100)

to be compared with (95).
Further specializing the problem to relativistic Hamil-

tonians, we notice that the corresponding Levy measures
vo(y) and v (y), (35),(36) are even under space reflec-
tions, hence dv( y) = —dv(y—) in these cases. Conse-
quently, we can easily extend our discussion to jumps of
all sorts in R, i.e., y can take values in both R+ and R
with the only restriction to be observed that ~y~ ) e ) 0.
Notice that we shall deal with two processes, which run
separately with either positive or negative jumps, and
there is no common jump point for them. This fact means
that they are independent components of the more gen-
eral process defined by

0,p, (A, t) = q(x, t, A) p, (*,t) d~,
R

where an overbar distinguishes between probabilistic
quantities characterizing diferent families of stochastic
jump processes (86) and (91), respectively. Let us em-
phasize that the simplification (104) occurs only in the
~y~ ) e ) 0 jumping size regime. The real role of two
terms in (102) is to compensate the divergent contribu-
tions from the Levy measure when the principal value in-
tegral e ~ 0 limit is considered; then the standard jump
process theory (104) does not apply. Anyway, those two
terms are irrelevant for any e & 0, irrespectively of how
small e is.

One might expect that an infinitesimal (jump size) sur-
rounding of the origin gives a dominant jump contribu-
tion to the process. However, generally it is not the case:
explicit solutions (34),(36) and (57),(72) indicate that for
times t & 0 the leading contribution does not necessarily
come from jumps of infinitesimal sizes.

V. RELATIVISTIC WAVE EQUATIONS AND
ASSOCIATED STOCHASTIC PROCESSES

All our steps (94)—(101) involved the fact that we deal
with infinitely divisible probability laws. One additional
important property about them is that [8] if exp/(p)
is a characteristic function of a given probability distri-
bution, then [exp/(p)]~ = exp[tP(p)], t ) 0 is likewise
a characteristic function of an infinitely divisible prob-

We mentioned before that solutions of our
pseudodifFerential-Schrodinger equations solve the rela-
tivistic wave (or matter wave in the Klein-Gordon case)
equations as well; see (29)—(32). Since each particular so-
lution has an undoubted probabilistic significance, we can
reanalyze the old-fashioned problem [25,34] of a "single-



GARBACZEWSKI, KLAUDER, AND OLKIEWICZ

particle interpretation" for free Klein-Gordon solutions
and analyze the same problem for the D'Alembert equa-
tion solutions, from a difFerent perspective; see also
[19]. As well, we can beneFit from relativistic covari-
ance properties of wave equations to understand how the
pseudodifFerential-Schrodinger stochastic processes com-
ply with the principles of special relativity.

To begin with, let us consider the Klein-Gordon equa-
tion for a particle of mass m ) 0,

( + )~( t) =0. (1o5)

The space-time metric signature is diag(g„)
(1, —1, —1, —1, ), and the system of uruts is h, = c = l. In
view of the polar (Madelung) decomposition of the com-
plex wave function, P(x, t) = exp[A(x, t) + i S(x, t)], we
can split (105) into two real equations,

1/2
(B„S)(0"S)= m

P
(1o6)

B„j"=0,

j" = g~"0 ——4~"4] = —p(~"S)
2i

where p(x, t) = ~P(x, t) ~2 = exp[2B(x, t)].
We can handle the m = 0 case corresponding to the

D'Alembert equation in the same way, and the only
change in formulas (106) would be the absence of the
m contribution.

We have noticed before, (32), that if Q(x, t) is
a solution of the pseudodifferential-Schrodinger equa-
tion iB,@ = [Q—A+ m2 —m]g, then vP(x, t)
g(x, t) exp( —ident) is a positive energy solution of the
free Klein-Gordon equation ( + m, )g(x, t) = 0, since
we surely have iOqg = g—E+ m2@. It is clear that
the time adjoint Schrodinger equation refers to negative
energy solutions of the Klein-Gordon equation. Notice
that we need both positive and negative energy solu-
tions to create (upon normalization) a probability density
p(* t) = &(x t )&(x t)

Remark 5. At this point it is useful to emphasize that
the timelike component jP(x, t) of the current j~(x, t) is
not a probability density itself; by wrongly [35,36] and
per force assuming that it generally would be the case,
all known paradoxes and difhculties underlying the refu-
tation of the Klein-Gordon equation as the proper rel-
ativistic generalization of its nonrelativistic Schrodinger
partner are revealed [25,34]. The positive energy spec-
trum is not just correlated with positive (negative) values
of jp(x, t), although one can establish such a correlation
for the total charge e J jp(x, t)d x [25,37] by assuming
that ejp(x, t) is interpreted as the charge density. Even
then, a clean partition of the positive and negative energy
spectra into sets associated, respectively, with particles
and antiparticles distinguished by the sign of the charge
density is impossible.

Remark 6. The subject of our considerations is es-
sentially a probabilistic analysis of relativistic quantum
mechanics [38]. In view of our previous discussion it is
clear that p(x, t) = ~@(x,t) ~

is a probability density of a

well defined stochastic process, which is non-Markovian
in nonstationary situations. Then, for a general Borel set
A C Bs we have defined a measure p(A, t) telling us what
is the probability for a jump to have its size matching a
point y F A, at time t. We are not inclined to think
that a concrete jump refers to an actual "physical par-
ticle" that jumps in space. In nonrelativistic quantum
mechanics, a standard interpretation of p(x, t)(Ex) as a
probability to locate a physical particle in a cube of vol-
ume (Ex) seems to be consistent. On the contrary, in
relativistic quantum mechanics, the notions of position
and localizability and their relation to any experimental
determination of the physical particle position have been
a subject of vigorous disagreements and no general con-
sensus has been reached. An acceptance of the Newton-
Wigner localization in the configuration-space approach
to relativistic quantum theory implies the general break-
down of causality [39—44] and inevitably implies superlu-
minal effects (instantaneous spreading of a localized wave
packet). It is by no means a surprise if one carefully looks
into the jump process features as revealed in the present
paper. Let us also mention that the Newton-Wigner lo-
calization of mass m = 0 particles is in general impossi-
ble (well-known exceptions are massless particles of spin
0 and massless spin 1/2 particles possessing two helic-
ity states), while we know how to assign the probability
density notion, and hence a probability measure p(A, t)
to a class of solutions of the D'Alernbert equation, see
e.g. , the arguments of Sec. III, albeit possibly with no
connection to any [45,46] "position operator" notion.

Each scalar positive energy solution P(x, t) of the free
Kleiii-Gordon equation (105) can be represented [34] in
the manifestly Lorentz covariant form

y( t) g4k ( ik„x") g—(k kP 2)
(2~)s&'

x O(kp) C'(kp k) (107)

where k:= (kp, k), k„k":= kp2 —k, 4(k) is a scalar
and O(kp) is the Heaviside function equal to 1 if kp ) 0
and to 0 otherwise. The representation (107) extends to
all solutions of iraq@ = g E+ m2@, and upon changi—ng
kp M —kp in O(kp) followed by a comPlex conjugation of
(108), to solutions of the time adjoint equation as well. It
implies that general solutions of those pseudodifFerential-
Schrodinger equations form Lorentz invariant subspaces
in the linear space of all solutions to the free Klein-
Gordon equation.

However, we cannot directly infer from the above facts
any information about how a given pseudodifferential-
Schrodinger stochastic jump process is perceived by dif-
ferent relativistic observers. For example the normaliza-
tion of Schrodinger wave functions is not a relativistically
covariant notion.

At this point we adopt the standard definition of the
Klein-Gordon scalar product [34]:

(108)
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k
[x~~Q] (x)—:i V'g — 4 (kp, k)

2(k2 + m.2)

ko ——gk + m, , j = 1, 2, 3, see (107), is Hermitian
with respect to the scalar product (108), one can in-
troduce a covariant [41] localization notion for all posi-
tive energy solutions of the free Klein-Gordon (and hence
pseudodifFerential-Schrodinger) equation [19,34]. Indeed,
given a positive energy solution of the free Klein-Gordon
equation P(x), which we know to solve the pseudodif-
ferential equation as well, then, we can introduce a new
solution for both of those equations as follows [19]:

~(*) ~ ~- (*):=[(-~+-')"~](*)
If we take for granted the Klein-Gordon scalar prod-
uct normalization, Eq. (108), of P(x), we realize
that the common solution of the Klein-Gordon and
pseudodifFerential-Schrodinger equations: Q(x, t)
Piv~(x, t), may be consistently normalized according
to the Schrodinger equation rule: p(x):= ~@(x)~

1'» d xp(x, t) = 1. As a consequence, and in part be-
cause of this normalization, we have succeeded to asso-
ciate the previously investigated stochastic jump process
with the Newton-Wigner localization. Clearly, we deal
with the probability measure identifying the probability
that the Newton-Wigner "particle" can be found at time
t in the spatial volume A, with the probability of spatial
jumps bounded by this volume, at time t,

Prob [X(t) c A] = p(x, t) d x
A

(109)

which is independent of the specific spacelike surface of
integration. Both positive and negative energy solutions
are covered in this definition, albeit separately, with no
superposition. The integrand in (108) should be com-
pared with the timelike component P(x) of the conserved
four-current j~(x), Eq. (106).

Since the Newton-Wigner position operator

The transfer of data about the pseudodiKerential-
Schrodinger process from one inertial observer to another
is completely determined by Eq. (112).

Now, let us consider the first of equations (87) for the
choice 0 = ~A+ m, 2 of the Hamiltonian: [iraq —(V—
m)]@ = g—A + m2$, where we can regard a general po-
tential V —m as a timelike component of a four vector.
In case of electromagnetic interactions, the presence of
the (—m) term can even be attributed to a gauge trans-
formation A„~ A„+B„y with y = —mt and A—:0. In
particular, the relativistic stability of matter studies [29]
of the existence of bound states for the pseudodifferential-
Schrodinger Hamiltonians, involve the Coulomb static
potential eAO(x) = (Ze—/r), r:= v x2. (We recall that
pseudodiKerential Hamiltonian spectral problems are not
limited to the electrostatic potential only, but their range
of applicability is much wider [18].)

Complex conjugation converts the forward equation
into its time adjoint and it is clear that [

—
iraq —(V—

m)] g = g Z+ m2 g hold—s true How. ever, no im-
mediate connection with the general form of the Klein-
Gordon equation in the presence of electromagnetic inter-
actions (charge e particles), (iB„—eA„) (iO" eA~—)P(x) =
m2$(x), can be established, in general.

On the other hand, a pedestrian intuition behind the
associated notion of a relativistic atom is quite helpful
for a deeper understanding of the particular role of the
Lorentz covariance of the Klein-Gordon and D'Alembert
equations in the context of free pseudodifFerential-
Schrodinger equations. Namely, the atom itself is always
considered to be at rest, with the frame of reference at-
tached to the nucleus, which in turn is a source of an
electrostatic field. In this particular frame of reference
the pseudodifferential-Schrodinger equation [iB& —(V—
m)]vP = g—E+ m2$ is defined. The same pertains to
the general pseudo differential- Schrodinger problem with
a minimal electromagnetic coupling due to external fields

][(—6+ m )'~ p](x, t)) d x. (111) [.~ ( Ao )])( t)
The inhomogeneous ortho chronous Lorentz mapping

x' = Ax + a (x'" = A~x + a", Ao ) 1) can
be associated with the scalar transformation rule for
Klein-Gordon wave functions P'(xo, x') = P(xo, x)
gV(x) = P(A (x —a)). The transformation acts in-
variantly in positive and negative energy subspaces of
solutions, respectively. This fact implies an extension to
pseudodiIIferential-Schrodinger equations of motion.

The Klein-Gordon equation is form invariant: (
' +

m )P'(x') = ( + m )P(x) = 0, which allows us to asso-
ciate with gV(x'), while normalized according to (108), a
pseudodifFerential-Schrodinger stochastic process accord-
ing to (110)

4'(x'):= [(-&'+m')4']" (*'),
iB, g'(x', t') = g—A'+ m2$'(x', t'),

(112)

i&, g'(x', t') = g—Z + m2 —m y'(x', t'),

@'(x', t'):= exp(imt )@'(x', t ).

3) [(iV', —eA~)(j V~ —eA~)] + m2 @(x,t)j=1

(113)

which is a frame-of-reference-dependent notion, see e.g. ,
[47].

Remark 7. A Euclidean version of (113) w s investi-
gated in [21] and an explicit construction was gi en of the
Feynman-Kac path integral formula for the correspond-
ing semigroup kernel. It involves paths, and conditional
measures over paths, of a time homogeneous Levy pro-
cess.

Remark 8. The problem of how a stochastic pro-
cess can be perceived by different relativistic observers
has been considered before [48] in connection with cer-
tain (Markov) rotational difFusions on an Ss manifold
[SU(2) x SU(2) case specialized to spin 1/2], with the Eu-
ler angles parametrization established relative to a fixed
three-dimensional orthonormal basis.
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Our discussion was confined to the mass m ) 0 case,
but in view of the general nonexistence of the Newton-
Wigner localization in the mass m = 0 case, an extension
of previous relativistic covariance arguments needs some
care. The present localization is known to be admissible
for massless spin 0 particles. As well, we do not liter-
ally need the Newton-Wigner —like position operator and
the associated notion of localization at a spatial point
to invoke a substantial part of the previous arguments.
(In fact, a maximal localizability of photons on a circle,
hence in a subset of R, was established in [45].) As
long as (108) is extended to mass m, = 0 particles as
the normalization condition for wave functions, and the
Borel set A is never pointwise, we can safely go through
(110)—(112).

Remark 9. There have been numerous attempts to as-
sociate the Klein-Gordon equation with stochastic pro-
cesses. In addition to [19] let us mention a number of
other attempts [49—57]. None of them can be viewed
as a "derivation" of the Klein-Gordon Geld from certain

"first" stochastic principles. Except for [19], all these
attempts exploited a formal similarity of Eqs. (106) to
local conservation laws shared by nonrelativistic Markov
diffusions [1] and to analogous laws in relativistic kinetic
theory [49,58,59]. The status of the Markov property
has been found disputable, since its violation is implicit
if the relativistic invariance of difFusion (Kolmogorov)
equations in Minkowski space is required [60—63]. In the
present paper, we have found the Markov property ad-
missible only in the case of the measure preserving (sta-
tionary case) stochastic jump dynamics; see e.g. , Sec. II.
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