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Correlation functions and spectra for fields with highly anticorrelated phase jumps
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A non-Markovian jump model of phase-Auctuating electromagnetic fields is considered, which is a
generalization of the random phase telegraph model. According to the present model, the phase jumps
are highly anticorrelated Markovian jump process, i.e., they have alternating signs and approximately
equal magnitudes. Closed analytical results for the field correlation function and spectrum have been ob-
tained under rather general assumptions. The parameter y, which is a measure of correlation of succes-
sive jumps, has been expressed in a general form through the parameters of the model. Two regimes
have been found, depending on the values of the rms phase jump B and the correlation parameter y. For
highly anticorrelated and not very large jumps (1+y «1,B ) the correlation function (spectrum) con-
sists of two components with significantly difFerent damping rates (widths). In the opposite case each
phase jump destroys the coherence of the field and the decay rate of the correlation function is deter-
mined by the frequency of jumps. The possibility of extracting parameters of the model from measure-
ments of the laser field correlation function and/or spectrum is discussed.

PACS number(s): 05.40.+j, 42.60.Mi, 02.50.Cra, 42.25.Kb

I. INTRODUCTION

Statistical properties of laser radiation are of great im-
portance in such fields as nonlinear optics and optical
communications. A number of models were introduced
to describe a fluctuating laser field and its interaction
with matter. In the case of an intensity stabilized, phase-
fluctuating field, which is of interest here, the theories
suggested included the models of phase diffusion [1—7],
Markovian phase jumps [8—10], Gaussian-Markovian
frequency fluctuations [11—15], and phase telegraph (di-
chotomic) noise [16—20]. In Ref. [21] (hereafter referred
to as I) the generalized jump model (GJM) of phase-
fluctuating laser fields was introduced. According to the
GJM, the laser phase jumps randomly at random mo-
ments of time, the successive jump values being statisti-
cally dependent (correlated). The GJM was shown in pa-
per I to reduce to all the above models in the respective
regions of the B,y space, where 8 is the root-mean-
square jurnp and y is the correlation parameter. For the
GJM the laser field correlation function and spectrum
were obtained analytically in almost all cases of interest
in the general form (paper I). In Refs. [22] and [23] the
GJM was applied to study the effect of phase fluctuations
on the resonance fluorescence spectrum. A special con-
sideration was given in Refs. [21—23] to the generic case
of the Keilson-Storer model (KSM) which allowed one to
obtain an especially simple formula for all cases of in-
terest. In Ref. [24] an exact expression for the field corre-
lation function in the KSM case was obtained. Monte
Carlo simulations were used in Refs. [21—24] to verify the
results of the theory for the KSM case.

It is worth noticing the difference between the phase
telegraph model (PTM) and other theories of phase tluc-
tuations. In the PTM the phase varies in a limited
domain (consisting of two values for the case in question),
so the field dephasing is generally not complete and the

correlation function tends to a finite value at infinite time.
In contrast to this, the other models mentioned above as-
surne that the phase performs a kind of Brownian motion
and increases steadily on the average. This yields the
complete dephasing of the field on the time scale of a cer-
tain correlation time. Correspondingly, these models
yield the field spectrum as a bell-like shape with width of
the order of the reciprocal correlation time, whereas the
PTM field spectrum involves a 5 function along with a
finite width component. In the framework of the GJM,
the PTM is realized when the phase jumps are completely
anitcorrelated (y= —1). The GJM allows one, in princi-
ple, to consider any value of y from the allowed interval—1&y ~1, including the case of highly anticorrelated
jumps (y= —1), where the field can be expected to
behave very similarly to the PTM case. In paper I the
domain of highly correlation jumps was studied only for
the special case of the KSM, whereas all the other limits
were considered in the general form.

Measurements of the correlation function and the spec-
trum of the laser field provide important information on
the field statistical properties [25]. In the present paper
the correlation function and the spectrum are calculated
for a phase-fluctuating field described by an anticorrelat-
ed random jump process of a general form. Closed
analytical results are obtained. In particular, the results
obtained allow one to trace the transformation of the
spectrum with the change of B and y, including a con-
tinuous transition between a PTM-like spectrum, consist-
ing of two components of different widths, and one-
cornponent spectra characteristic of other models of
phase fluctuations.

In Sec. II the generalized jump model of phase fluctua-
tions is reviewed. The field correlation function and spec-
trum are obtained in Secs. III and IV for the cases of ful-
ly and highly anticorrelated jumps, respectively. Section
V provides concluding remarks. The Appendixes provide
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supplementary material used in the main text. Appendix
A discusses the quantitative characterization of non-
Lorentzian line shapes and nonexponential decay laws
typical of the present model, in Appendix B highly an-
ticorrelated Markovian jump processes are studied, Ap-
pendix C provides relevant information on cumulant ex-
pansions, and Appendix D contains details of the calcula-
tions.

tually, any average of ro(p) with a positive slowly varying
weight can serve as the definition of ~,h, since, in view of
the above conditions (ii) and (iii), all such averages are of
the same order. Here, as in paper I, ~,h is assumed equal
to r,„=B {p /~o(p)} '. The third parameter is the
correlation parameter y which characterizes the degree
of correlation between successive jumps ( —1 y & 1). To
illustrate the physical meaning of y consider the case of
the Keilson-Storer model:

II. THE GENERALIZED JUMP MODEL
OF PHASE FLUCTUATIONS

A. The description of the model

1

(2n.B )'( )= exp ~o(p) =ro,
2B

(2.4)

Consider a laser Geld of the form
—i [a)~ t+p(, t)]j

ECOL
IE(t)=Eoe +c.c. =E(t)e +c.c. , (2.1)

where coL is the nominal frequency, E0 is the field ampli-
tude which is assumed to be constant, P(t) is a Iluctuating
phase which is described by the generalized jump model,
and E(t) is the complex field amplitude. The GJM is
defined as follows (see the details in paper I). The laser
phase p(t) abruptly changes by values pk at random mo-
ments tk If, e.g.., there are n phase jumps pi, . . . , p„be-
tween 0 and t, then

P(t)=P(0)+P, + . +P„(0&t,& . . . t„&t) . (2.2)

The phase P(t) is a functional of the random function
p(t), which equals the size of the latest phase change
preceding the current moment t. p(t) is a Markovian
jump process defined by three functions: ro{p} is the
mean time between successive phase jumps depending
generally on the current value of p, f (p) is the distribu-
tion of the jumps, and h (p, p) is the conditional probabil-
ity density for the phase to jump by p if the previous
jump was p'. These functions are assumed to obey the
following conditions.

(i) The functions are symmetric: f(p) =f (
—p),

~0(p)=so( —p), and h(p', p)=h( —p', —p). (ii) The dis-
tribution f (P) has a bell-like shape and the ratios of suc-
cessive even moments of f (p) are of the same order,
(P "}/(P" }-8 (k =1 2 ) where 8 =(P )'
Here and below the average over P is given by

&= f . f(p)dp. (2.3)

(iii) The function ro(p) is slowly varying, i.e., its charac-
teristic length of change is of order 8 or more. (iv) In the
case of highly anticorrelated jumps h (P', P), rewritten as
h (p', a) with a=p+p', has a characteristic length of
change of order 8 as a function of P' and a much smaller
characteristic length as a function of n. This assumption
is satisifed, in particular, by the KSM function {2.5). The
above rather general conditions allow one to obtain
closed expressions for the field correlation function and
spectrum, as shown below.

An alternative, more qualitative, characterization of a
jump process is by means of three parameters (paper I).
One of them is the characteristic phase jump 8. Another
parameter is the characteristic time interval between suc-
cessive jumps r,h equal to a suitable average of rp(p). Ac-

h (P', P) =h (P—yP')

[2m(1 —y )8 ]'i exp
{P yP')'—

2(1 y)B—
( —1&y&1) . (2.5)

As follows from the KSM, the average value of the phase
jump P following the jump P',

Pp= fdPh{P' P)P (2.6)

B. The field correlation function and spectrum

The correlation function is given by

(2.7)

A one-sided Fourier transform of k (t) yields the laser in-
tensity spectrum normalized to 1,

1 OOJ(co)=—Ref k(t)e' 'dt,
77 0

(2.8)

where ~ is the frequency counted o6' from ~1 . As shown
in paper I, for the present GJM

k(t)= f r(p, t)dp, (2.9)

where the partially averaged correlation function r(p, t)
is the solution of the equation

—jp
~0(p)

'
~o(p')

with the initial condition r (p, 0)=f (p).

(2.10)

is given by yp, leading to the obvious meaning of posi-
tive, negative, and zero correlation. For the KSM y is a
parameter of the theory, but, as shown in paper I, the
correlation parameter y can be de6ned for the most gen-
eral case [Eq. (3.4} in paper I]. The price of the generality
is that the definition of y in I, though it leads to physical-
ly reasonable results, is not transparent and requires a
solution of an integro-differential equation [Eq. (2.5) in
paper I]. In the present case of highly anticorrelated
jumps, y= —1, an expression for y much simpler than
that in paper I can be obtained (see Sec. IV). The condi-
tional probability and other properties of the Markovian
process p(t) in the case y = —1 are discussed in Appendix
B.
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III. FULLY ANTICORRELATKD JUMPS
(THE GENERALIZED TELEGRAPH MODEL)

whereas for the GTM it is given by

f(P)= J fr(P)g(PO)dPO= ,'g(/P!, ) . - (3.1)

If g ( ~P~ ) decreases monotonically with ~P~, its maximum
being at P=O, then f (P) is a bell-shaped function. This
is precisely the case considered in this paper [cf. the con-
dition (ii) in Sec. II A].

The GTM is obtainable as the limit of fully anticorre-
lated jumps in the GJM (y = —1). In this limit
h (P', P) =5(P'+P} and Eqs. (2.8)—(2.10) yield (paper I)

k(t)=(e ' sin (P/2))+(c so(P/2)) (3.2)

sin (P/2)ro(P)J(ai)=
z +(cos (P/2))5(co)

[coro(P)/2] +1 (3.3)

[cf. (2.3)]. Note that Eqs. (3.2) and (3.3) are obtainable
also from the averages over P of the respective results of
the PTM [16]. A remarkable feature of the results (3.2)
and (3.3) is a nonzero infinite-time limit of the correlation
function and, accordingly, a 5-function component of the
spectrum. This is explained by the fact that the first term
in the expression for the field amplitude

E(t) =e'~[cos[P(t)/2] i sin[P(t)/—2]]

is an even function of the phase jump p and thus not
affected by the noise.

The areas under the broad and narrow components in
the normalized field spectrum are (sin (P/2) ) and
(cos (P/2)), respectively. In the case of small jumps,
8 «4, the area under the broad component is 8 /4, be-
ing much smaller than the area under the narrow com-
ponent. The difference between the two areas decreases
with the increase of 8, and for 8 &)4 the areas are
equal. For a constant wo(P) =To the time-dependent com-
ponent of k (t) is exponential and the broad component of
the spectrum is Lorentzian with width 2/~0. In the gen-
eral case the time-dependent component of k(t) decays
with a decreasing rate. The broad component of the spec-
trum is a superposition of Lorentzians centered at co&

with different widths.
The above results, as well as those to be obtained

below, involve generally nonexponential decay laws and

According to the PTM, the field phase P(t)
=P+P(t)/2, where P is a random constant and P(t) is a
random telegraph process which acquires two values,
+Po, with equal probabilities. A simple extension of the
PTM is to consider an ensemble of independent telegraph
processes with different values of Po characterized by a
distribution g(Po) (Po 0). According to this generalized
telegraph model (GTM) P(t) is a Markovian process with
the same conditional probability as the telegraph noise,
but with a different distribution of P. For the telegraph
noise the distribution of P is

fz.(P}= [5(P—0o)+5(P+Po) ]/2

non-Lorentzian line shapes. To characterize such func-
tions two readily measurable parameters are introduced
in Appendix A, the characteristic and effective widths.
The two parameters, which generally differ from each
other, reduce to the half width at half maximum
(HWHM) in the case of a Lorentzian line. In particular,
the effective width of the broad component of the spec-
trum (3.3) is obtained from Eqs. (3.2) and (Ala) to be

2( sin (P/2)/ro(P) )
)fc

(sin (P/2) )
(3.4a)

2/r, „, 8'«4
&2/, (P))=—2/, 8'»4. (3.4b)

Under the above assumptions (i)—(iii) on f (P) and ro(P),
both limiting values of v*, are of the same order of magni-
tude. The characteristic linewidth (A lb) can be shown to
be of the same order as vi. Thus the linewidth of the
broad component of the spectrum does not change
significantly with 8, being of the order of 2/r, „.

IV. HIGHLY ANTICORRELATED JUMPS

If phase jumps are highly, but not fully, anticorrelated,
the field phase P(t) fiuctuates similarly to the random
telegraph process. However, now ~P(t)~ is not constant,
but undergoes a slow diffusion motion (see Appendix B).
The phase P(t) (2.2) now varies without bound. This
yields complete field dephasing after a sufBciently long
time and accordingly the zero limit at the in6nite time for
the correlation function. Below in this section the prob-
lem is studied in two overlapping regions,
(1+y)«1,8 and (1+y) «1«8, which together
cover the whole region of highly anticorrelated jumps,
1+y «1.

For highly anticorrelated and not too large jumps, i.e.,
for (1+y)«1,8 (cf. Sec. IVC), the correlation func-
tion can deviate significantly from Eq. (3.2} found in the
case y = —1 only for sufticiently long times, t )&~„.The
analysis of Eq. (2.10) made previously (paper I, Sec.
IV E2) showed that for t &r„ indeed Eq. (3.2) approxi-
mates the correlation function, whereas for t &)~„ the
correlation function is given by

k(t)= JR(P, t)e 't'~'dP (t»~,„), (4.1)

where R (P, t) obeys the equation

R =[ a2(p)14+Lt—t]R .

Here

(4.2)

LpR = [ai(P)R]+ [a2(P)R ],= a
ap'

where

a„(P)=5„(P)/[n!ro(P)], 5„(P)=Jdaa"h(P;a) .

(4.3)

(4.4)

Equations (4.3) and (4.4) were derived in paper I with the
use of the above conditions (i)—(iv). The condition (i) im-
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plies also that

~„(P)=(—I)"~„(—P) . (4.5)

The matching condition between the short- and long-time
asymptotics yields the following initial condition for Eq.
(4.2):

R (P, O) =f (P) cos(P/2) . (4.6)

Equations (4.6) and (4.5) imply that R (p, t)=R (
—p, t),

which in turn allows one to recast (4.1) as

k(t) = fR(p, t) cos(p/2)dp (t »~,„) . (4.7)

A. Small jumps (B (&4)

We will seek k (t) with accuracy up to terms of order
B . To this end, we solve Eq. (4.2) with the help of the cu-
mulant expansion technique which allows for a statistical
dependence between the stochastic di6'erential equation
and the initial condition [27] (for details, see Appendix
C). Let us cast R (p, t) as

R (P, t) =R (t)f (P)+SR (P, t), (4.8)

Equation (4.2) is a stochastic difFerential equation. The
first term in the right-hand side of Eq. (4.2) provides the
instantaneous Geld dephasing rate for the realizations of
the random field with a given p at t The . second term
takes into account fiuctuations of p(t), which on a time
scale greater than w,„have the form of difFusion in the p
space (cf. Appendix B). There is a statistical dependence
between the initial condition (4.6) and the dephasing rate
az(p), which is seen from the fact that (4.6) does not
mimic f (p). This results from the p-dependent field de-
phasing at the first, fast stage. Equation (4.2) cannot be
solved analytically for the general case. In the remainder
of this section simple solutions for important special
cases will be obtained.

The second term here is both small and fast-decaying, as
compared to the Arst term. For t &)~„ in the lowest or-
der in B k(t)=e "'a'. In this approximation the field
fiuctuations are describable by the PDM (cf. paper I) with
the phase di6'usion coeKcient equal to v, . The intensity
spectrum of the field follows from Eqs. (2.8) and (4.12) as

(1—B /4)v, P ro(P)/8
J(co)=—. + I'

co +v2 [co~o(p)/2] +1

(4.13)

Equation (4.13) shows that the narrow component of the
spectrum is a Lorentzian with the HWHM v, . The area
under the narrow component is much larger than the
area under the broad component.

The expression (4.12) for the correlation function can
be compared with the previously known result [Eq. (4.23)
in paper I]. For the present case, y = —1, Eq. (4.23) in I
and Eq. (4.12) here have the same validity conditions,
B (&4, so the equations can be identified (with accuracy
up to B ). The result in I depends on correlation func-
tions of the random process p(t), which generally are not
known, whereas Eq. (4.12) expresses k ( t ) explicitly
through the parameters of the stochastic model. Com-
pare separately the fast and the slowly decaying terms in
the two expressions. The comparison shows that the fast
decaying term q (i) in Eq. (4.23) in I can be approximated
for y= —1 by its value at y= —1. Indeed, the calcula-
tion of q (t) [Eq. (4.21) in I] with the help of Eq. (85) in I
for the function go(t) valid for y= —1 yields a result
identical to the second, fast decaying term in Eq. (4.12).
This fact is explained by noting that the function Oo(t) is
expressed in terms of two-time moments of odd functions
of P [see Eqs. (4.17), (4.16), and (3.2) in I], which are
shown in Appendix 8 to be close for y = —1 to their
values at y= —1. The slowly decaying terms can be
identified if

where R(t)= fR (p, t)dp Inserting . Eq. (4.8) into Eq.
(4.7) yields

k (t) = (cos(p/2) )R (t) —f (p /8)5R (p, t)dp

(I+y)B (4.14)

=(1—B'/8)R(t) . (4.9)
The correlation parameter

Here we took into account that fM (p, t)dp=O, which
results from the integration of both sides of Eq. (4.8) over
p, and used the relation fp 5R (p, t)dp-B~R(t) (Appen-
dix C). As shown in Appendix C, for B ((4, up to the
second order in B R ( r ) obeys the equation

Comparing the expressions for v, (4.10) and (4.14) and
using Eq. (4.4) for a2(p) allows one to relate the correla-
tion parameter to the functions that define the process
p(t),

y=(~,„/B )f f dp'dp f (p')h (p', p)p'p/~0(p') . (4.15)

R = —v, R [v, = (a2(P) )/4]
with the initial condition

R(0)= (cos(P/2)) =1—B /8 .

(4.10)

(4.11)

k(r)=(1 —B'/4)e "'+-'(p'e "'"") . (4.12)

Finally, an interpolation formula that correctly de-
scribes the short- and long-time behavior of the correla-
tion function of the field in the case of small jumps,
B2 (&4, is [cf. Eqs. (3.2) and (4.9)—(4.11)]

This formula has a clear physical meaning. For the KSM
case, Eqs. (2.4) and (2.5), it becomes an identity. For the
general case p& (2.6) is not proportional to p' and a sim-

ple way to get a p-independent correlation parameter is
to average p& over p' (on multiplying it by p' to get an
even function of p') with the weight given by the rate
I/wo(p') of the change from p' to another value of p(t).
On dividing this average by its value for fully correlated
jumps, when h(p', p)=5(p —p'), one gets Eq. (4.15).
Equation (4.15) has all the properties of the correlation
parameter. Indeed, the expression (4.15) assumes the
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values 1, —1, and 0 for the cases of fully correlated, fully
anticorrelated, and uncorrelated [Eq. (4.5) in I] jumps, re-
spectively. For a general case of partially correlated
jumps Eq. (4.15) varies between —1 and 1, being positive
(negative) if successive values of P(t) tend to be of the
same (opposite) sign. Equation (4.15) has a much simpler
form than the definition of y [Eq. (3.4) in paper I] given
in terms of the two-time moment of the random process
P(t). Thus, despite the apparent difference between the
definitions of y in Eq. (4.15) and in paper I, their
equivalence was proved here for y = —1.

decays with a decreasing damping rate which is on the
average of order v, .

The narrow component of the laser spectrum has the
integral intensity (cos (P/2) ) and the effective width vz.
The Fourier transform of Eq. (4.17) yields the following
formula for the wings of the spectrum:

v, 1 sin (P/2)vo(P)
J(a))= + ( a) »v, ) .

~co 2n [coro(P)/2] + 1

(4.18)

B. The effective width of the narrow component of the spectrum

v, B «4
v2 =v, /(cos (P/2)) = '22v, B ))1

(4.16a)

(4.16b)

When B is not small the slow component of the corre-
lation function is generally nonexponential and, accord-
ingly, the narrow component of the spectrum is non-
Lorentzian. The solution cannot be obtained now for the
general case [28]. However, one can find intermediate
asymptotics of the correlation function and the effective
width of the narrow component of the spectrum, as fol-
lows. Inserting R (P, t) =R (P, O) [Eq. (4.6)] into the
right-hand side of Eq. (4.2) and substituting the resulting
solution of Eq. (4.2) into Eq. (4.7), taking account of Eq.
(B12b) and the equality (a, (P) sinP) =(a2(P) cosP),
which follows from the identity (B13), one gets
k ( t )= ( cos (P/2 ) ) ( 1 —v2 t) for r,„/2 « t « 1/v, . Here

C. Large jumps (B »1)

k (t) = f f d130d13f (130)Q(130,P, t) .

For t « 1/v& =~,„/( 1+y ) Q (130,13, t ) can be cast as

(4.19)

As shown above, for large jumps the effective widths of
the broad and narrow components of the field spectrum
are 2/r-2/r, „and 2v„respectively [cf. Eqs. (3.4b) and
(4.16b)]. The narrow component width relative to the
broad one is of order (1+y)B . When the jump size is so
large that (1+y)B & 1 the field dephasing process can-
not be separated into fast and slow stages and Eqs. (4.1)
and (4.2) do not hold. To consider the case of large
jumps irrespective of the value of (1+y)B we proceed
from the exact Eq. (2.10).

Let Q (PQ, P, t) be a solution of Eq. (2.10) with the initial
condition Q(PD, P, O) =5(P—/30). Then Eq. (2.9) for k (t)
can be rewritten as

In particular, for a Gaussian f (I3) (2.4) Eq. (4.16) yields
—B /2

v2 =2v, /( 1+e i ). The formula which describes the
correlation function for short and intermediate times is
[cf. Eq. (3.2)]

k(t) = (sin (P/2)e ' )

+ (cos (P/2) )(I vzt) (v, t «1) . — (4.17)

For long times, v, t ~ 1, the correlation function generally

Q(P„P, t)=Q (P, t)+Q (P, t), (4.20)

where Q+(P, t) [Q (P, t)] as a function of P vanishes
outside a small vicinity of Po ( Pp) ~ The two vicinities
do not overlap, except for very small ~Poi which make an
insignificant contribution into the integral (4.19). Insert-
ing (4.20) into Eq. (2.10) and taking account of the condi-
tions (iii) and (iv) in Sec. II A yields a system of 2 equa-
tions,

Q+ (P, t) = —[Q+ (P, t) e'~ f h (Po,P' ——P)Q ( P', t)dP']/~o(P—O),

Q (P, t) = —[Q ( P, t) e—' f h —(00,'P' P)Q+ (P', t)dg']—/~0(go),

(4.21a)

(4.21b)

with the initial conditions Q+ (P, O) =5(P—Po)
Q (P, O) =0. The solution of Eqs. (4.21) yields (Appendix
D)

Consider two limiting cases of Eq. (4.22).
For moderately large jumps, 1«B «(1+y) ', one

gets

k (t) = (e cosh[H(P)t/ro(P)] ),
where

1/2
H(P) = f h (P;a)e' da

(4.22)

(4.23)

H(P)= [I+i5,(P) 5,(P)/2]'—i =1—5~(P)/4 .

Here 5,(P) was neglected in comparison with 52(P), since

5,(P) -(1+y )B «5,(P) -(1+y )B' .
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Inserting the above expression for H(p) into Eq. (4.22)
yields

[~—5i(p)]'
[27r5,(p)]' ' 25 (p)

(4.28)

(4.24)

The correlation function decays to half its initial value at
a time of order ~ and then tends to zero at a much slower
rate of order (1+y)8 /(2r„). Both stages of the decay
are generally nonexponential with monotonically decreas-
ing decay rates. The spectrum,

a~(P)/2 2/ro(P)
J(co)=- — +

ro +a&(P)/4 ra +4/r~(P't)

(4.25)

consists of two components of the same integral intensi-
ties but significantly different widths. The effective
widths of the narrow and broad components (the first and
second terms, respectively) are correspondingly 2v, and
2/~, as mentioned above.

In the very large jump limit, (1+ y )8 ))1, the charac-
teristic width of h(p;a) as a function of a is much
greater than 1:

5,'"(P)= [a,(P)r,(P)]'"-(1+y )'"8==5»1 .

Hence H(P) =0 and Eq. (4.22) becomes

k ( t ) = ( exp [ t leo(P ) ] ) . — . (4.26)

Equation (4.26) agrees with Eq. (4.33) in I obtained for
the case of large jumps. The spectrum is given by a bell-
shaped line with the effective width 1/w,

1/ro(p)
J(co)=-

ra +1/~0(P) )
(4.27)

This line shape is geometrically similar to that of the
broad component in Eq. (4.25), the width of (4.27) being
equal to half the width of the latter.

The boundary between the above two limits is
(1+y)8 —1, which can be understood in the following
way. The spectrum consists of two components of
significantly different widths, if many highly anticorrelat-
ed phase jumps are needed to randomize the field phase.
Taking into account that 5=(1+y)'~ 8 characterizes the
change of ~p~ in a collision, the region (called the region
E in I) where the correlation function (spectrum) is
characterized by two significantly different damping rates
(widths) is bounded by the conditions y = —1 and
(1+y)8 (&1. For small and intermediate highly an-
ticorrelated jumps, 8 ( 1, the condition (1+y)8 ((1 al-
ways holds, if y= —1, but for B »1 it can fail. If the
jumps are so large that 5=(1+y)'~ 8))1, each phase
jump destroys the coherence of the field. Therefore the
correlation function (4.26) is independent of the correla-
tion parameter y and decays with a rate of the order of
I/r, „(the region C [21] or quasiuncorrelated limit [24]).

The transition between the regions C and E is given by
Eq. (4.22). The spectrum in the case 8 —(1+y) ' is a
bell-shaped line with the effective width 1/~. To get the
results in a more explicit form, consider the example of a
Gaussian h (P;a),

The assumption (4.28) holds, in particular, for the KSM,
but generally Eq. (4.28) does not imply that f (p) is
Gaussian. Inserting Eq. (4.28) into Eq. (4.23) yields
H(P) =exp[i5i(P) —5z(P)/2]. In the first approximation
one can neglect 5i(P) here, on account of the remark be-
fore Eq. (4.24). Then Eq. (4.22) yields

k(t) = (e ' cosh[te ' /ro(p)] ) . (4.29)

The result (4.29) readily implies the above two limits,
Eqs. (4.24) and (4.26). The spectrum now is

277 . +i 2+ [ I + ' 2 ]2/p(p)

For the KSM case, where ro(p)=ro and 5z(p)
=2(1+y)8, Eqs. (4.29) and (4.30) simplify. In particu-
lar [29],

k(t)=e 'cosh[(t/ro)e "+ ' ] . (4.31)

D. Discussion

The present theory allows one to consider also the in-
verse problem of determining the parameters of the
theory from measurements of the field corrrelation func-
tion and/or spectrum, on the assumption that the present
model describes the real situation. Generally speaking,
different information can be extracted for different re-
gimes, as follows. In the case of small phase jumps,
8 ((4, the slow decay rate of k (t) or the HWHM width
of the narrow component of the spectrum provides the
phase diff'usion constant v, =(1+y )8 /r, „[cf. Eqs.
(4.12)—(4.14)]. If, moreover, the jumps are large enough
so that the small, fast decaying component of k (t) or the
broad, weak component of the spectrum [the second
terms in Eqs. (4.12) and (4.13), respectively] can be
resolved, one can obtain the three parameters of the mod-
el: B, p, and 7~~. Indeed, the amplitude and the initial
decay rate of the fast component of k(t) (or the area un-
der and the effective width of the broad component of the
spectrum) equal, respectively, 8 /4 and 2/r, „[cf.Eqs.
(3.2) and (3.4a)], which together with v, provide the
above three parameters. For moderately large jumps,
1 &(8 «(1+y), the efFective widths of the spectral
components [or the initial decay rates of the components
of the correlation function (4.24)] provide 2v, and 2r
[Eqs. (3.4b) and (4.16b)]. In the case of ro(P)=ra=const
the fast component of the correlation function (the broad
component of the spectrum) is exponential (Lorentzian),
V=r„=co, and one obtains (1+y)B, in addition to ro,
but not y and 8 separately. For a general ro(p) the value
(1+y)8 can be found only by order of magnitude. Fi-
nally, for very large jumps, 8 ))(1+y) ', the correla-
tion function and the spectrum provide the parameters
v* = I/r and v, = (ro(p) ) ' which characterize the jump
interval function ro(p), but yield no direct information on
Bor y.
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Thus measurements of the field correlation function or
spectrum provide important information on the statisti-
cal properties of a given noisy source, but this infor-
mation may be incomplete. At the same time, the
nonlinear effects, such as resonance fluorescence
[2,9—11,16,17,19,22,23] and multiphoton resonance phe-
nomena [1,3,5,13,28], are known to be very sensitive to
the field statistics. The interesting problem of nonlinear
effects induced by a field with highly anticorrelated phase
jumps is to be considered elsewhere.

spectively. Consider now the Fourier transform of F(t)
of the form (2.8),

1 oo

S(co)=—Ref F(t)e' 'dt .
0

(A2)

The parameters v* and v, define, respectively, the wings
and the height of S(co),

S (co)= A v*/(rico ) (
~
co

~
))v* ), S(0)= A /(harv, ),

(A3)

V. CONCLUSION

In the case of highly anticorrelated phase jumps
(y = —1) the random process P(t), which underlies the
statistical properties of the stochastic field in the GJM,
has two significantly different memory times, r,„/2 and
r,„/(1+y). In the present paper the field correlation
function and the spectrum were obtained in the general
form for all allowed values of the parameters of the prob-
lem. Two regimes were found. The two-time-scale na-
ture of fiuctuations of P(t) gives rise to a peculiar two-
component structure of the field correlation function and
spectrum in the case of not too large jumps, (1
+y)B «1. The width of the narrow component of the
spectrum is of the order of (1+y )8 /r, „, increasing with
the increase of the characteristic phase jump B and the
correlation parameter y. The width of the broad com-
ponent is of the order of 2/~, „and the relative weight of
the component increases with B. For small B the results
of this paper for the field correlation function and spec-
trum agree with those obtained in paper I. However, the
advantage of the present results is that they express the
quantities of interest directly in terms of the parameters
of the theory, rather than in terms of two-time moments
of P(t), as in paper I. In particular, an explicit expression
for y was obtained. For very large jumps, ( I+y)8 ~ 1,
each phase jurnp destroys the coherence of the field.
Therefore the correlation function and the spectrum are
given by one-component expressions independent of y,
the linewidth being of the order of 1/r, „. The above
peculiar features distinguish the present case from other
models of laser noise.
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APPENDIX A: CHARACTERISTIC LINE&'IDTHS
AND DECAY RATES

APPENDIX B: CONDITIONAL PROBABILITY
FOR HIGHLY ANTICORRELATED

JUMP PROCESS p(r)

The Markovian process P(t) is fully defined if the con-
ditional probability j(fjo;f3, t) to obtain p at t, subject to
P(0) =Po, is known. The conditional probability obeys the
Kolmogorov-Feller equation [21,26]

~j j + fj(p .pi )
~ (P'rP) dpi

Bt ro(P)
' ' ro(P')

(81)

with the initial condition j(Po;P, O) =5(P—Po). As
shown below, in the case of highly anticorrelated phase
jumps the process p(t) has two characteristic times, the
correlation time 1/v&=r, „/2 and the chaotization time
1/v&=(l+y)/r, „.Consider now j(PO', P, t) at two over-
lapping intervals, r «1/v&and r &)r,„.

At t «1/v& the conditional probability is assumed to
be a sum of two components, j+ and j
j(po;p, t)= j+(po, p, t)+j (po, p, t) (v&r «1),
which vanish everywhere, except for the near vicinities of
Po and —Po respectively. The components as functions of
P are assumed not to overlap, which requires that ~PO~ be
much greater than the characteristic jump of ~P,
5=(l+y)'~ 8. Inserting (82) into Eq. (81) and making
use of the conditions (iii) and (iv) in Sec. II A yields the
following system of two equations:

where A =F(0) is the area under the line S(co). For a
Lorentzian line, v* and v, are equal to the HWHM. For
a non-Lorentzian line v' and v, characterize the spectral
width and can be called the effective and characteristic
widths, respectively.

If the decay rate F/F o—f the function F (t) does not
increase with time, as is the case, e.g. , for the time-
dependent term in Eq. (3.2), then the relation v, &v* is
valid, the equality holding only for an exponential decay
and accordingly for a Lorentzian line.

If F(t) is a positive, decreasing function tending to
zero for t ~ ~, its decay rate can be characterized by the
parameters v' and/or v, defined by

v*= —F(0)/F(0), (Ala)

v, =F(0) f F(r)dr . (A lb)
0

Here v* and v, are the initial and average decay rates, re-

Solving Eqs. (83) by Fourier transform with the initial
conditions j+(PO, P, 0)=5(P—Po) and f (Po;P, O) =0
yields
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1 H—(Po,y) 1+H(Po, y)
f(Po;P, t)= f dye '~~ ~ Reexp iypp — +i Imexp iyPp — t (v&t &&1),

2m ro(Pp) ro(Po)

where

H(Po, y)= fdab(Po , a')e

Equation (84) can be simplified by setting

H(P, +) 1 ifii(Pp)g 52(Pp)g /2

in the first term and H (Pp, y) = 1 in the second term of the integrand in (84), which yields

l (P Po+a,—t) (P+Po —a)t)f (Po;P, t) =
i&@ exp — +exp

4(~a, t)'" 4a2t

+ ,' [fi(—P Po—) 5(—P+Po)]e ' '
(vivat «1),

(84)

(85)

(86)

where a„=a„(Po) (n =1,2) [cf. Eq. (4.4)]. This approxi-
mation may introduce an error of order (1+y)'~ B into
the widths of the components of f (Po;P, t), which is of
order of or greater than the widths themselves fort- r(pP )p, but is insignificant for t »rp(Pp). This error
can be neglected for all times when the conditional prob-
ability (86) is used to obtain two-time averages of func-
tions of Po and P with characteristic lengths of change
much greater than (1+y)' B.

For t »r,„a method similar to that applied in [26] to
derive the Fokker-Planck equation can be used [cf. the
derivation of Eqs. (4.55) in paper I] to obtain from (81)
the equation

=Lpf, (87)

f (Po'P t) =
—,
' [[&(P—Po) —&(P+Po) le

+[G(P„P,t)+G( —P„P,t)]j .

Equation (87) has the form of the Fokker-Planck equa-
tion, therefore one can conclude that the Green function
of Eq. (87) G(Po;P, t) tends to f (P) with a relaxation
time of order

B /(a2(P) ) =r,„/(1+y) =1/vIi .

with the initial condition

f (Po,'P, 0)= [&(P—Po)+ &(P+Po) ]/2

Equations (87) and (BS) were derived taking account of
Eq. (4.5) and the fact that the conditional probability is
an even function of P for t »rp(Pp) [cf. Eq. (86)]. One
can check that the solution of (87) approximately equals
(86) in the interval r,„«t « 1/vIi.

An expression for the conditional probability valid for
all t &0 can be written taking account of Eqs. (86)—(88)
as

as follows from Eqs. (4.10) and (4.14). Using Eq. (4.5),
one can show that

G(Pp;P, t)=G( —Po; P, t) . — (811)

Lpf (P) =0 (812b)

Equations (812) can be derived using the definition of Ltt
in (4.3) above and Eq. (2.5b) in paper I. A useful identity
can be inferred from Eq. (812b). Multiplying both sides
of Eq. (812b) by a function of P and integrating over P
by parts yields the identity

(a, (P)g(P) &
=

& a, (P)g'(P) & . (813)

Here g (P) is an arbitrary function, such that ~g (P) ~

in-
creases not too fast for ~P~ ~ ao. Equation (813), like Eq.
(812b), holds approximately for 1+y « 1. Note, howev-
er, that the equality

It follows that the first (second) term in the braces in Eq.
(89) is an odd (even) function of P and does not contrib-
ute to two- and multitime averages of even (odd) func-
tions of P(t). As a consequence, multitime moments and
cumulants of odd (even) functions of P(t) have charac-
teristic decay rates of order 2/r, „[vs=(1+y)/~, „].
Moreover, since the odd component of the conditional
probability (89) is the same as for the GTM case
(y= —1), multitime moments of odd functions of P(t)
approximate those for the GTM. At the same time, due
to Eq. (811), one can replace the conditional probability
f (Po,'P, t) by 6 (Po, P, t) in calculations of multitime mo-
ments of even functions of P( t ).

Consider now some properties of the operator L&.
Since Lti enters the Fokker-Planck equation (4.3), it
should possess the properties of a stochastic operator [cf.
Eqs. (2.2) in paper I],

f dPLtig (P)=0, (812a)

Here we used that &,(P)P) =(.,(P) &, (814)

(.,(P) ) =(1+y)B'/ .„, (810) which follows from Eq. (813) for g (P) =P, is exact. This
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can be shown by inserting the definitions of a i(p) and
az(P) (4.4) into Eq. (814).

obtain the field correlation function k(t) (4.7). Equation
(4.2) is identical to Eq. (Cl) if x =R, V=p, A =0,
Bi,=az(P), and Li,=L+. Hence in the lowest order
Eqs. (C2) and (C5) yield the equation

APPENDIX C: THE GENERALIZED CUMULANT
EXPANSION FOR

ARBITRARY INITIAL CONDITIONS R = —v, R+pz(t) (C7)

In paper I (Appendix A) a projection operator tech-
nique for solution of stochastic and operator differential
equations was reviewed for the case when the initial con-
dition commutes with the projection operator. Here we
review briefly the extension of this technique to the case
of an arbitrary initial condition [27] and then apply the
method to obtain k (t). Consider the equation

x(V, t)=(A +Bi,+Lv)x(V, t), (Cl)

q (t) =pz(t)+ g dt„z dt, p„(t, t„z,, . . . , t i ),
n=3 0

(C3)

where p„(t„„.. . , t, ) is obtained from the totally or-
dered cumulant 8„(t„ i, . . . , ti, 0) defined in I (Appen-
dix A, Sec. 3), by the substitution of the rightmost Bv by
x0( V). In particular,

pz(t)= f fdVdV'B~e 'f(V', V, t)x0(V') Be 'x(0), —

where 3 and B~ are matrices in the vector space of
which x is an element and B~ and L ~ are operators act-
ing on functions of V. Lz is assumed to obey the condi-
tions (i) fLi,g(V)dV=O for an arbitrary g (V), and (ii)

there is a function f ( V) for which Li,f ( V) =0. The ini-
tial condition to Eq. (Cl) is x ( V, O) =x0( V).

Introducing the projection operator P by
P . . =f(V)fdV. . . , one can show that PLi
=L~P =0. The projection operator technique yields for
x(t) =fx( V, t)d Vthe following equation:

x =(A +8)x+f IC(t t')x(t')—dt'+q(t) . (C2)
0

Here 8 = fBi,f (V)dV, K(t) is defined in paper I (Ap-
pendix A, Sec. 3), and

p (t) =
—,', 8'(a, (p) )

f —fdp dp f(p)G(p, p, t)a (p)p . (C8)

The effect of this term in Eq. (C7) can be shown to reduce
approximately to the multiplication of the solution of Eq.
(4.10) by 1+f~z(t')dt'/R(0). The latter term is less
than or of order

f Pz(t')dt'-8 (az(P))/(32v&)-8 l32 . (C9)

This exceeds the accuracy of the present approximation
for k (t). Hence pz(t) can be omitted in Eq. (C7), yielding
Eq. (4.10).

Consider now M (p, t). Equation (C6) yields

5R (p, t)= ,' f f d—p'G(p',p, t t')az(p')f (p'—)

—(az(P))f(P) R(t')dt'

with the initial condition (4.11). The validity condition of
Eq. (C7) is br, « 1 [Eq. (A16) in paper I], where b is the
characteristic perturbation amplitude and ~, is the cumu-
lant decay time. One gets b = ( az(P) ), due to the condi-
tion (ii) in Sec. II A, whereas r, =( I+y )/r, „, since az(P)
is an even function of P [see Eq. (4.5) and remark after
Eq. (811)]. Using Eq. (810), the validity condition of Eq.
(C7) finally becomes 8 «4.

Show now that pz(t) can be omitted in Eq. (C7). In the
lowest order in 8 Eq. (C4) yields

(C4)

where f ( V'; V, t) is the solution of the equation f=Li,f
with the initial condition f ( V'; V, O) =5( V —V') and X(0)
is the initial condition for Eq. (C2),

Hence

+ ,' ff (p0)(p0 8)G(p—0,p, t)dp0 . —

5R, t d =4 dt' t —t' a2 t

(C10)

x (0)= fx0( V)d V . (C5) —8'(az(P)) ]R(t')

+ —,
' [(P'(t)P'(0) ) 8'] . —

(Cl 1)

Here we took into account that in two-time averages of
even functions of p the functions f (p0,'p, t) and G (p0, p, t)
are interchangeable (see Appendix 8). Noticing that the
expressions in the brackets in Eq. (C 1 1) vanish for
v' t « 1 and using Eq. B10, one can estimate that

25R, t d -B4R t .

X f d V'[f ( V'; V, t)Bv f ( V') 8f ( V) ]x ( t')—
+e"'fdV'f (V', V, t)5x(V', 0) . (C6)

Consider now the application of the above technique to

An expression for 6x ( V, t) =x ( V, t) x( t)f ( V) may be-
also of relevance, as in the present paper. The projection
operator technique yields in the lowest order

5x ( V, t) =f dt'e
0
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APPENDIX D: DERIVATION OF EQ. (4.22) FOR k (t)

Multiplying both sides of Eq. (4.21b) by e 'p and
Fourier transforming Eqs. (4.21) yields the following
equations:

U (y t)= —[U (y t)

In Eqs. (Dl) H(Po, y) is given by Eq. (B5). The solution
of Eqs. (D 1) with the initial conditions U+ (y, O)

=exp(iso) and U (y, O) =0 yields,

ti~—,(p, ) t», (HoHi )1/2

U(Pop, t)=e ' ' e 'cosh
&o(po)

H(—Po, y 1)U—(1—y, t)]lro(Po),

U (1 y, t—)= —[U (1 y—, t)

H(P—o,y) U+ (y, t)]l&o(Po), (Dl)

+(H* /H* )' e

0 1
(H«H«)uz

X sinh
ro 0

(D3)

U(p„y, t) =IQ (p„p, t)e'»d p

=U+(X t)+U —(X t) (D2)

for the components U+(g, t) of the Fourier transform of
Q (P(),P, t) (4.20),

Here H„=H (po, g n—) (n =0, 1) and the relation
H*(Po,g)=H(Po, —y) was taken into account. Inserting
Eq. (D3) into the expression k(t)=( U(p, O, t)), which
follows from Eqs. (4.19) and (D2), yields finally Eq. (4.22)
for the correlation function of the field. To derive Eq.
(4.22) we neglected the second term in the square brack-
ets in Eq. (D3) which fast oscillates with po and therefore
yields a negligible contribution to k (t).
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