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Fluctuations in discrete fragmentation processes studied by stochastic simulations
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The inHuence of fluctuations in discrete shattering and nonshattering fragmentation processes
is studied by means of a stochastic simulation algorithm based on a master equation. For both
processes, we Bnd that the Huctuations in the total number of clusters N and the weight-averaged
mass M~ are large, and that the maximum Huctuations occur at diAerent times for N and M~.
A mean-field description is shown to be valid for nonshattering processes, whereas for shattering
processes it is appropriate only in the limit of a large number of small initial clusters.

PACS number(s): 05.40.+j, 82.20.Wt

I. INTR.ODUCTION

Fragmentation processes arise in a great variety of
chemical and physical processes such as polymer degra-
dation [1], droplet breakup [2], and fragmentation of
colloidal aggregates [3,4]. Theoretical studies of frag-
mentation usually employ the continuous deterministic
fragmentation equation. Two regimes of fragmentation
kinetics have been identified using the fragmentation
equation: shattering kinetics, and nonshattering kinet-
ics [5,6]. In shattering processes, smaller fragments have
a higher fragmentation rate than larger ones. This sit-
uation causes clusters to break apart at ever-increasing
rates, leading to a phase of particles with zero-size mass.
Conceptually, the shattering transition is the inverse of
the gelation transition that occurs in aggregating sys-
tems. In nonshattering processes, smaller fragments have
a smaller fragmentation rate than larger ones, and so no
cascading breakup occurs.

Recently, a stochastic formulation of the problem
has shown that fluctuations play an important role in
shattering-fragmentation processes [7,8]. This suggests
that the deterministic fragmentation equation, which is
a mean-Beld theory, may not accurately model fragmen-
tation processes in which fluctuations are large. The
stochastic models investigated so far can either only ac-
count for fluctuations in the total number of clusters N
[8) or only for fluctuations of the concentrations of clus-
ters [7]. However, fluctuations and correlations of the
weight-average mass M~ or of other physical quantities
are also of interest.

Many studies of fragmentation use a continuous model,
in which clusters can be fragmented indefinitely. It has
been pointed out, however, that discrete models are more
appropriate since in experimental systems there is al-
ways a smallest possible fragment [1,3,8] implying that
the fragmentation stops at a certain time whereas the
continuous model leads to an infinitely running process.

In this article the fluctuations of discrete shattering
and nonshattering processes are investigated. We demon-
strate that a stochastic simulation method based on a
master equation [9,10] is well suited to study the role of

fluctuations in realistic discrete fragmentation processes.
This method has previously been used sucessfully to in-
vestigate aggregation processes [11—13]. The simulation
algorithm is used to obtain complete information about
the fragmentation process, i.e. , expectation values, fluc-
tuations, and correlations of any physical quantity. This
enables us to reveal the limitations of the deterministic
fragmentation equation.

Our article is organized as follows. We erst describe
the deterministic formulation of discrete fragmentation
processes. Then we give the corresponding master equa-
tion and show its relationship to the deterministic ap-
proach. Finally, we describe results of the stochastic
simulation when applied to two typical discrete fragmen-
tation processes, one of them shattering and the other
nonshat tering.

II. DETEB.MINISTIC FRAGMENTATION
MODEI S

The general deterministic kinetic equation that ap-
proaches the linear binary discrete fragmentation process
is the so-called mean-field fragmentation equation [1],

dnk (t) = —agng(t) + 2 ) Fk, kn, (t),
q=I +x

where ak = g. i Fs I, s. Here nk(t) is the number of
particles of size k at time t and L is the size of the largest
particle. The kernel E;~ denotes the rate that a parti-
cle of size i + j breaks into two fragments of size i and
j. Consequentely, aA, is the total transition rate from
a particle of size k. In the following we make the ran-
dom scission assumption, i.e., E, z is a function of i + j
only. A classi6cation scheme of fragmentation models has
been achieved for continuous &agmentation models with
the total breakup rate a(x) being of the homogeneous
form a(x) = x". Shattering transition models are char-
acterized by A & 0 and nonshattering models by A ) 0.
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With the help of a scaling ansatz for nk(t), the following
equation can be derived for nonshattering models [6]:

S(t) = [A(et+ S(0) "] (2)

where S(t) is a measure of the mean cluster size [here
taken to be S(t) = M~(t)] and ur is a constant. These
results also apply qualitatively to the corresponding dis-
crete fragmentation process since the continuum model
is an approximation of the discrete one in the limit of
small times and large clusters [1].

III. STOCHASTIC FRAGMENTATION MOI3EI S

xP(N —e,. „—e„+e, , t) —a, N, P(N. , t)

For brevity we use the notation N + e,.

(Ny, "., N; y, N, + 1, N, +q, ..., Nl, ). The function P(N, t)
contains not only the information about average quan-
tities but also about fluctuations and correlations of the
process.

A. The master equation

In the stochastic formulation of discrete fragmentation,
the process is characterized by the joint probability func-
tion P(N, t). It denotes the probability that the system
at time t is in the state N = (Nq, N2, ..., Nl, ), i.e. , N, par-
ticles of size i are present. The dynamics of the system
is governed by the master equation

B. The macroscopic equation

We now show that the deterministic fragmentation
equation (1) arises as a limiting case of the master equa-
tion (3). By taking the expectation value (Ng)(t)
Pg NI, P(N, t) of Eq. (3), the so-called macroscopic
equation [14] can be derived

) N~
~ ) (K~ + 1) ) F~ P(N —e~ —e + e~. , t) —a~NzP(N, t)2, ' )

= ) Q ~
F, „„((N„N,) + [S, , „+S, ,

„—h, ,,](N, )) ~

—,(N&N, )

L

ak(NI, ) +—2 ) Fy, , k(N~) (4)

This equation corresponds to the deterministic fragmen-
tation equation (1) provided n~(t) is set equal to (NA, )(t).
Consequently, the expectation values of the stochastic
simulation results should exactly obey solutions of the
deterministic fragmentation equation even when fluctu-
ations are large. It should be emphasized that when
macroscopic equations are derived from a master equa-
tion, higher moments of the distribution generally ap-
pear, i.e. , terms of the form (N N ) with (n, rn
1, 2, . . .). This is the case for aggregation processes where
the Smoluchowski equation is an approximation for the
macroscopic equation of the underlying master equation
[12]. Thus Eq. (4) is a nontrivial result, although the
computation is simple.

method, one generates an ensemble of exact realizations
of the stochastic process and then estimates the physical
quantities of interest.

Let us decribe this method in more detail. Consider a
system of particles at time t in the state N = (Nq, . .., Nl, )
where ¹ is the number of i-mers A;. Let us assume that
the system can change its state according to a specific
fragmentation reaction

N m N+e~+e; —e,.+~

to a new state N' after a certain time interval 4t (waiting
time). A simple calculation [9,10] yields that the waiting
time distribution is given by

C. Stochastic simulation algorithm

The treatment of a master equation as a differential
equation is known to be a difFicult mathematical task
[7,8,14]. However, the mathematical difficulties can be
overcome by using a numerical algorithm [9,10,12] to sim-
ulate the kinetics. Up until now this stochastic algorithm
has been greatly underestimated as a tool in the study of
fragmentation processes. With the stochastic simulation

f(At) = uo(N) exp( —uoAt),

L

where uo(N) = ) a~N, . (5)

Here, uo(N) can be interpreted as the total transition
rate from the state N to any other state N' g N. In
order to simulate the time t + At at which the next re-
action occurs, a random number according to the dis-
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tribution f (At) has to be tossed. Random numbers At
distributed according to f(At) can be received from uni-
form distributed ones by the transformation

IV. SIMULATION RESULTS AND DISCUSSION

A. Nonshattering model

1
At = ln(i1i),

uo(N)
(6)

where ili is uniformly distributed in ]0, 1]. A second
random number F2 also uniformly distributed in ]0, 1] is
used to determine the particle that undergoes fragmen-
tation. Its size k is selected according to the probability
a&N&/(P 2 a N ). To specify in which specific reac-
tion B, I, ; occurs, a third random number g3 is used. It
represents the number of the breaking bond. If no cycles
occur, a A:-mer has exactly k —1 bonds. If, in addition, all
bonds break with equal probability, then g3 is randomly
selected out of the set (1,2, ..., k —1). However, in cer-
tain cases, it is supposed that bonds break more likely in
the middle of the particle than at the ends [1,15]. This
can also be modeled with our algorithm by tossing g3
according to the desired fragmentation probability.

To summarize, the dynamics of the fragmentation pro-
cess can be simulated by the following stochastic algo-
rithm [9,10]:

(a) Start with the initial condition N(0) = No and set
time t to zero.

(b) Calculate uo(N) according to Eq. (5).
(c) Determine the time At after which a reaction oc-

curs by use of Eq. (6). Replace t by t + At
(d) Select the size k of the fragmenting particle and the

breaking point i of the particle undergoing fragmentation
as described above.

(e) Change the state of the system according to the
reaction selected in (d), i.e. , replace N by N + e; + eA,
—ek

(f) Go to step (b) if simulation time is less than the
final time.

This procedure has to be carried out several times to
generate an ensemble of realizations of the fragmentation
process. Prom this ensemble, physical quantities of inter-
est can be estimated. For example, the expectation value
(Ny) of the number of particles of size k is estimated by

In Fig. 1 the stochastic simulation results for the non-
shattering model with aA, = (k —1) are presented. In
Fig. 1(a) the temporal evolution of the weight-average
mass (Miv) and of the total number of particles (N) is
shown. It is clearly seen that the fragmentation process
stops at a certain time where the system consists solely
of monomers. The range where the continuous fragmen-
tation model approximates the discrete one can be esti-
mated by comparing the evolution of M~ obtained by
the stochastic simulation with the prediction of the scal-
ing theory of the deterministic continuum fragmentation
equation [6]. It is seen that for T & 10 for the model
with L = 10 and for T & 10 for L = 10 the continuum
and the discrete model yield equivalent results.

The temporal evolution of the relative rms fluctuations
of AN/(N) and of AMii /(M~) is presented in Fig. 1(b).
This plot has several interesting features. First, the rel-
ative rms fluctuations are of the order of 0.45, a remark-
ably high value. Second, the time at which the fluctu-
ations are maximum depends on the quantity AN/(N)
has a maximum at T 0.8 whereas AM'. /(M~) has a
maximum at T —3. Third, the fluctuations are indepen-
dent of the size L of the initial cluster for T & 10 . Thus,
in this time range, the fluctuations are a function of T
only. This suggests that the fluctuations obey a simple
scaling law.

Let us now look at the distribution of a single physical
quantity measured at an intermediate time as obtained
from 10 realizations of the stochastic process. We ex-
pect this distribution to be peaked around its mean value.
We demonstrate this in Fig. 1(c), which is a histogram
plot of the total number of particles N at time T = 10 .
It is seen that the quantity % has a Gaussian distribu-
tion. For comparison, we fitted a Gaussian function of
the form %exp ( —[x —X]2/(2o 2))/[(2vr) ~ 0] to the data
points. A histogram plot of the weight-average mass is
also Gaussian. Our simulations demonstrate that the de-
terministic description of fragmentation is reasonable for
nonshattering models, since the distribution of any phys-
ical quantity is sharply peaked around its mean value.

where NR is the number of realizations of the stochastic
process and N&' (t) is the number of particles of size k
measured at time t in the ith realization.

The key features of the stochastic simulations pre-
sented here are the following. For the initial conditions,
we assume that a single cluster of size L is present. Good
statistics are achieved by generating an ensemble of 10
realizations of the processes. From this ensemble, aver-
ages denoted by brackets (e.g. , (N)) and standard de-
viations denoted by A (e.g. , AN) are estimated. For
convenience, time is measured in units of r(1) = 1/al„
i.e. , T = tal, . Simulations were performed on a 486-type
computer processor, and each one took less than an hour
to conduct.

B. Shattering model

The situation is quite diferent when a shattering-
fragmentation model is investigated. We demonstrate
this by showing the stochastic simulation results corre-
sponding to the model aA, = (k —1) . From the tern-
poral evolution of the weight-average mass (M~) and of
the total number of particles (N) shown in Fig. 2(a) it
is seen that the decay is much more rapid than in the
nonshat tering model.

The temporal evolution of the relative rms fluctuations
of AN/(N) and of AM~/(M~) is presented in Fig. 2(b).
It can be seen that the fluctuations are enormous, larger
than the mean. In contrast to the nonshattering pro-
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FIG. 1. Nonshattering model: (a) Weight-average mass
(Miv) (circles) and total number of particles (N) (triangles)
over time T with a single initial cluster of size L = 10 (un-
filled symbols) and L = 10 (filled symbols). The lines are the
corresponding predictions of S(t) from the scaling theory of
the continuous fragmentation equation (2) with w = 6 x 10
and w = 7 x 10 . (b) Relative rms fiuctuations of AN/(N)
(triangles) and AMiv/(Miv) (circles) over time T with a
single initial cluster of size L = 10 (unfilled symbols) and
L = 10 (filled symbols). (c) Histogram plot for the total
number of particles measured at time T = 10 when the initial
cluster has size L = 10 . The frequency distribution II(N),
obtained from 10 realizations, can be Gtted by a Gaussian
distribution with parameters x = 42.5, o = 3.3 and prefactor
A = 996 as shown by the line.
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FIG. 2. Shattering model: (a) Weight-average mass (Miv)
(circles) and total number of particles (N) (triangles) over
time T with a single initial cluster of size L = 10 (unfilled
symbols) and L = 10 (filled syxnbols). (b) Relative rms
fluctuations of AN/(N) (triangles) and AMiv/(Miv) (cir-
cles) over time T with a single initial cluster of size L = 10
(unfilled symbols) and L = 10 (filled symbols). (c) His-
togram plot for the total number of particles measured at
time T = 1.5 when the initial cluster has size L = 10 . Here,
H(N) is the frequency distribution obtained from 10 realiza-
tions of the process.
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cess, the relative order of the fluctuations reaches a value
that clearly depends on the size L of the initial cluster.
Our simulation results for AK/(W) agree well with those
obtained by Maslov [8] presented in Fig. 1 of his paper
(Maslov could not obtain the evolution of AM~/(M~)
and of other physical quantities). Since the rms fiuctua-
tions are dependent on the considered physical quantity
we conclude that there exists no universal "shattering-
onset" time in discrete shattering processes.

Figure 2(c) shows that the distribution of the total
number of particles N at time T = 1.5 is U shaped.
Thus, the expectation value which is described mathe-
matically by the solution of the deterministic fragmen-
tation equation (1) does not represent the result of a
typical realization of the process. There are about 2000
realizations yielding just one particle and about 3000 re-
alizations yielding 10 particles, that is all particles are
monomers. The remaining 5000 realizations yielding par-
ticle numbers between 1 and 100. Note that the discon-
tinuity in the distribution function at N = 99 is caused
by the fact that the system with 98 monomers and one
dimer has a very high transition rate to convert to the
state where all particles are monomers.

C. Discussion of U shape

%'e observed the same qualitative behavior also for
other models such as aA, = I/k or an "extremely shat-
tering" process defined by ak = exp( —k). Also other
variables such as the z-average mass or the number of
monomers Ni show qualitatively the same non-Gaussian
distribution. In addition we observed that the same qual-
itative form of the distribution function also holds for
discrete shattering models with nonrandom scission.

Thus, the U-shaped distribution may be a universal
characteristic of the discrete shattering process. This
can be explained qualitatively as follows. Consider an
extremely shattering model with an initial particle of size
I. At small times, essentially nothing will happen, i.e,
the system will stay in the state with just one particle
of size L. At large times, however, the system will con-
sist of exactly L monomers. Thus, at small times and at
large times, the distributions will have a single peak. At
intermediate times the distribution function is U shaped.
[Fig. 2(c)]. The transition between these diferent states

of the distribution function is very fast and in fact nearly
instantaneous because of the shattering kinetics. In other
words, an observer measuring the total number of parti-
cles at an intermediate time will see either one particle
or L particles.

Such U-shaped, or bimodal, distributions are known
also in other fields of chemical kinetics. In [16] a model
of combustion in a closed vessel is investigated. The so-
lution of the master equation yields the appearance of
multiple humps in the probability distribution. In [17] it
is shown that a model describing explosive chemical sys-
tems exhibits a bimodal distribution of the probability
function. There, the bimodality is caused by random ini-
tial conditions in connection with a nonlinear evolution
equation where two time scales can be easily separated.

Finally, we have calculated distributions of the quanti-
ties N and M~ when the shattering fragmentation pro-
cess starts with two clusters. These distributions are W
shaped which should be clear after the discussion above.
The left peak comes from the state where measurements
yield two particles whereas the right peak represents the
situation where 2L monomers are present. The peak in
the middle is caused by realizations where L+ 1 particles
are present. The generalization of this picture to more
than two initial clusters is straightforward. For a large
number of initial clusters the fluctuations of N are Gaus-
sian distributed. with a width depending sensitively on
L and on the number of initial clusters. Thus, for ex-
perimental systems, averages can be measured precisely
only for a large number of small initial clusters, and the
deterministic description is physically meaningful only in
this limit.

To conclude, discrete shattering processes are interest-
ing model systems to investigate the influence of fluctu-
ations on the mean-field kinetics. The stochastic simu-
lation algorithm used here is an efficient tool to study
these fluctuations. It can be tuned to study any initial
condition or breakup kinetics as necessary.
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