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Entropy-driven transition in a one-dimensional system
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We investigate the statistical mechanics of a one-dimensional model with nearest-neighbor inter-
actions and a substrate potential that exhibits an entropy-driven transition. Approximate analytical
results obtained with the second-order self-consistent phonons method are presented. Two difFerent
numerical methods are used to derive exact numerical results for the thermodynamical functions.
Finally, we discuss the important features of the Hamiltonian, which are responsible for this phase
transition.
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I. INTRODUCTION

Although the theory of phase transitions has been at
the heart of statistical physics studies for several decades,
there are still many unsolved questions, particularly for
first-order phase transitions. Recently there has been a
renewal of interest in such transitions that has been initi-
ated by new models of structural phase transitions, espe-
cially martensitic transitions in metallurgy [1—5]. These
transitions do not show a soft-mode behavior and their
physics is characterized by intrinsic nonlinear features
and quasiharmonic concepts are not applicable.

First-order temperature-driven transitions can be
found in systems where the bulk entropy changes at
the transition. They have been called entropy-driven
phase transitions [2,6] and they have been studied in
two-dimensional models by numerical simulations [7], by
mean-field theory [6], or through the exact results that
can be obtained &om transfer-matrix calculations in lat-
tices that have a finite breadth in one direction [4,8].

In order to understand the mechanism of entropy-
driven transitions and the conditions that a system
must fulG11 to exhibit such a transition, it would be
very interesting to have a simple model, such as a one-
dimensional model. The absence of phase transitions in
one-dimensional systems with finite-range interactions is
so often quoted that it may seem impossible to develop
such a model. However, there are counterexamples to
this statement. Temperature-driven phase transitions in
one-dimensional systems are known in chains made of el-
ements having a finite number of states and for which the
partition function has a simple expression as a function
of the internal states of the elements [9,10]. For systems
of interacting particles in one dimension, Van Hove gave
a proof that there is no transition [11],but his calculation
uses the fact that the partition function can be written
in terms of difference of atomic coordinates. This is the
case when the potential energy is due only to interatomic
interactions, but it is no longer true in the presence of a
Geld or with an external potential applied to each parti-
cle. Moreover there are real quasi-one-dimensional sys-
tems that exhibit a phase transition. This is the case of
the "melting" transition of DNA, i.e. , the thermal denat-
uration during which the two strands of the double helix

separate from each other [12] when the molecule is heated
above about 340 K. In fact, this problem motivated one
of the work on quasi-one-dimensional systems having a
transition cited above [10]. In DNA models an "on-site"
potential occurs naturally due to the interaction between
the two strands [13] and the Van Hove calculation does
not apply.

Recently, we proposed [14] a model in which the coop-
erative efFects, which had been introduced phenomeno-
logically in the Ising models of DNA denaturation, are
introduced at the microscopic level by an appropriate an-
harmonic stacking interaction potential that reflects the
change in the electronic distribution on the bases when
hydrogen bonds are broken. With this interaction the
system shows a very sharp melting transition. Besides its
interest for DNA, this model provides an interesting ex-
ample of entropy driven tra-nsition in a one-dimensional
system. This paper is devoted to the study of this tran-
sition. Although we cannot claim that it is a true first-
order transition, it exhibits close similarities with such a
transition. Our aim here is to discuss the origin of this
particular behavior.

Our model can be considered as a simple extension
of the Ising models for DNA denaturation. Instead of
a two-state variable, the status of each base pair n is
described by a scalar variable y representing the trans-
verse stretching of the hydrogen bonds connecting the
two bases. The Hamiltonian is

II = ) —my„+D(e ""—1) + W(y„,y„i) . (1)

The first term is the kinetic energy term for bases of
mass m, . The on-site Morse potential represents not only
the H bonds connecting two bases belonging to opposite
strands, but also the repulsive interactions of the phos-
phates and the surrounding solvent efFects. This poten-
tial is due to the presence of two chains in DNA [13] and
has the same eÃects as an external Geld. The stacking
energy between two neighboring base pairs is described
by the anharmonic potential

(2)
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II. STATISTICAL MECHANICS

Since the model is one dimensional and because the in-
teractions are restricted to nearest-neighbor interactions,
its statistical mechanics can be treated exactly, includ-
ing fully the nonlinearities, with the transfer operator
method [15]. This is one major interest of this system as
a model to study entropy-driven phase transitions.

For a chain containing N units, the classical partition
function, given in terms of the Hamiltonian (1), may be
factored as

z=j dy dp e y = Z„Z„.
The integral over the momenta p = my is a Gaussian
integral and gives the familiar kinetic factor for N par-
ticles Z„=(27rmk~T) ~ With a coup.ling limited to
nearest-neighbor interactions, Z„canbe expressed in the
form

This intersite coupling, replacing the simple harmonic
coupling of our first approaches [15,13], is the essential
feature of the model and it is responsible for its inter-
esting properties. The choice of this potential has been
motivated by the observation that the stacking energy is
not a property of individual bases, but a character of the
base pairs themselves [16]. With the W coupling term,
the eB'ective coupling constant decreases &om K(1 + p)
to K, when either one of the two interacting base pairs is
stretched, in qualitative agreement with the experimental
motivation of this work. The anharmonic coupling term
does not correspond to a renormalization of the Hamilto-
nian and, in the model, the parameter p and the coupling
constant K are not temperature dependent. We showed
in previously published work [17] how the mechanism of
discreteness-induced energy localization could appear in
a large variety of systems involving lattices. Numeri-
cal simulations of the model at constrained temperature
show [13] that, in the steady state, thermal energy tends
to localize itself around some sites. This process initi-
ates the formation of small amplitude breathing modes,
which grow by an energy exchange mechanism between
the nonlinear excitations and create the precursor events
of the transition.

The paper is organized as follows. Section II intro-
duces the statistical mechanics of the model. In Sec. III
a self-consistent phonon theory is used to derive analyti-
cal expressions of thermodynamical functions in the low
and high temperature range. We devote Sec. IV to a
detailed study of the phase transition and show first how
we can obtain the exact thermodynamical functions with
two differents methods; then we discuss the possible rea-
sons that give this phase transition in Sec. V.

Since it has been introduced to describe DNA thermal
denaturation, the model has been the subject of some
debate in the literature [18,19]. The problem is the defi-
niteness of the partition function because the on-site po-
tential V(y ) = D(e "" —l)2 is bounded for y m oo.
The integrand of Z„decays exponentially to zero for large
y almost everywhere because the coupling term diverges
as y . However, there is one trajectory in the phase space
for which this is not true. If all the y tend to infinity
while staying always equal to each other, the coupling
term is identical to zero and the integrand of Z„doesnot
vanish. This is a familiar situation in physics because the
requirement that all y stay equal simply corresponds to
the translational mode of the system, which is known to
cause a divergence in the partition function of a trans-
lationally invariant system. Usually this mode is simply
excluded by removing the center of mass degree of free-
dom in the definition of the partition function [20]. In
our case, however, the situation is not exactly the same
because, due to the on-site Morse potential, the system is
not invariant with respect to a global translation along y.
The stability of the model is only obtained in the ther-
modynamic limit because the weight in the phase space
of the particular trajectory where all y are equal becomes
negligible. This can be understood by looking at small
systems. Consider first a Single Morse oscillator in equi-
librium with a thermal bath. It escapes to infinity at
any temperature because the thermal fluctuations have
a nonvanishing probability to bring the oscillator on the
Bat part of the potential. Then there is almost no restor-
ing force and the amplitude of the motion can diverge,
although the divergence is very slow for kT && D. This
phenomenon can easily be tested by numerical simula-
tions. If we consider now a small number No of such os-
cillators that are harmonically coupled, the time required
for the divergence increases very fast with No because if
the fluctuations bring one oscillator on the Bat part of the
Morse potential, the coupling with its neighbors tend to
bring it back, unless the neighbors are simultaneously on
the plateau of the potential. Therefore the probability to
actually follow the diverging trajectory decays very fast
with No and, in the thermodynamic limit, the system is
stable for an infinite time.

In order to avoid a possible technical problem with
the global translational mode and to make sure that we
work with a problem that is mathematically well posed,
we shall bound the variation of y by a constant A, i.e.,
we restrict the phase space to —oo & y ( A. The intro-
duction of such a cutoff is also required in the numerical
calculation of the partition function, which is discussed
in Sec. IV. Then we shall study the properties of the sys-
tera as a function of A and show that the limit A —+ oo
is well defined. In addition, the analytical and the nu-
merical calculations will be done with periodic boundary
conditions.

—Pf(V V -1)„~e III. SELF-CONSISTENT PHONONS METHOD

where f denotes the potential energy of the Hamiltonian
(1) relative to the nth site.

As the analytical calculations of the partition functions
are not tractable, before using numerical methods to cal-
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N —1kgT ). mkgT
2Ksin (~~)

(5)

and the specific heat per particle in units of k~ will be
equal to 1. Figures 1 and 6(b) show that, above the
transition, this picture is correct.

In the low temperature regime, introducing u = y„—
(y) = y„—g and two variational parameters 02 and P,
we apply the SCP method [5,13] by considering the trial
harmonic Hamiltonian

Hp —) —mu„+ —(u„—u„+g) + u„1 2 p 2 0
- 2 " 2 2

(6)

At first order, the free energy of the system is bounded
&om above by [21]

P ( k~T ln —Zp + (H —Hp)

culate the partition function, let us use the self-consistent
phonons (SCP) method to obtain approximate analyti-
cal results in the low and high temperature regimes in
order to understand the denaturation mechanism better.
First, in the high temperature regime the whole system
is on the plateau of the Morse potential, with an effective
harmonic coupling constant K. Therefore, since the sys-
tem is equivalent to a harmonic chain, without substrate
potential we expect its Bee energy to be simply

Xg ——(H —Hp)
2 2=D+De "+ & I l (a +an)(u ) —an(v ) —2

+De "+ ~ ~ —(an+ 2a )(u ) + an(v ) + 1

(»)

((H —Hp)') —(H —Hp)'
2k~T (14)

can be calculated analytically exactly for our model (see
the Appendix). Then, we have an explicit analytical ap-
proximate expression of the second-order correction to
the free energy. Figure 1 shows that it significantly im-
proves the agreement with the exact results. However,
the SCP calculations still fails in the vicinity of the melt-
ing transition, emphasizing the fundamental role of the
nonlinear effects in the denaturation: they cannot be de-
scribed, even approximately, by a harmonic trial Hamil-
tonian with temperature dependent coefFicients.

We have also developed a mean field theory for this
model [22]. We used the modificated and extended theory

As shown in Fig. 1, the agreement with the exact
transfer-integral (TI) result is poor except at very low
temperature because, given the even parity of Ho, the
erst-order expression of T averages out all the odd terms
of the Morse potential. Although the calculation is te-
dious, the second-order correction to the &ee energy
[21,5]

N —ikgT ).
p=O

2&k+ T +FJI 702 + 4/sin (~~) I I I I I I I I I
I

I I I I I I I I I
I

I I I I I I I I I
I

I I I I I I I I I

I
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where Zo is the partition function for the trial Hamilto-
nian and the mean value is calculated with this approx-
imate Hamiltonian. Minimizing expression (7) with re-
spect to g, (u ) = (u ), and (v ) = (u u q), we obtain
five equations, which have to be solved self-consistently:

0.00—

—0.02—

k~T . cos(q)
02+4/sin ($)'

u —0.04
LIJ

LJJ

LLJ
LLJ~ —0.06

0 = 2aD 2(a —n) e

+(2n —a)e- "+' ~" l,
0 = nKp((u ) —(v ))e

—2ag+2a (u ) + —any+ 2 (u )

This system has a solution only for T & To, where To is a
characteristic temperature that appears as the transition
temperature for the SCP calculation. The resulting first-
order expression for the &ee energy is

Q, ] Q I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
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FIG. 1. Variation of the free energy vs temperature. The
solid line corresponds to the exact free energy calculated with
the transfer integral operator, the dashed line corresponds to
first-order SCP result To + W1, the dash-dotted line corre-
sponds to the second-order SCP result To+ Wq + Wq, and the
dash —triple-dotted line corresponds to the high-temperature
harmonic approximation. The parameters are n = 0.35,
D = 0.03 eV, a = 4.5 A, K = 0.06 eV/A, p = 1, and
I, = 300 amu.
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introduced by Kerr and Rave [6], which assumes that the
particles move independently and that the single-particle
probability distribution for the displacements is a Gaus-
sian function. We can then obtain two parameters, the
average displacement and its mean square fluctuation.
Then we can compute the averaged &ee energy per par-
ticle and finally, minimizing the &ee energy versus the
two parameters, we derive the solution of the mean field
theory. It qualitatively agrees with the exact numerical
technique, presented in the next section, but provides
neither an exact result nor an additional qualitative un-
derstanding of the transition.

IV. PHASE TB,ANSITION

A. Transfer integral aperator

1. Standard d technique

if we replace the integrals by sums of discrete increments.
For practical purposes, the summation is restricted to a
finite number of points, chosen so that the eigenvalue
is sufliciently accurate. We used the following different
methods to discretize the integral: the trapezoidal rule,
the Simpson rule, and Bode's integration rules of order
6 and 10. The last one gives the best accuracy. We are
using 1441x 1441 matrices.

2. Xellog'8 method

However, since we are interested in just the three first
eigenvalues, faster algorithms are more appropriate in
our case. The simplest one is the Kellog's method for
solving symmetric integral equations [28]. Starting with
an arbitrary normalized function rpo(s) we determine the
normalized functions p (s) and the numbers A from the
relation

As the approximate analytical calculations using the
SCP method and the mean field theory are not sufIicient
to describe the transition, we will exactly evaluate the
integral (4) in the thermodynamic liinit of a large system
(N —+ oo) using the eigenfunctions and eigenvalues of the
transfer integral operator [23—25,4]

d1I —t ~xP P (~BI 9 — )

p +i(s) = A„+i K(s, t) p (t) dt (18)

The passage to the limit can be carried out and leads
to an eigenvalue A = e~" and associated normalized
eigenfunction rp = Po of the kernel. Practically, we de-
fine a convergence criterion to test the accuracy of the
eigenvalue. Once the lowest eigenvalue eo has been ob-
tained, it is possible to construct a new kernel Ki, or-
thogonal to K and still symmetric:

Ki(s, t) = K(s, t) —e~" Pe(s)$0(t).

where, as discussed in Sec. II, all integrations are per-
formed in the domain —oo ( y ( A. The calculation is
similar to the one performed by Krumhansl and Schrieffer
[24] for the statistical mechanics of the P4 field. It yields
Z& ——exp( —NPso), where so is the lowest eigenvalue of
the operator. The lattice effects in this case go certainly
beyond perturbation corrections [26] and standard ana-
lytical methods cannot be used. Therefore we have solved
numerically without approximations the eigenvalue equa-
tion of the transfer operator [27]. We used two different
and independent methods to reach this goal.

First, we can symmetrize the transfer integral operator
and replace the integral by sums of discrete increments,
using summation formulas at different orders. The prob-
lem is then equivalent to finding the eigenvalues and the
eigenvectors of a symmetric matrix.

Using Eq. (15) and the orthonormalization property

Then, we derive the lowest eigenvalue of this kernel,
which corresponds to the first excited eigenvalue of the
original kernel K. Of course, we can apply this tech-
nique several times to obtain successively the eigenvalues
in increasing order.

Practically, we have to choose trial eigenfunctions, in
order to initiate the iterative process. As we expect one
localized eigenfunction for the fundamental eigenstate
and delocalized functions for the two first excited states,
we have chosen a Gaussian around y = 0 for the first
one and cosine functions for the two others. With this
choice, we check that the system converges quite rapidly
toward the exact eigenfunctions. We checked that the re-
sults do not depend upon this choice as predicted by the
convergence of the process. For instance, the localized
solution is also found if we start &om a nonlocalized si-
nusoidal trial function, at the expense of a larger number
of convergence steps. The eigenfunctions obtained are
then used as initial conditions for the iterative process
corresponding to the next temperature step.

(16)

we obtain an expression with a structure similar to that
of the eigenvalue problem

) ) M~bb,

H. R.esults

With these methods, we were able to compute the three
lowest eigenvalues of the transfer integral operator and
therefore all the consequent thermodynami. cal functions.
The two methods are numerical, but completely indepen-
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dent, and gave the same results. The parameters of the
model are a dissociation energy D = 0.03 eV, a spatial
scale factor of the Morse potential a = 4.5 A. , a cou-

2
pling constant K = 0.06 eV/A. , and a mass m, = 300
amu. We used an accuracy criterion fixed to 10

In this section we will 6rst show the fundamental dif-
ference of behavior in the harmonic case (n = 0) and
in the anharmonic case (o. = 0.35). Indeed, as pointed
out in a previous paper [13], although it goes far beyond
the Ising model in its ability to describe the dynamics of
the DNA denaturation, the harmonic model is still not
sufBcient because it predicts a denaturation that occurs
at a too high temperature and in addition extends over
a too large temperature region. This remark motivated

the modification of the model to introduce cooperativ-
ity effects in terms of a nonlinear contribution to the
base-pair stacking interaction; this results in a dramatic
change of the mean value (y) versus temperature. Fig-
ures 2(a) and 2(b) show the evolution of (y) in both cases.
We note that, if (y) goes slowly toward infinity in the
harmonic case, the anharmonic case gives rise to an ex-
tremely sharp transition [29], reminiscent of a first-order
phase transition.

One major point is to check that the results are in-
dependent of the limits of the integral. The exponential
increase of the Morse potential for negative value of y al-
lows us to take a rather small value for the lower limit of
the interval because the function that we integrate decays
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FIG. 2. Comparison of the harmonic case and the anharmonic case. (a) and (c) correspond to the harmonic case (o. = 0),
whereas (b) and (d) correspond to the anharmonic case (oI = 0.35). (a) and (b) present the evo1ution of the mean value (y) vs
temperature. (c) and (d) present the evolution of the three lowest eigenvalues of the transfer integral operator vs temperature.
The asterisk corresponds to co, the diamond to eq, and the triangle to r2. The parameters are D = 0.03 eV, a = 4.5 A.

K = 0.06 eV/A, p = 1, and m, = 300 amu.
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extremely fast for y ( 0. To determine the upper limit,
we study the value of the critical temperature versus the
upper limit of integration A. When A is small (for in-
stance, A = 20 A), the transition is not as sharp as it is
for the cases shown in Fig. 2(b), but it generates a peak in
the specific heat. The temperature corresponding to this
peak is taken as the critical temperature. The calcula-
tions are made in the anharmonic case, where the peak is
well de6ned and not broad as it is in the harmonic case.
Given the domain of integration, we chose the number
of increments to work with a constant numerical reso-
lution. In order to have a better extrapolation for an
infinite value of A, it is convenient to introduce a fitting
parameter b in order to obtain a straight line: therefore
we plot T, versus A on Fig. 3. The value 2.2 for b is
appropriate. We note that the value of the critical tem-
perature converges, rather rapidly, toward a 6nite value
(here T, = 277.5) when the upper limit of integration is
A 100. The spatial domain of resolution that we chose
for all the calculations presented below is [

—5 A. ,+195 A]
divided into 1440 steps.

The transition appears also in the spectrum of the
transfer integral operator (see Fig. 4). Below T, the
operator has a discrete eigenvalue s'o(T) separated from
a continuum, while above T the discrete eigenvalue has
disappeared. On the figure the continuum appears as a
set of discrete values that extends above a lower limit
s, (T) because of the limited resolution of the numerical
integration (in our calculation the "continuum" contains
1440 values ranging from z, to +oo).

What is important in our model is the way the dis-
crete eigenvalue disappears. As shown on Fig. 4, the
curve ro(T) penetrates abruptly in the continuum, which
means that, at T = T, the transfer integral operator has
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FK'. 3. Value of the critical temperature (defined by the
peak of the specific heat) versus 1/A, where A is the upper
bound of the integral. The five difFerent points correspond to
A = 195,95, 45, 20, 10, and 7.5. The fitting parameter b is 2.
The parameters are a = 0.35, D = 0.03 eV, a = 4.5 A.

A = 0.06 eV/A, p = 1.0, and m = 300 amu.
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FIG. 4. Spectrum of the transfer integral operator as a
function of temperature. The parameters are D = 0.03 eV,
a = 4.5 A, K = 0.06 eV/A. , p = 1, and m = 300 amu.

degenerate eigenvalues. The degeneracy is not only at-
tested by the sharpness of the crossing between the curves
so(T) and s, (T), but also because the penetration of the
curves Ep(T) in'side the continuum leaves in the contin-
uum part of the spectrum a "footprint" that can be ob-
served on Fig. 4 as a local increase in the density of states
along the direction that the curve s'o(T) was following at
T (Te.

The difFerences between the harmonic and the anhar-
monic case can be understood more clearly by plotting
on Figs. 2(c) and 2(d) the three lowest eigenvalues of
the TI operator, computed numerically when o. = 0 and
o. = 0.35. Contrary to the anharmonic case discussed
above where so(T) has a sharp intersection with the lower
limit of the continuum [Fig. 2(d)], in the harmonic case
sp(T) tends smoothly to the lower band edge [Fig. 2(c)].
The transition shows up also in the shape of the eigen-
functions of the transfer operator. The functions Po cor-
responding to the lowest eigenvalue is particularly im-
portant because ~Po(y) ~

gives the probability density for
the calculation of (y).

Figures 5(a)—5(c) are very helpful to understand the
behavior of the system. For o. = 0.35, they show the three
eigenfunctions, corresponding to the three lowest eigen-
values. Because of the Rnite domain, we note first that
the eigenfunctions vanish outside of the interval [

—5,195].
But the eigenfunctions are qualitatively di8'erent. Below
the denaturation temperature T, the first eigenfunction
Pp has a sharp peak around y = 0; it is a localized func-
tion, whereas the two erst excited eigenfunctions are de-
localized and agree with the standard shape of eigenfunc-
tions in a quantum mechanical problem. The existence
of a localized eigenfunction that decays exponentially for
large y is important because it confirms the stability of
the model in the low temperature range as discussed in
Sec. II. As this function is the weighting factor for the
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calculation of (y), its shape indicates that (y) must be fi-
nite. Furthermore, because it decays very fast for large y,
its determination is not affected by the upper bound of
the integral of the transfer operator. This result com-
pletes and confirms the results of Fig. 3. Above T,
the three eigenfunctions associated with the lowest eigen-
value have taken the sinusoidal shape expected for func-
tions belonging to the continuum. They have in addition

T=270

a small extra peak around y = 0, which is a "memory"
of the localized state that exists for T ( T .

V. ENTR.OPY-DRIVEN TR.ANSITION

In this section we will analyze the process leading to
the transition. Our calculations were done in the canon-
ical ensemble, where it is straightforward to derive ex-
plicitly the thermodynamical functions, starting from the
partition function. For the free energy, it reads

Xk~T—k~T 1n(ZpZy) = — 1 n(2vrmkgyT) + /Vep.
2

(2O)

We can also derive the energy per site

0.2—

U /'1 Osp )
/i/k~ ( 2 BT)

and the specific heat

(21)

C'v & T 8'~o
Xk~ 2 k~ BT2 (22)
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FIG. 5. Eigenfunctions corresponding to the three lowest
eigenvalues of the transfer integral operator, before and af-
ter the transition. (a) corresponds to T = 277 K, (b) to
T = 282 K, and (c) to T = 290 K. The solid line corresponds
to $0, the dashed line to Pi, and the dash-dotted line to Pq.
The parameters are n = 0.35, D = 0.03 eV, a = 4.5 A
K = 0.06 eV/A. , p = 1, and m = 300 amu.

Figure 6(c) presents the results for the specific heat ver-
sus temperature given by the transfer-integral calcula-
tions. One notes an extremely sharp peak at T = 278 K.

It corresponds to the penetration of the lowest eigen-
value ro in the continuum band, which is associated with
a sharp knee in the variation versus T of the lowest eigen-
value of the transfer operator, as attested by Fig. 6(a).
In fact, the amplitude of this peak seems to be essentially
limited by the temperature step used in the calculation.
Finally, in Fig. 6(b), we show how the energy per site
varies with temperature. The most striking feature con-
veyed by Fig. 6(b) is the sudden rise in U. The steeply
rising coexistence segment of the curve in Fig. 6(c) is not
strictly vertical because of the numerical method. to com-
pute the lowest eigenvalues (one can note that it is not a
finite size effect because the eigenvalues and therefore all
thermodynamic functions are obtained in the thermody-
namic limit).

In addition, we made some numerical simulation
of this system using molecular dynamics simulation
at constrained temperature with the Nose-Hoover
method [30—34,13] on a Connection Machine 5 with
16384 units. It is possible then to study the histogram
of the value of the different site y for difFerent tempera-
tures. The simulation were first integrated during 20000
time units in order to reach an equilibrium state and then
we continued to integrate the equations, saving the posi-
tion of all the sites with a regular time interval. On the
Fig. 7 we plot the &action of units that have a value of y
exceeding a threshold 1.5 A. . The transition is extremely
rapid in comparison with the harmonic case [13]. These
values are then used to make the histogram of the differ-
ent available positions. We plot; the results on Fig. 8. One
sees that at low temperature the histogram has a sharp
peak around the value zero, which means that the chain
is in the well of the Morse potential. For higher values of
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well-known result that there are no phase transitions in
one-dimensional (1D) systems, with short-range interac-
tions [35]. One can easily illustrate this theorem with the
oft-repeated example of the linear chain Ising model (see,
for example, Ref. [36]). Let us assume that an ordered
state exists below T ) 0 and that there exists a phase
transition at temperature T . Then for T & T„let us
Hip half the chain to assume an opposite polarity, which
clearly increases the enthalpy by an amount 2J, which is
the enthalpy required to change the relative polarity of a
nearest-neighbor pair of spins. However, since it can be
carried out in N ways (according to which of the N bonds
is Ripped) there will be a resultant increase in entropy
of order (inN) and the Gibbs potential t = U —TS
will decrease rather than increase. Thus the system is
unstable against such Hips and we conclude that for an
infinite system an ordered phase for T ) 0 cannot exist.
Therefore, no spontaneous magnetization can appear in
a linear Ising model. The preceding derivation clearly
breaks down in the presence of an external field since the
two states do not correspond anymore to the same energy
level. In that case, the energy increases with N and not
with lnN.

Theoretical questions related to the phase-transition
problem in a double polymer chain (such as the DNA
molecule) have been discussed many times in the liter-
ature [37—39]. The process of splitting of a long double
molecule into individual filaments is under certain condi-
tions [37] indeed a phase transition. Using a simple model
and only nearest-neighbor interaction, one can exhibit ex-
amples [38,40] that demonstrate that a phase transition
is not forbidden in a 1D system since, to our knowledge,
the demonstration of the theorem is only valid for poten-
tial using differences of the positions [11].

VI. DISCUSSION AND CONCI USION

To elucidate the reason of this transition, we can per-
form the same type of calculations with other similar
Hamiltonians. Our results show that the transition re-
quires simultaneously two properties of the model. One is
a property of the coupling along the chain and the other
one is a characteristic of the on-site potential. Let us
discuss the coupling first.

As already explained, when n = 0 (the coupling inter-
action is then harmonic) the spectrum of the TI opera-
tor shows a smooth evolution of the lowest eigenvalue to-
ward the continuum; simultaneously the eigenfunction $0
shows a smooth evolution toward delocalization by form-
ing a side maximum that grows. The transition is clearly
not a first-order transition [see Figs. 2(a) and 2(c)].

To show' that the behavior of the model is sensitive
to the type of dependence upon y of the effective cou-
pling constant, we studied the model with the following
coupling potential:

K~ill 9 —i) = —&+P~ " "
) (II 1l —i) .

2

(23)

Figure 9(a) shows the specific heat versus the tempera-
ture. The curve corresponds to a broad peak, due to a
1D Schottky anomaly. We note then that the plus sign
is of importance in the exponential. In a mean field ap-
proximation, with a minus sign, the coupling constant is
not a function of the mean stretching, contrary to our
Hamiltonian.

We studied also the coupling potential

K
~~(u- u--i) = —&+~ —P~ '""'"" ')

2

x(y~ —y~ i)'.

That case has the plus sign in the exponential, but the
prefactor of the quadratic term (y —y„i) increases
from zK to zK(1 + p), when either or both base pair
are stretched. Therefore, a base pair that is in the vicin-
ity of an open site has greater vibrational &equencies,
which increases its contribution to the &ee energy since
the &ee energy of a single classical harmonic oscillator is

k~T ln—[2mk~T/~]. Figure 9(b) shows that with
the i%2 coupling there is only an extremely smooth max-
imum of specific heat. On the other hand, the coupling
potential (2) allows a lower coupling along the strands
when the base pair are stretched and so gives the bases
more freedom to move independently &om each other,
causing an entropy increase, which drives the transition.

The second essential point is the coexistence of a
plateau in the Morse potential. One could think of a
model where the two possible states are both confined
states. This would be the case, for instance, for a double
well on-site potential such as the well-known P4 potential

&~(y) = D(y' —1)' (25)

instead of the Morse potential. This model has no tran-
sition and this appears again on the specific heat, which
has simply a small peak [Fig. 9(c)]. One could think of
coming closer to the case of the Morse potential by us-
ing a potential that has two equilibrium positions with
different energies such that the asymmetric P potential

V2(y) = —,[3(y —1) +y]. (26)

Again there is no sharp transition as shown in Fig. 9(d)
[41]. These two cases suggest that the plateau of the
Morse potential is really required and this is supported
by two arguments.

(i) In a previous study of an entropy-driven transition
with an on-site potential having a gP shape (with only
minima confined by a potential energy increasing to in-
finity for y ~ Woo), Morris and Gooding did not find
a transition in the limit of a one-dimensional model [5].
They analyzed their results by showing that instead of
a crossing of two eigenvalues of the transfer integral op-
erator leading to degeneracy they had only an avoided
crossing as shown in Fig. 10(a). With a potential un-
bounded for y ~ +oo, the transfer integral operator has
only a set of Ckscrete eigenvalues that depend on T and
the avoided crossing can be repeated to avoid any degen-
eracy of eigenvalues as shown in Fig. 10(b). But with a
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potential having a p/ateau, there is a qualitative change
because the transfer operator has a continuum part in
its spectrum. As shown in Fig. 10(c), if a discrete eigen-
value tends to penetrate into the continuum, the crossing
cannot be avoided unless one digs a "channel" in the con-
tinuum to allow the curve s'o(T) to pass through without
intersecting with the continuum. This is of course not
a mathematical proof of the existence of the transition
because we cannot, from such a topological argument,
de6nitely exclude a sharp bend of so(T) before it reaches
the continuum as shown in Fig. 10(d). But, if it were the
case it would be di%cult to explain the anomaly in the
density of states that appears in the continuum in our
Fig. 4 along the continuation of the so(T) curve.

(ii) The transition is only possible if an entropy in-
crease can balance the energy increase shown in Fig. 6(b)
in order to reduce suKciently the &ee energy of the de-

naturated phase for T ) T,. As discussed above, the
special nonlinear coupling, which gives the particle more
freedom to move in the denaturated state, tends to fa-
vor an entropy increase. But the plateau of the Morse
potential is also crucial because when the whole atomic
chain is on the plateau, the absence of confining potential
(contrary to the P4 or the Ps potential) allows them to
explore almost freely a very large domain in the phase
space. In fact, although we are working with a one-
dimensional model because the on-site variable can be
labeled by only one index (along the particle chain), in
the denaturated state, the chain of particles evolves actu-
ally in a two-dimensional space as illustrated in Fig. 11.
This fact was recognized earlier by Kosevich et al. [38]
when they studied a one-dimensional DNA model made
of segments having a finite number of possible orienta-
tions. The calculation of the number of configurations
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APPENDIX: CALCULATION QF THE MEAN
VALUES FOR THE SCP METHOD

perturbative potential (V~„t).The calculations are par-
ticularly tedious. We introduce the matrix M, with

M1,t = ( 2 + (t')~1,t —
2 (~1,q+a + bl t t) as we did in

the harmonic case [13].
Let us define the quadratic form

Q = ) M;, u;u, . —) h;(u; —u, +t) + ) c,u; (Al)

In this appendix we present only the main results, use-
ful to obtain the expression of the mean value of the

with c; = 0, except c; = n/P if i = k, k + 1, /, l + 1. We
have then

((u u )2(u u )2e— (11'+ kV1++ IV+ l 111+)) (A2)

du;exp —P ) M; t u;u~

(A3)

P2Z(0, 0) Bh2„0h(2
h=o

(A4)

We introduce then the variable v; = u, —a;, where a is chosen so that the linear term of the quadratic form vanishes.
It gives

g4eP 'aMa

P2 c)h2 c)h2
k l

(A5)

2(2(ut ue) —(uwue+t. ) —(ueuA+t. )) 1 —2~ ((ut+tue) —(ut ue+t. ))

2((u2) ( 2)) + 2(( ) ( ))2 lv(2(u )+.2(v )+2(urdu )+( lig+1v&t)+( 1+iv&k))

If o. = 0, it reads

((ut —ut+t. ) (ue —ue+t. ) ) = 2 2((u ) —(v )) + (2(uaue) —(ueue+t. ) —(ueua+z)) (A7)

1' = ((u~ —u~+t) (ue —ue+t)'e '""+"""')
1 g4 P 'aMa

P4 Oh 2„he2

= 2[(2(uA. ue) —(uaue+i) —(ueu~+x))'

+2(( 2) ( 2))2j 11 ((v. )+(v ))

(A9)

(A1O)

Using the same quadratic form, but c; = 0, except where
ck ——cA, +q

——&, cg ——&, it reads

Using the same quadratic form, but c; = 0, except where
cI, ——cA, +g ——p, we obtain

(A11)

1 g2 P 'aMa

P2 l9h2

= [2((u') —(~')) + ~'((u~+~ue) —(u~ue))'I

(A12)

n ((u )+(v ))+ 2 (11 )+2ucz((ill ul)+(ill +1vs)) (A13)

The two particular cases o, = 0 and a = 0 are useful
for the calculation. Using the same quadratic form, but
c; = 0, except where cA,. ——cA, +q

——&, cg ——&, it reads



ENTROPY-DRIVEN TRANSITION IN A ONE-DIMENSIONAL SYSTEM 4039

(A15)

(( u )2u2 —cx(uk+uk+y)) (A14

1 g4 P 'aMa

P4 06~2 cd

= 2 tLI +pile — tkI %Le + B, —6

x (u ) + n ((uruA, , ) + (urus+ )) e ((" }+("}).

Finally, introducing the expressions

K —P Kp
2 2

e

A=De ", b=2De

When o. = 0, it reads

(&u~ —u~+i)'ur')

= 2 (( ) —( + ))' + ( ')(( ') —( ')) .

(A17)

o = aD 2(a —n)e "+ (" } + (2n —a)e "+ ~ (" }

to simplify the calculation, we can then obtain the mean
value of the square of the perturbative potential

(v,-t) ((H —Ho)')
N N

'( ')' —2~ ( ')."("'}+2~ ( ').—'("'}

+ ).[Pp 2((u ) —(u )) + (2(»ue) —(ut ue+i) —(ueus+i))

+7 2 2 ~A:e —~I«e+~ —&eI+i —40' 2 I«e — I ~e+i —e&1+i A:+i&e —ae+1

2((u2) (~2)) + n2(( ) ( ))2 a (2(u )+2(v )+2(ukut)+(uk+rut)+(ul+luk))

+p2 4a (u }e4a (uku&) + p2 a (u )ea (ukug) + 2 2( u )2 2pge
—(u )e2a (uku&) Spoa2 2a (u ) (u u )2

+2hoae &
'("'

(ugue) + 4pp &2(uxue) (uA, ue+x) —(ueul+z)) + 2((u ) —(v )) e

+4m& (u') —(u') + a'((ur. +iue) —(ut. ue)) + a ((ue+iux) —(ut. ue))

—&~ 4((u') —(" )) + a ((»+iud) —(»u~))'+ a'((u~+iu~) —(u~«))' e ' '" '

—2&o (( ~ r) —( ~+i ~)) +(( ~«) —( ~+i ~)) +2( )((" ) —(u ))

+2&p (u2) (&2) + 2a2((u u ) ( u ))2 a ((u )+(v })+2a (u )+4a~((ukuc)+(uk+iud))

+2 p ( 2) ( 2) + 2a2(( u ) ( u ))2 a ((u )+(v ))+2a (u )+4aa((ukuc)+(ucixuk))

2(( 2) ( 2)) + 2(( ) ( ))2 a ((u )+(v ))+ z (u )+2aa((ukut)+(uk+rut))

2) (u2)) + a2((u u ) (u u ))2 ea ((u )+(v ))+ ~ (u ) 2 +ca{a( uck)u( +c uz +)u)k

a+ie —~I e + ~e+zI. —&I e

+((u') —(~')) 2(u') + n'((uruA, ) + (u~uk+i))'+ n'((uru~) + (uku~+i))' j
This expression allows us to compute the value of the second-order correction to the free energy (14).
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