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Fractal boundaries in open hydrodynarnical flows: Signatures of chaotic saddles
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We introduce the concept of fractal boundaries in open hydrodynamical Hows based on two
gedanken experiments carried out with passive tracer particles colored difFerently. It is shown that
the signature for the presence of a chaotic saddle in the advection dynamics is a fractal boundary
between regions of difFerent colors. The fractal parts of the boundaries found in the two experiments
contain either the stable or the unstable manifold of this chaotic set. We point out that these
boundaries coincide with streak lines passing through appropriately chosen points. As an illustrative
numerical experiment, we consider a model of the von Karman vortex street, a time periodic two-
dimensional How of a viscous Quid around a cylinder.

PACS number(s): 05.45.+b, 47.10.+g, 47.15.Ki, 47.27.Cn

I. INTRODUCTION

Advection of passive tracer particles in open nonsta-
tionary flows has attracted recent interest [1—ll] because
even in simple time periodic cases the tracer particles
can exhibit chaotic motion. Here we shall consider two-
dimensional viscous Bows around. obstacles with the prop-
erty that the Bow is time periodic close to the obstacle
and uniform far away from it (both before and behind the
obstacle). We address questions, like how the boundary
between regions colored differently changes when going
downstream along the Bow, that can lead to a better un-
derstanding of transport and mixing in open Bows. We
claim that the fractal structure of the boundary is a sig-
nature for the presence of nonattracting chaotic sets [14],
chaotic saddles for short, in the tracer dynamics along
the Bow.

Assuming incompressibility, the equations of motion
for a passively advected dye particle in the (x, y) plane
have the form (the so-called Lagrangian dynamics)

where v, v„arethe two components of the velocity field,
and g is the time-dependent stream function that plays
in this problem the role of a Hamiltonian. This form al-
lows us to characterize passive transport in Navier-Stokes
Bows with a system of two ordinary differential equations
that are far easier to solve than the Navier-Stokes equa-
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tions, provided an exact or approximate form of the ve-
locity field or g is available. More generally speaking,
the solution of the Navier-Stokes Bow is an input, e.g. ,

in the form of the stream function, to Eq. (1) that itself
represents a dynamical system describing particle advec-
tion. We shall use an approximate function g whose
form is chosen to G.t certain aspects of what is observed
in numerical simulations of the Navier-Stokes equation.
The chaotic motion we investigate is generally robust, and
we believe that most of its features should be present in
the original Navier-Stokes flow. The system (1) can be
solved far more quickly with an approximate but analyt-
ically given g than with the Navier-Stokes velocity fie'id

determined numerically, and still requires extensive com-
putation.

If the flow were stationary, Eq. (1) would correspond to
a one-degree-of-freedom autonomous Hamiltonian prob-
lem that is always integrable. With a time-dependent
velocity field, however, Eq. (1) has the same structure as
that of a driven one-degree-of-freedom Hamiltonian sys-
tem that is known to be nonintegrable. In the language
of hydrodynamics, stream lines and particle trajectories
coincide in stationary Bows only, and in nonstationary
cases the latter can be complicated even if the instan-
taneous stream lines are smooth curves [1]. We shall re-
strict our attention to the simplest nonstationary case, to
time periodic Bows, that makes a convenient description
of the dynamics possible in the form of taking snapshots
at integer multiples of the period, a stroboscopic map.

By choosing the reference frame in such a way that the
obstacle, whose linear size is of order unity, is situated
around the origin, the velocity field becomes both space
and time independent for

~

x ~, ~ y ~)) 1. The particle mo-
tion in the Bow is in such cases very much like a scatter-
ing process [12,13] with the trajectories being scattered
by the vortices and the obstacle. Incoming tracer par-
ticles may exhibit complicated motion in the wake and
exit after a Rnite amount of time. Since the Bow far away
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from the obstacle is uniform, the asymptotic motion of
the particles is well defined.

To visualize the dynamics of the passive tracer parti-
cles colored differently and help to understand the dy-
namics, let us imagine two experiments with such Hows
(see Fig. 1). In each experiment we present a version (i)
that can be carried out also in a laboratory and another
one (ii) that is devoted solely to numerical investigations.

Experiment A: the "inftoui" (turbo quid-) experiment. (i)
Inject dye particles continuously into the Bow far in front
of the obstacle along the line x:—x; ( 0,

~
x, ~)) 1, so

that the colors above and below a critical y are different
(say, black and white), as illustrated in Fig. 1(a). Inves-
tigate how the boundary between the two colors evolves
in time. Since the pattern will stabilize to a periodically
oscillating structure, it is convenient to take snapshots at
multiple integers of the period of the How. Depending on
the choice of the initial coordinate x, we shall call such
stationary boundaries (at fixed y, ) x, boundaries. We
emphasize that these boundaries are physical observables.
(ii) In an alternative way that can only be realized nu-
merically, the boundaries can also be obtained by follow-
ing the time reversed Lagrangian dynamics of particles
sprinkled in a domain around the obstacle and coloring
the initial points of trajectories in the backward dynam-
ics, depending on whether after crossing the x = x; line
they lie above or below y, .

Experiment B: the "outflout" (turbo exit) exper-iment. (i)

black

]I
y

white

&in &o

Experiment A

black

(b)

white

Experiment B

FIG. 1. Schematic diagram illustrating experiments A (a)
and B (b).

Sprinkle dye particles in a domain around the obstacle.
Save their initial coordinates in a computer and take a
video record of their trajectories until they cross a line
x = x „&&) 1 far away downstream. Color the initial
points (observed on a stroboscopic map) depending on
whether after crossing the x = x „qline they lie above or
below a preselected value y, [cf. Fig. 1(b)]. The bound-
ary between particles colored difFerently will be called (at
fixed y, ) the x „iboundaries. These boundaries are thus
also physical observables (ii). In an alternative way that
can only be realized numerically, they can also be ob-
tained as the boundaries in the time reversed Lagrangian
dynamics of particles continuously injected into the Bow
at the final coordinate x „qso that the colors for y ) y
and y & y are different.

The full equivalence of methods (i) and (ii) for gener-
ating a given type of boundary would require the return
to the initial point when applying methods (i) and (ii)
to the same trajectory subsequently. This exact return
is never the case, however, the initial point and the end
point of the combined trajectory of (i) and (ii) can have
identical y coordinates (and slightly difFerent x coordi-
nates), provided the line of inflow or outfiow is in the
a~ymptoti~ regio n:

~

x,„~,~ x „,~)) 1. Thi»s due «
the asymptotic homogeneity of the How, i.e. , to the fact
that stream lines and particle trajectories are straight
lines in the region x & x,. or x ) x „q. In such cases
the boundaries obtained by methods (i) and (ii) coincide.
Later in the paper we consider boundaries where the line
of inHow or outHow conditions is close to the obstacle so
that

~
x,

~

or x~„iare of order unity. For example, one
can take x;„=0, y = 1 which corresponds to injecting
tracer particles on top of the obstacle. In such cases the
methods (i) and (ii) are still well defined but need not
lead to exactly the same result: only the fractal parts of
the boundaries will be identical.

The aim of this paper is to show that one can obtain
in both experiments complicated fractal boundaries as a
consequence of the chaoticity of the tracer dynamics. Be-
cause of the Hamiltonian character of Eq. (1) no chaotic
attractor can be present, but in such cases there often
exists at least one chaotic saddle in a bounded region of
the fiow [7—11] generating transient chaos [14]. For sim-
plicity, we talk below about the stroboscopic map rather
than the periodic How. The chaotic saddle is then the
set of points near which tracer particles can stay for an
arbitrarily long time. Such a set has a stable and an
unstable manifold ("manifold" in this case is a "curve").
The stable manifold is an invariant curve along which
the saddle can be reached after an infinitely long time.
Under a stroboscopic map it appears as a curve winding
in a complicated manner. The unstable manifold is the
stable manifold of the time reversed Lagrangian dynam-
ics. Both of these manifolds are fractal curves. We shall
see that the fractal parts of the x, and x „qboundaries
in experiments A and B coincide with parts of or the
full unstable and stable manifold of the same chaotic set,
respectively.

The paper is organized as follows. In the next section
we extend the concept of fractal boundaries to any open
Hamiltonian system and give the connection between this
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notion and the x; and x „qboundaries of experiments A
and B. It is shown that the kactal properties should be
independent of the choice of x; or x „qin a broad range
of in6ow or out8ow conditions, respectively. Sec. III
is devoted to the description of the particular analytical
model we use. The numerical results obtained. for the x;
and x „qboundaries, the chaotic saddle, and their &actal
dimensions are presented in Sec. IV. Section V contains
our concluding remarks.

II. FKACTAL BOUNDARIES
IN OPEN HAMILTONIAN SYSTEMS

Fractal boundaries [15,16] were originally defined in
dissipative systems possessing attractors. If two or more
attractors coexist, their basins of attraction might be
separated by boundaries that are fractals. Vfe say that
(for two-dimensional maps) a boundary is "fractal" at a
point if arbitrary near that point contains infinitely many
curves. The consequence is that trajectories starting in
the vicinity of a fractal boundary exhibit very compli-
cated and unpredictable motion before settling down into
one of the possible quite simple attractors. Fractal basin
boundaries are typically parts of stable manifolds of one
or more chaotic saddles, situated between the attractors.
It is worth noting that fractal basin boundaries have also
been found in the advection problem of Bows with sinks
and sources [17] whose Lagrangian dynamics is thus non-
Hamiltonian.

The presence of basin boundaries is not necessarily re-
stricted to the existence of attractors in some bounded
region of the phase space. One step to extend the con-
cept of fractal boundaries to Hamiltonian systems has
been made by Bleher, Grebogi, Ott, and Brown [18],
who investigated the escape from a billiard and a po-
tential well by distinguishing trajectories exiting via two
different holes and different directions, respectively. The
role of the attractors in dissipative cases is played in these
systems by the two difFerent long time asymptotics (exits
through two different holes) available for trajectories.

We claim that a basin boundary can be defined in any
open scattering system where the asymptotic part of the
phase space can be divided in an appropriate way into
two or more disjoint subsets. These subsets will be called
the exit regions [18] and the boundary between them the
partitioning surface (or line). Because of the uniqueness
of the dynamics also the nonasymptotic part of the phase
space can be divided in different regions, according to the
different modes of exit at inanity. The boundary between
them can be smooth or fractal. Of course, it is not hard
to realize that the boundary in the nonasymptotic region
is exactly the preimage of the partitioning surface taken
in the t = —oo limit.

Due to the time reversal invariance of Hamiltonian sys-
tems, we can also define boundaries in the backward dy-
namics. One then takes a partitioning surface in the in-
coming asymptotic region whose image for t = oc will be
the boundary. Both types of boundaries can be treated
on equal footing.

The key observation of our paper is that the parti-

tioning can be chosen arbitrarily from a continuum of
possibilities provided the dynamics has a chaotic saddle
and the partitioning surface crosses the stable or unstable
manifold of this set. Figure 2(a) shows schematically the
double foliation of the phase space provided by the mani-
folds of the chaotic saddle. Let us consider a stroboscopic
map and follow the forward (backward) dynamics of the
partitioning surface. The stable (unstable) manifold is
the set of points that converge to the chaotic saddle as
time goes forward (backward). Segments of the parti-
tioning surface lying between the filaments of the stable
(unstable) manifold will be transported in the forward
(backward) dynamics to the outgoing (incoming) region
so that asymptotically they accumutate on the filaments
of the unstable (stable) manifold

The way in which the local convergence to these man-
ifolds takes place is illustrated in Fig. 2(b). For the sake
of simplicity we consider one element of the chaotic sad-
dle, a hyperbolic fixed point only, and investigate the for-
ward dynamics. The partitioning surface is the boundary
between two incoming regions colored black and white,
respectively, and it is assumed to cross the stable man-
ifold of the fixed point. The union of all images of the
partitioning line forms a curve wildly oscillating when ap-
proaching the unstable manifold of the fixed point. The
intersection points between the stable manifold and the
boundary converge exponentially fast towards the fixed
point with a convergence rate equal to the eigenvalue of
the linearized dynamics. Consequently, the length of the
lobes that are formed also increases exponentially in or-
der to preserve volume. Therefore an in'. nite number of
dhgerently cotored layers accumulate on the stable man-
ifold that is itself part of the boundary. The extension
of the layers is narrower the more unstable the periodic
orbit is.

In general we can say that the boundary contains the
full unstable (stable) manifold or parts of it. If the parti-
tioning line taken in the incoming (outgoing) asymptotics
crosses all the branches of the stable (unstable) manifold
extending to infinity, the full unstable (stable) manifold
of the chaotic set will lie on the boundary. The shape of
this fractal part of the boundary is then independent of
the partitioning line's position. If the partitioning line
crosses only partially the stable (unstable) manifold, the
boundary contains certain branches of the other manifold
only. The fractal dimension of the boundary is, however,
the same as in the previous case and thus independent of
the choice of the partitioning line.

It can happen that there are two or more chaotic sad-
dles present in the system. The fractal part of the basin
boundary then can contain parts of any of the sets' un-
stable (stable) manifolds. The fractal dimension of the
boundary will then coincide with the dimension of one of
the sets' manifolds.

The boundary contains in any case a nonfractal part
too: Gjkaments accumulating on the fractal component
and also some others extending smoothly to infinity. A
boundary is fractal if it contains a fractal component. If
the partitiorung line does not intersect the stable (unsta-
ble) manifold at all, it is not fractal and does not appear
as the invariant manifolds of the chaotic set.
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In our hydrodynamical problem, experiment A (B) di-
rectly corresponds to the Hamiltonian situation described
above. Because of the asymptotic homogeneity of the
How, the use of a line of inHow (outHow) conditions with

~
x;„~,x~„t,)) 1 is the same as taking a partitioning line

(x & x;, y = y, ) ((x & x „q,y = y, )) in the asymptotic
incoming (outgoing) region.

As a consequence of these general arguments we con-
clude that both the x; and x & boundaries in the hy-
drodynamical experiments A and B can contain a non-
fractal and a &actal part. The latter only exists if the
advection problem is chaotic and there is a chaotic saddle

near the obstacle. The &actal part of the boundary in
Experiment A (B) coincides with parts of the unstable
(stable) invariant manifold of the chaotic set. The non-
fractal part of the boundaries describes the convergence
toward the chaotic set and can strongly depend on the
choice of x;, x „z,or y, i.e. , on the type of inflow or
outflow conditions, respectively.

At this stage it is worth comparing our results with
another concept, streak lines that are common means for
visualization of Hows. They are defined as [19j the set of
points reached, at a given instant of time, by an ensemble
of particles previously injected at a given point into the

stable

chaotic saddle

ixed point when viewed
s troboscopi call y

anifold

boundary seen after l period

infinite
layers

FIG. 2. Schematic diagram
illustrating the convergence to
the chaotic saddle of a general
Hamiltonian system. (a) The
chaotic saddle and its stable
and unstable manifolds. A fi-
nite segment of the partition-
ing line (not shown) would
be smoothly deformed before
reaching the chaotic set. Points
lying on the stable (unsta-
ble) manifold remain, however,
glued to the set forever. Seg-
ments in between become more
and more elongated, trans-
ported out to infinity so that
they converge to the unstable
(stable) manifold. (b) The evo-
lution of the local structure of
the boundary between two in-
coming regions black (B) and
white (W) on a stroboscopic
map when the partitioning line
crosses the stable manifold of a
fixed point. Once Qi is on the
boundary, so must Q2, Q3). . .
be also on the boundary; thus
the fixed point's unstable man-
ifold is the limit of an infinite
number of layers of the bound-
ary. An analogous structure is
built up in the x,. boundary
of the hydrodynamical experi-
ment A around the chaotic sad-
dle's unstable manifold.

boundary seen at time 2 Limiting picture:
boundary seen at time n, for large n
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flow. Thus, a streak line passing through a point (x, y)
is the curve traced out by nondi8'usive tracer particles
injected into the 8ow at (x, y) continuously. While in
steady Bows, streak lines, streamlines, and particle tra-
jectories coincide, they are diR'erent in time-dependent
velocity fields and provide diB'erent ways of Bow visualiza-
tion. In such cases streak lines are also time dependent.
They often appear as complicatedly winding fractallike
curves on photographs taken at a given any instant of
time [19] and have recently been analyzed also in the
context of chaotic advection [3,9,10]. We note that the
particle line emanated from (x;„,y, ) form a streak line.
Thus we conclude that the boundary (both the smooth
and the fractal components) in experiment A is the streak
line passing through (x, , y, ). By introducing the con-
cept of time reversed streak lines as the streak lines of the
backward Lagrangian dynamics, we can analogously say
that the boundary in experiment B is the time reversed
streak line passing through (x „&,y ).

The chaotic saddle, present in the dynamics, is solely
responsible for the mixing property and chaotic behavior
observed in the particle advection problem. Thus it is
important to investigate not only its manifolds but also
the set itself, as will be done in the case of the model How

presented below. In a laboratory experiment, the chaotic
saddle can also be visualized by plotting the common part
of the stable and unstable manifolds. An alternative way
is provided by recording trajectories with a long lived
chaotic behavior and performing a time series analysis to
reconstruct the chaotic set [20].

III. MC) I3EL

As an example we consider the case of a circular ob-
stacle, and study the particle motion around a cylinder.
We shall work in a range of parameters where a von
Karman vortex street exists, where several streak line vi-
sualization experiments are available [19]. This problem
has also been investigated numerically in detail from the
point of view of chaotic dynamics [6—10]. For simplicity
we shall take an analytical model system for the stream
function introduced in Ref. [8]. It describes a situation
when two vortices are present in the wake of the cylin-
der at any instant of time, and these vortices alternate
when separating from the cylinder. The velocity field
is then strictly time periodic with period T. The form
of the analytical model is motivated by the results of a
direct numerical simulation of the Xavier- Stokes How at
Reynolds number 250 in a channel containing a cylinder
in the middle, reported in Ref. [7]. The model describes
certain quantitative features of the Bow, like, e.g. , the
nearly marginally stable particle dynamics in the vicin-
ity of the surface. SoIne other features, like, e.g. , the
width of the boundary layer are chosen so that they
deviate from that characterizing the Navier-Stokes Bow.
The reason for these differences lies in numerical conve-
nience. A broader boundary layer makes the hyperbolic
periodic orbits coming into this layer less unstable.

One of our aims is to illustrate with this model sys-
tem that streak lines can be easily obtained by consider-

ing them as boundar'ies of the direct or time reversed
Lagrangian particle dynamics. The numerical eKorts
needed to construct them in this way is much less than
that needed by other methods applied to the same model.
Therefore, this method might provide a useful tool also
for determining streak lines in velocity fields obtained by
direct numerical simulations.

In fulfilling the other objective, i.e. , visualizing the
chaotic saddle, other numerical tools are needed. It
turns out that the proper interior maximum (PIM) triple
method [21] successfully meets this need, and gives a
much better resolution than by naively taking the com-
mon part of the stable and unstable manifolds. Unfortu-
nately, the PIM triple method cannot be directly applied
to experiments. However, the fractal boundaries are a
diagnostics for the existence of the chaotic saddle.

The analytic model is defined by a stream function

Q(x, y, t) = f (x, y) g(x, y, t), (2)

where the first factor

yields the correct no slip boundary condition at the cylin-
der's surface whose center is chosen to lie at the origin.
The cylinder radius has been taken to be unity, which
can always be done by a suitable rescaling of the lengths
introduced in the problem. The coeKcient a j plays
the role of the width of the boundary layer.

The factor g contains the contributions of the vortices
and of the background Bow with velocity uo. It reads

g(x, y, t) = —mh, (t)g, (x, y, t) + u)h2(t)g2(x, y, t)
+uoys(x, y). (4)

The first two terms describe the alternating birth, evolu-
tion, and damping of vortices 1 and 2 of equal strength
but opposite sign. The quantities m and h, (t) stand
for the overall vortex strength and amplitudes, respec-
tively. Because of the alternating character, one has
h2(t) = hz(t —T/2), where T denotes the time period
of the Bow. By choosing the time unit to be T, the am-
plitude function 6 of the model takes the form

h, (t) =~ »n(~t)
~

The vortex centers are assumed to move parallel to the
x axis and with a constant velocity. Their x coordinates
are expected to change with time as

xg(t) = 1+L[t mod 1],

x, (t) = x, (t —1/2),

while the y coordinates are constants,

(6)

(7)

»(t) = —»(t)—:yo.

Both vortices travel a distance L during a period and
then die out. Thus when vortex 1 is created at (x =
1,y = yp) at time zero, vortex 2 is just in its most devel-
oped state at (x = 1+I /2, y = yp). The contribution of
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the vortices to the stream function is represented by the
form

where Bp is the characteristic linear size of the vor-
tices and o. denotes the ratio, telling us how much longer
is the linear size of the vortices along the x axis as com-
pared with the linear size along the y axis.

The last term in Eq. (4) gives the contribution to the
stream function by the background flow with uniform
velocity up. The factor

The width of the boundary layer is taken to be a = 1. At
this point the model definitely deviates from parameters
of the Navier-Stokes flow, but the qualitative results do
not depend essentially on the particular value of a, and
the choice is motivated just by numerical convenience.
The model is tailored for simulating the flow in the wake
behind the cylinder; nevertheless, here we use it in a
broader sense both upstream and downstream. Our aim
is not so much the study of the relevance of the particular
model in this extended region, but rather to investigate
the invariant chaotic saddles and the diferent types of
boundaries that they generate.

IV. NU ME&ICAL KESU LTS
is introduced in order to simulate the shielding of the
background flow just behind the cylinder. This is taken
into account by using the same elongation factor o. as in
the case of the vortices.

The numerical values for the parameters are chosen
in such a way that one obtains behind the cylinder a
qualitative agreement with the known solution [7] of the
Navier-Stokes problem. For Re = 250 this is fulfilled with
o! = 2, Bp = 0.35, L = 2, gp = 0.3, up = 14, and m = 24.

We carry out experiments A and 8 with the model
system numerically, and determine the invariant sets.

A. Experiment A

We start particles on a grid of 800 x 666 points in
the rectangle shown in Fig. 3(a) and mark the initial
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FIG. 3. The x, = —6 boundary in experiment A with y, = 0. (a) Particles were started on an 800 x 666 grid in the rectangle
shown and iterated backward. They are marked "black" or white' depending on whether, after crossing the x = —6 line on the
stroboscopic map, they lie in the upper or lower half-plane, respectively. The snapshot is taken at time t = 0.3, relative to the
stream function de6ned in the text. This particular instant of time was chosen because the vortices are then of approximately
equal size. (b),(c) Enlargements of the two regions of (a) showing the fractal structure of the boundary. Parts of the boundary,
where solid "white" regions meet solid "black" regions, belong to the nonfractal part, i.e., the boundary is a simple curve there.
Such a structure can be observed in (a) below and above the cylinder. Parts (b),(c) clearly show that nonfractal filaments of
the boundary come close to the frsctal ones even on very fine scales. (d) The x, = —1.2 boundary at time t = 0.3 obtained
by marking the initial points "black" or "white, " depending on whether the trajectories cross the x = —1.2 line in the upper
or lower half-plane, respectively. Observe the absence of a pronounced band structure below and above the cylinder.
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position "white" or "black, " depending on whether in the
time reversed dynamics on the stroboscopic map, after
crossing the vertical line x = x;, they lie above or below
the x axis, respectively. This implies choosing y = 0.

Figure 3(a) shows the x; = —6 boundary. It contains
both a smooth and a fractal component that can clearly
be seen in the enlargements of Figs. 3(b) and 3(c), too. A
remarkable feature is the pronounced band structure be-
low and above the cylinder. To understand it let us recall
that the boundary between the black and white regions is

the image of the partitioning line (—oo & x & —6, y = 0).
The boundary around the cylinder contains all the images
of this line taken at any multiple of the period. The de-
viation of the boundary from the symmetry axis (y = 0)
becomes non-negligible for x ) —2 [cf. Fig. 3(a)]. This
is because the model equations describe a nonstation-
ary velocity field in front of the cylinder. The boundary
strongly oscillates in front of the erst stagnation point
located around x = —1, y = 0. The bands observed
above and below the cylinder are the images of this part

0.5

-0.5

0.5 0.5

0 0

-0.5
(c) (d)

0.5- 0.5

0 0

-0.5
(e)

-0.4

-0.45

-0.5

-0.55

-0.6

-0.65

-0.7
0.85 0.9 0.95 1.15

FIG. 4. The x, = 0 boundary in experiment A [version (ii)] with y = 0. Particles were started on a grid of 800 x 400,
but now they are colored depending on whether they pass "above" or "below" the cylinder. Parts (a)—(f) show the snapshots
taken at equal times t = /10n, n = 0, , 5 during half a period, t & 0.5. In the second half-period the corresponding figures can
be obtained by performing the transformation y ~ —y and "black" ++ "white" [compare (a) and (f)]. (g) Enlargement of the
boundary at t = 0.3 in the same range as in Fig. 3(b).
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0

-0.45
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-0.55

of the boundary [cf. Fig. 2(b)]. The fact that the band
structure is more pronounced around the cylinder than
a~ound other parts of the boundary is a consequence of
the anomalously slow convergence to the cylinder's sur-
face that accumulates an inanity of parabolic points of
the advection problem [8,9].

To study the dependence of the pattern on the choice of
x, , consider now the x; = —1.2 boundary. In Fig. 3(d)
one can observe that the strips have disappeared. This
is because the streak line passing through (—1.2, 0) only
oscillates very close to the cylinder surface so that the
images of this oscillating part cannot be seen in the reso-
lution of the plot. The diB'erence between Figs. 3(a) and
3(d) illustrates that the nonfractal part of the boundary

depends on the choice of the initial line if the latter is
taken in the nonasymptotic region.

In Figs. 4(a)—4(f) the x, = 0 boundary is shown along
with the time evolution of this boundary during half a pe-
riod. We have chosen this boundary for plotting the time
evolution because the fractal component appears most
clearly in this case. Figure 4(g) displays an enlargement
of the boundary in the same region as Fig. 3(d). Note
the slight difference between the two patterns.

For comparison the unstable manifold of a period-1
orbit is shown in Fig. 5(a), which manifold also appears
fully or partially in the Figs. 4 and 5. This supports
the result that the x, boundary contains the unstable
manifold of the chaotic set (which practically coincides
with that of any periodic orbit).

Although this is a further extension of the same con-
cepts, we find it worthwhile investigating x; boundaries
with inHow lines taken behind the cylinder. Figure 6
displays the x; = 1.2 boundary. In this range of x;
versions (i) and (ii) are not equivalent, and we there-
fore show in parts (a) and (b) the boundary obtained by
means of methods (i) and (ii), respectively. Although the
fractal part of the two plots is the same, method (i) pro-
vides us with black points between the cylinder surface
and the x; = 1.2 line due to a back Row on this line.
A closer investigation proves that the boundary contains
a fractal part in the range x & 3 that seems to be very
similar to that of Fig. 4(d). The fractal property with
an initial line so far away downstream is at erst glance
surprising. Its presence can, however, be understood by
looking at the detailed structure of the underlying chaotic
saddle.
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FIG. 5. Invariant rnanifolds of a period-1 orbit xo = 1.064,
yo

———0.621 [small diamond in (b)] of eigenvalue 24 on the
main set: The snapshot is taken at tixne t = 0.3. These mani-
folds provide a good approximation to those of the full chaotic
saddle. (a) Unstable manifold in the region of Fig. 4. (b) En-
largement in the region of Fig. 3(b). The rightmost branch
of the manifold does not appear as a part of the boundary
shown in Fig. 3(b) because of the finiteness of the grid used
there. (c) The stable manifold.

0

FIG. 6. The x, = 1.2 boundary at t = 0.3 in experiment
A. Part (a) [version (i)] has been plotted by injecting black
tracers along the line segment (x = 1.2, 0 & y & 4j marked
by the arrow. Instead of a continuous injection, a discrete one
was carried out with frequency 400/period. Part (b) [version
(ii)] was obtained by the same method as Figs. 3(a) and 4.
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B. The chaotic saddle

We determine the chaotic saddle by means of the PIM
triple method, and the result at time t = 0.3 is exhibited
in Fig. 7(a). In order to avoid an overaccummulation of

0.5

0

(b)

0.5

-0.5

0.7 0.8 0.9

0.3

(c)

0.2

0
3.1 3.2 3.3 3.4 3.5

PEG. 7. The full chaotic saddle taken at t = 0.3 deter-
mined by means of the PIM triple algorithm. (a) The set can
be divided into three parts: (i) A very thin part in front of
the cylinder, the upstream set; and (ii) a bigger part that is
close to the cylinder on the rear side, the main set. The two
repelling stagnation points at y = +0.739 (black dots) are
corner points of this set, and their unstable manifolds form
the outer boundary of the set. Note that the entire surface
between the repelling stagnation point seems to belong to the
main set. Because of the parabolic points on the surface, the
main set has a strongly nonhyperbolic component. (iii) A far
away part that is very rare, unstable, and seems to be hyper-
bolic with a complete ternary organization, the downstream
set. (b) Enlargement of the main set. (c) Enlargement of the
downstream set.

points on the cylinder surface, we use a slightly modified
version of the original algorithm by choosing PIM triples
at random, as worked out for generic Hamiltonian sys-
tems [22]. The plot shows that the set can be divided
into di6'erent parts.

The dominant part, called the main Set, is located just
behind the cylinder in the range x ( 1.1 [for an en-
largement, see Fig. 7(b)]. It plays a basic role in the
mixing and chaotic behavior in the wake of the cylinder.
This part is bounded by the unstable manifold emanat-
ing Rom the repelling stagnation points on the upper and
lower surfaces of the cylinder. These stagnation points
[black dots in Fig. 7(a) at z 0.67] have been shown to
be stationary in time [6]. Their positions can be deter-
mined numerically by distributing particles along a circle
that is concentric with the cylinder whose radius is 1+~.
Constructing an azimuthal map telling us how the angu-
lar positions of such trajectories change after one period,
two attracting fixed points appear. When letting e ap-
proach zero, these fixed points become marginally stable
and correspond to the stagnation points.

The main set contains both a hyperbolic component,
based on strictly unstable periodic orbits lying ofF the
immediate vicinity of the cylinder surface and a nonhy-
perbolic component, containing orbits coming arbitrarily
close to the surface [8]. In fact the latter component
seems to accumulate on the surface, between the two re-
pelling stagnation points [9].

Another part of the chaotic set is located far away
downstream around x = 3, and we call it the downstream
set. As the enlargement of Fig. 7(c) shows, this part
is rather rarer. ed and appears to be the direct product
of two three-scale Cantor sets, slightly deformed on the
(x, y) plane. Dynamically, this part is fully hyperbolic,
containing strongly unstable periodic orbits. The down-
stream set seems to have a stable manifold that is distinct
from that of the main set, but in certain regions it is close
to the latter one. This means that the two saddles have
diB'erent incoming Bows. The main set s stable manifold,
however, does not penetrate into the region x ) 1.1. In
view of this observation, we can identify the fractal part
of the x; = 1.2 boundary as the unstable manifold of the
downstream set. If the downstream set were not present,
this boundary would be nonfractal. Figure 8 displays the
invariant manifolds of a periodic orbit of the downstream
set. It is easy to check that the unstable manifold of it
is contained in Fig. 6.

Figure 7(a) also shows that there are PIM triple points
in front of the cylinder, too, in the range x ) —1.1. They
form a tiny fractal set that will be called the upstream
Set. Its appearance is due to an untypical feature of the
model: a backBow in a narrow range in front of the cylin-
der. Its size is much smaller than that of the main set
but its dynamical and fractal properties are similar. The
upstream and the main sets seem to have diferent in-
coming Bows too, but both stable manifolds lie around
the x axis in front of the cylinder. In addition, the unsta-
ble manifold of the upstream set seems to accumulate on
the cylinder surface, and comes arbitrarily close to the
unstable manifold of the main set. Patterns connected
with the unstable manifold of the upstream set cannot
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be present on the x; = 0 or x; = 1.2 boundary but can
on the x; = —1.2 or x, = —6 boundary. Because of the
smallness of the upstream set, such a di8'erence can only
be seen in enlargements [cf. Figs. 3(b) and 4(g)]. We
attribute the missing of the fractal part &om Fig. 4(g) to
the unstable manifold of the upstream set.

The stable manifolds of the upstream, main, and down-
stream sets go out to minus infinity along the x axis.
Therefore, a line {y, = 0, x & x, ) will be mapped close
to the upstream set where some branches of the other
two sets' stable manifold are also located. Consequently,
the x, « 1 boundaries contain all three of the unstable
manifolds like, e.g. , in Fig. 3.

Finally, it is worth mentioning that there could exist
regions of bounded tracer motion of finite area embedded
in the chaotic saddle. These are regions that cannot be
reached by dye particles injected into the flow in front of
the cylinder. While the downstream set seems to be fully
hyperbolic with a complete syxnbolic encoding, the two
other ones are certainly not. Therefore they could coexist
with elliptic periodic orbits, but numerically we have not
found any sign of these orbits with the resolution used.

namics in the stroboscopic map, and mark them "black"
or "white, " depending on whether, after crossing the
x q

——6 line, they lie in the upper or lower half-plane,
respectively (y, = 0). The boundary shown in Fig. 9
has a &actal structure. We also plot the time evolution
of the boundary within half a period. A comparison of
Fig. 9(c) with Figs. 5(c) and 8(b) clearly shows that the
stable manifolds of the main and downstream sets are
contained in the boundary, but the same could be said
about the upstream sets' stable manifold (not shown).
This is so because the line {y, = 0, x & x „t——6f inter-
sects all three sets' unstable manifold. The shape of the
boundary depends on x „qif it is no longer far away from
the cylinder. Had we taken the line of the outflow coor-
dinate x „~to be so close to the cylinder that could not
be reached by the unstable manifold of the downstream
set, the fractal component associated with this set's sta-
ble manifold would have disappeared. Similarly, on the
x~„&——0 boundary the fractal component can only be
associated with the stable manifold of the upstream set.
Because of its smallness, this boundary (not shown) is
invisible with the resolution used in the previous figures.

C. Experiment B D. Fractal properties

0.5

(a)

0

1.5 (b)

0.5

-0.5

-1.5

FIG. 8. The invariant manifolds of a period-1 orbit
xo ——3.245, yo = 0.093 (small diamond) of eigenvalue 105
that closely approximate the unstable manifold of the down-
stream set. The snapshot is taken at time t = 0.3. (a) The
unstable manifold in the full region of Fig. 4. (b) The stable
manifold.

We start particles on a grid of 800 x 666 points [in the
rectangle shown in Fig. 3(d)], follow their forward dy-

A quantitative measure of the fractality of the mani-
folds can be obtained by computing the so-called uncer-
tainty exponent [15]. Take a segment crossing the x,

„

or x „zboundary transversally and divide it into small
bins of size e. The uncertainty exponent shows how the
fraction f of uncertain boxes scales with e (i.e., f e ).
We call a box uncertain if trajectories started from it go
in the backward (direct) dynamics to both of the inflow
(outflow) regions y & y, and y & y, at x = x; (x „q)(i.e.
it contains both black and white points). The fractal di-
mension of the intersection is then 1—o.. In our numerical
computations we distributed randomly a large number of
points xo in the interval considered. For each point xo we
chose at random another one, yo, in an interval of size 2e
centered at xo to verify whether the box was uncertain.
By taking the segment to be investigated as the right
edge of the frame of Fig. 3(c), we have numerically found
o. = 0.39 + 0.02. This yields for the fractal dimension
of the x, = —6 boundary Do = 2 —o. = 1.61 + 0.02.
It is close to the value Do ——1.65 obtained for the frac-
tal dimension of the stable manifold of the full saddle
in Ref. [8], by means of a completely different method.
By applying the same uncertainty analysis to a segment
{x = 5, 0.47 & y & 0.49) crossing the unstable mani-
fold of the downstream set on the x; = 1.2 boundary,
we have obtained o, = 0.74+ 0.02. This implies that the
&actal dimension of the unstable manifold of the down-
stream set is Do ——1.26 + 0.02 and, consequently, that(d) =
the downstream set has a smaller dimension than the
main set. By comparing the uncertainty exponent of the
x; = —6 and x; = 0 boundary we have not found any
significant difference in the fractal dimension of the main
and upstream sets. The fractal dimension of the full x;
boundary for ] x,. ~&& 1 is thus Do ——1.61 because the
dimension of the union of several sets coincides with the
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maximum of the components' dimensions.
Note that because of the Hamiltonian character of the

I.angrangian dynamics, the stable and unstable mani-
folds must have the same dimensions. The dimension of
the full chaotic saddle is then D, ddt, = 2(Do —I) = I.22

(while for the downstream set D, &d&
——0.52).(~)

Thus we have shown that, if the inflow (outflow) line
is taken in the asymptotic limit, the boundary in both
experiments A and B have the same fractal dimension,
that is, the same as the maximum dimension of the sub-
sets' manifolds. In viem of our statement that the frac-
tal part of the boundary in experiment A (8) contains
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FIG. 9. The x~~& ——6 boundary in expenment B with y, = 0. Particles were started on an 800 x 666 gnd in the rectangle
shown and were marked "black" or "white" depending on whether, after crossing the x = 6 line in the stroboscopic map, they
lie in the upper or lower half-plane, respectively. (a)—(f) The time dependence of the boundary is shown by taking snapshots
at equal times t = n/10, n = 0, . . . , 5 during half a period. In the second half-period the corresponding figures can be obtained
by performing the transformation y ~ —y and "black" ++ "white" [compare (a) and (f)].
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the unstable (stable) manifold, and these boundaries are
streak lines, we can also say that the streak lines ema-
nating &om points far away from the cylinder in both
experiments also have the same dimension Dp.

V. CLOSING REMARKS

We have introduced the concept of x; and x „qbound-
aries in the two-Quid and two-exit experiments, respec-
tively, that can be carried out in open flows. If the tracer
particles are passively advected (i.e. , their inertia is negli-
gible), we pointed out that these boundaries can be frac-
tal boundaries exactly in the same sense as in dissipative
dynamical systems. The condition for this is the exis-
tence of a chaotic saddle in the advection problem con-
nected with the flow. The fractal component of the x,.
and x „zboundaries contains then the unstable or the
stable manifold of this set, respectively, or at least parts
of them.

To illustrate the general concept and to reduce the
amount of the numerics required, we considered an ana-
lytical model of a two-dimensional viscous Qow around a
cylinder. We emphasize that chaotic saddles persist un-
der small changes in the flow (in the form of @) so we
similarly expect Navier-Stokes flow to have chaotic sad-
dles. For some values of the Reynolds number this has
been numerically shown [10]. In our particular model
the advection problem had various disjoint chaotic sad-
dles. This phenomenon is of interest in itself and can
typically occur in any Hamiltonian or dissipative system.
As pointed out herewith, scanning a range of inflow or
outflow conditions can lead in such cases to the analysis
of certain parts of the full chaotic saddle. The differ-
ence among the fractal components of different x; or
x „zboundaries can only be understood in terms of the
chaotic saddles' structures and their manifolds.

We indicated that the existence of an upstream set
seems to be a peculiarity of the model. In other situa-
tions, however, like, e.g. , when the obstacle is an oscillat-
ing cylinder or a rotating ellipsis, such a set can very well
be present. As for the downstream set, the numerical in-
vestigations of the advection problem in a Navier-Stokes
ffow behind the cylinder [6—10] apparently do not indicate
its presence. It could, however, be worth reconsidering
these cases in the Navier-Stokes context with the aim of
searching for such a set (which is expected to be rather
unstable) with a better resolution.

It is Anally worth emphasizing that the general scheme
of boundaries introduced in this paper is not restricted to
flows around obstacles. They can be defined. for different
cases when the Qow is open with asymptotically simple
velocity fields so that the particle dynamics can be con-
sidered as a scattering problem. An example can be the
advection in the field of vortices forming a compact set
while moving in a Quid, like, e.g. , the leapfrogging of vor-
tex rings or pairs [3,11]. More generally, fractal bound-
aries can be found in any open flow that is time periodic,
even if the Qow in the asymptotic region is not uniform.

The analogy with scattering chaos is then lost but the
existence of a chaotic saddle in Eq. (1) is stijl ensured,
although the size of the regions in which fluid remains
bounded for all time would be very likely non-negligible.

The visualization of open flows by means of streak lines
has been a widespread method for decades [19]. The
two-fluid experiment proposed in this paper provides an
alternative method and sheds new light on this type of
visualization. The two-exit experiment has no previously
used counterpart at all, and is equivalent to constructing
streak lines in the time reversed Lagrangian dynamics.
Although the latter seems to be unrealistic in a labora-
tory, experiment B can be carried out with modern video
techniques. The two experiments proposed provide us
with information about two different sides of the dynam-
ics: direct and backward, or stable and unstable features
of the chaotic set.

The aim of this paper was to show that experimen-
talists can detect the existence of a chaotic saddle in
the tracer dynamics by pointing out the fractal structure
of the boundary between regions that are colored differ-
ently. Unfortunately, experiments A and B do not pro-
vide a direct way to detect the saddle itself. Taking the
intersection of the x; and x „qboundaries, it certainly
contains points of the saddle but many others, too, be-
cause of the nonfractal part of the boundary. We briefly
mention that with some modification, experiments A and
B could lead to a determination of the manifolds. By in-
terrupting the injection of the colored fluid. in experiment
A, the nonfractal part of the boundary (that is not on
an invariant curve) is transported away by the ffow and
after some time dye particles of any color will trace out
the unstable manifold. This is equivalent to studying the
pattern to which streak lines of finite length converge as
proposed in [9,10]. Analogously, if in experiment B we
save only those points (again of any color) that do not
leave a region around the obstacle earlier than a given
number n times the period, the stable manifold will be
traced out for increasing n. Since to our knowledge not
even streak line patterns have been analyzed from the
point of view of dynamical system theory in a laboratory
experiment, the realization of the experiments proposed
in the paper could lead. to a better understanding of clas-
sical hydrodynamical problems.
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