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Nonlinear analysis of the stick-slip bifurcation in the creep-controlled regime of dry friction

We perform an experimental study of the amplitude and frequency shift of the stick-slip (SS) oscilla-
tions of a paper-on-paper block and spring system close to the SS—steady-sliding Hopf bifurcation. The
confrontation of the experimental results with a weakly nonlinear analytical analysis of the dynamics
and with direct numerical calculations yields very satisfactory agreement with the model of creep-
controlled dry friction proposed by Heslot et al. [Phys. Rev. E 49, 4973 (1994)].

PACS number(s): 05.45.+b, 46.30.pa, 62.20.Hg, 91.30.Px

(3)I. INTRODUCTION

This leads to defining a characteristic "memory" length
[5] Do —found to lie in the micrometer range —such that

In a recent article [1] we reported the results of an ex-
tensive study of the dry friction dynamics of a paper-on-
paper block and spring system (Fig. 1), performed over a
wide range of relevant control parameters, namely, the
imposed velocity V at which the "free" end of the pulling
spring is being driven, the spring stiffness K, and the slid-
er mass M. One of the main results emerging from this
study is the existence, for V less than a few tens of
pms, of low velocity regime in which the friction dy-
namics of paper exhibits the same characteristic features
as already observed on metal [2] and rock [3] systems.
This strongly suggests that, in this regime, the nature of
the dynamics is material independent and thus suscepti-
ble to a generic description. Its main features can be
summarized as follows.

(i) It is in this small-V range that the dynamic friction
coefficient pd, measured in the steady-sliding regime, ex-
hibits velocity weakening. It is well fitted by the func-
tional form

(4)p (r) =pd(D /or)

(iii) The sliding motion changes from oscillatory (the
so-called stick-slip oscillations) at low spring stiffnesses to
steady sliding at large K. The bifurcation between these
two regimes shows the qualitative features of a direct (su-
percritical) Hopf bifurcation controlled, at constant V, by
the ratio E/M of the stiFness K and the slider mass M
(Fig. 2).

(iv) Once the system is rapidly loaded to a level

p;„&p„pulling then being stopped, the shear stress is ob-
served to relax via a slow nonexponential creeplike
motion, the amplitude of which increases as p;„ap-

1x10

pd(V)=a, —b, lnV . Sx1 0

Here and in all the following velocities and times will be
understood to be respectively expressed in pm/s and s.
Thus lengths are expressed in pm.

(ii) On the other hand, due to plastic aging of the mi-
crocontacts under the normal load [4], the static friction
coefficient p, increases with the time of the stick t„as

6x10

4x10

ax10
p, (t„)=a, +b, ln(t„) (2)

00 0and it is found [1,3] that
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K V FIG. 2. Phase diagram in control parameter space ( V, K /M).
Circles indicate the location of the bifurcation from stick-slip to
steady sliding. The straight full line corresponds to a logarith-
mic fit of the data in the creep-dominated regime. For driving
velocities V~50 pms ', the data markedly deviate from this
line, indicating the crossover to the inertia-dominated regime
(see Ref. [1])symbolized by a dashed line.

slider

FICx. 1. Schematic block and spring arrangement. The mass
of the slider is M. The stiffness of the spring is K and its "free"
end is driven at constant velocity V.
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proaches p, from below. The same phenomenon gives
rise, in the stick-slip (SS) regime, to an imperfect stick (a
slow creep accelerating up until the system crosses over
to a rapid inertial slip).

These results have led us [1] to propose a heuristic
model borrowing from the ideas put forth in the pioneer-
ing work of rock mechanicians [6]. It involves two
dynamical variables: a phenomenological contact age 4,
defined so as to account for the idea that the memory
length Do is the average sliding distance for a given set of
contacts to break and be replaced by a fresh, "young"
one—N therefore depends on the slider dynamical
history —and the position x (r) along the pulling direction
of the slid. er center of the mass, assumed to undergo a
noise-activated creep motion in an effective pinning po-
tential resulting from the random locking of the surface
asperities of the slider by the track ones. The height of
the corresponding potential barriers is assumed to in-
crease with the contact age 4 according to a law that is
deduced from the measured pd( V).

We have shown that the predictions that can be de-
duced from this model about the position of the
SS—steady-sliding Hopf bifurcation line in the (K/M, V)
space and the space period of the relaxing oscillations fol-
lowing velocity perturbations in the steady regime are
compatible with our experimental results, while leading
us to modify expression (1) into

pd ( V) =m o +m, ln V+ m 2 ( ln V)

In such a situation, and given the quite drastic
simplifications implicit in our model —in particular the
assumed reducibility of the elastic slider dynamics to a
one degree of freedom description —it is of course desir-
able to get independent checks of the validity of our
framework by comparing further predictions with mea-
sured dynamical characteristics.

From this perspective, we report in this article the re-
sults of the study of the SS—steady-sliding bifurcation in
the weakly nonlinear regime. We study experimentally
the SS amplitude and frequency shift close to the bifurca-
tion, which is shown to be, as already suspected, a direct
Hopf one. We then compare these results with the pre-
dictions obtained from our model. We find the compar-
ison to yield very good agreement, thus providing a much
firmer basis to our proposed description of creep-
controlled dry friction.

II. EXPERIMENT

The experimental setup has been described in Ref. [1].
The system consists of a spring-slider arrangement with a
paper-on-paper interface (Fig. 1). The key interest of this
model system, involving a nonstandard material, is the
high regularity and reproducibility of its dynamic
behavior.

The data reported here correspond to spring stiffnesses
K ranging between 10 and 2X10 Nm ', masses of the
slider M between 0.3 and 3 kg, and driving velocities V
between 0.2 and 50 pms '; this upper limit roughly
marks the crossover to an inertia-dominated regime [1]
(see Fig. 2). The spring elongation is measured within

5X10 pm using an eddy current displacement gauge.
The signal of the transducer is monitored on a numerical
oscilloscope and a spectrum analyzer with averaging fa-
cilities.

In order to analyze the nonlinear behavior of the sys-
tem close to the bifurcation, we measure the amplitude
and the frequency of the stick-slip steady oscillations. As
a complement to our previous study of the linear
behavior, we also measure the decay time of transient os-
cillations following a velocity perturbation in the steady-
sliding regime.

The main source of uncertainty of these measurements
is the "noise" of the system, which originates from inter-
face roughness. Qualitatively, one may distinguish be-
tween the effects of large-scale inhomogeneities of the
track profile, which result in a small drift of the position
of the bifurcation and that of small-scale roughness,
which results, close to the bifurcation in the creep re-
gime, in a narrow-band noise centered at a frequency—V/Do [7]. The corresponding noise amplitude, which
gives a lower limit of the oscillation amplitude when tun-
ing the control parameter into the steady-sliding regime,
is typically on the order of 0.1 pm. This results in a blur-
ring of the onset of the stick-slip regime, which limits the
experimental accuracy close to threshold.

In order to obtain data over a significative range of am-
plitude, we have therefore been led to extend our mea-
surements to large amplitude oscillations (typically 5

pm). Far from threshold, these develop a markedly non-
sinusoidal character up to a ratio of the first harmonic
amplitude to the fundamental of 1:2. In these conditions,
the analytic predictions of the model, based on a small
amplitude asymptotic expansion of the dynamic equa-
tions, cannot be valid over the whole span of experimen-
tal control parameters. Hence we have complemented
the analytic calculation by a numerical resolution of the
dynamic equations using either a fourth-order Runge-
Kutta procedure or an adaptive step-size fifth-order
Cash-Karp Runge-Kutta procedure [8] when the strong
asymmetry of the stick-slip solution makes it more suit-
able.

We now turn towards the experimental results, which
will be compared with theoretical predictions in Sec. IV.
The relevant control parameter in the creep regime is
K/M or, equivalently, the dimensionless number
g=KDo/Mg. The distance to the bifurcation line y, ( V)
on a path at constant velocity V in parameter space is
thus quantified by ~=(1—y/y, ), defined so that stick-
slip occurs when ~)0 and steady sliding when ~ &0. The
results are conveniently expressed in an adimensional
form, using Do as a length scale and the creep time Do/V
as a time scale. We define the "amplitude" g' as half the
peak-to-peak amplitude of the spring oscillations in the
stick-slip regime, divided by Do. The reduced frequency
shift 60/0, =(0—0, )/0, is defined by reference to the
value Q, of the pulsation at threshold and ~ is the ex-
ponential decay time of relaxation oscillations in the
steady-sliding regime, divided by Do/V. Anticipating the
results of the next section, we have plotted ~ '(~), g' (~),
and 5Q(~) for a given value of V, namely, 10 @ms
The results are shown in Figs. 4, 5, and 6, respectively.
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III. WEAKLY NONLINEAR BIFURCATION ANALYSIS

As explained in detail in Ref. [1], in the creep-
controlled regime where the motion of the slider center of
mass occurs via noise-activated jumps over the age-
dependent barriers of the effective pinning potential
biased by the pulling force, our dynamical model reduces
to

Do xN
(Vt —x)=pd +A ln

Mg Do

aL

from which

+c

at

p)at

'-+1
at

where

;n s=a(t)
1

e ' +c c. ,

Xi
=0,

1

(17)

+=1-
Do

(7) X,(V)= —Vi=— dpd( V)

d (ln V)
(18a)

with x(t) the position of the center of mass and 4& the
contact age. The constant A =2N„RT/Mga is propor-
tional to the amplitude of the noise, here assumed to be
of thermal origin. a is the space period of the pinning po-
tential and N„ the number of moles of material involved
in the creep process. In the steady-sliding regime

Q, =y, /A,

u = —[1+(iQ, ) '];
(ii) order e,

(18b)

(18c)

x =xp(t) = Vt +bx„,
4=@p=Dp/V,

with

—Kb,x„=Mgpd( V) .

(9)

(10)
with

X2

Pi+P2 A~'+
2 at

ax,
' at

(19)

We perform the weakly nonlinear analysis of the bifur-
cation towards the stick-slip regime with the help of a
standard multiscale expansion. Namely, we set

d "pd( V)

d(ln V)"
(20)

5x =x —xp= g s"X„(t,T),
n =1

5@=@—C&p= g s"N„(t,T), (12)
D22

with

from which Eq. (17) immediately yields

X2 C22 C2o"+" +D2. 20
(21)

1/2 '", 5X=X—X,(V)
X, ( V)

(13)

where the small expansion parameter, which measures
the distance from the bifurcation line X=X,( V), is
defined as C22

D22

C2o

D2o

=a(T) [L(2iQ, )]

=la(T)l'[L(0)] '

—iO, ,u

—2p, —p
i Q, (u ——u *)

(22a)

(22b)

and the slow time variable

T=c, t, (14)

and (iii) order e, for which the equation for X3 and @3
can be written as

where the c dependence is inferred from the fact that the
linear stability analysis (see below and Ref. [1])yields for
the characteristic oscillation frequency close to the bifur-
cation Q=Q, (1+5Q) with 5Q-5X. We define dimen-
sionless variables and parameters by

aL

where

X3 iQ t
e ' +c.c.

V

+ (nonresonant terms), (23)

x tV — @Vx=, t=
Do Do Do

(15) aa 2 . 3P2+P3
A, =X,au+ A +alai p, (1 iQ, )+—

and will, from now on, drop the tildes on reduced vari-
ables.

Using a/at —+ a/at + c, a/a T and plugging expressions
(11)and (12) into Eqs. (6) and (7), we obtain (i) order e,

22(3P'1+92) aD2p(Pl+82) (24a)

v= (u + 1) +iQ, a"(u *D2—2 —2C22) iQ auD2p, —
aT

(24b)
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and nonresonant terms refers to those with frequency
+3n„which do not resonate with the eigenmodes (+n, )

of L.
In order for Eq. (23) to be solvable it must satisfy the

Fredholm condition, which reduces here to

0.015

0.012

0.009

i.e., to

L, „(in, ) I.„(in, )

L~~(in, ) L~, (in, )
(25) 0.006

0.003

A, +iQ, A v=0 .

Using Eqs. (22), Eq. (26) can be written as 0.005 0.006 0.007 O. OOS 0.009 0.01 0.011

(27)

P2+P3
y3=

2
7 35 =—0, p2

p&+pz+
3 p)

(28)
C

2A +(p, +iAn, )a+(y3+i53)~a~ a=0,
BT

where
FIG. 3. Plot of the ratio y, /0, versus y, for data at various

V and M. The solid line is a 6t with constant parameter A (see
the text).

The solution of Eq. (22) has the form

a( T) =aoe'"

with

(29a)

The value of the parameter A I9] has been determined
from the ratio y, /n, at various velocities V, the constant
K and hence various masses M. The data shown in Fig. 3
are well fitted to the constant A value

A =1.1X10 +2X10
2p& 2+

P2+P3 P2+P3

n, r s, a,'1+
2 0,,

(29b)

(29c)

that is, finally,

5&'"—=sX, (t, T) =icos[(n, +5n)t +p], (30)

where the amplitude g and the frequency shift 5n of the
stick-slip oscillation are given by

We now turn to the determination of the dynamic fric-
tion coeKcient pd(V). The comparison of experimental
results with the predictions of our dynamical model re-
quires the knowledge of the function pd(V). This we
deduce from measurements of friction coefficients and of
the position of the bifurcation line as follows.

(i) The value of b„=b, as obtained from (1) and (2) is

b, =6, = 1.3 X 10 +1X 10 and provides a first ap-
proximation of the mean value (p&) of p&( V) over three
decades of V, namely,

8(y, + A)—K
(P2+P3)

Q, 2y, Q,5Q= —K 1+
3(V~+V3)

(31)
(p, ) = b, = —1.3—X10

(ii) The mean experimental value of dy, /d(lnV) is

0.4

1 p2 p2

pi pl
(32) 0.3

IV. COMPARISON
WITH EXPERIMENTAL RESULTS

0.2

A key parameter for the quantitative analysis of the
model is the memory length Do, which is determined
from the experimental friction laws (1) and (2):

0.1

D0 =exp
a, —a,

1 pm (33)
0.2 0.6 0.8

Since the numerical evaluation of Do involves an ex-
ponentiation, the uncertainty of its value is large and can
be roughly estimated as +0.3 pm. In the following, we
will make use of the value Do = 1 pm.

FIG. 4. Plot of the dimensionless decay rate ~ ' versus the
control parameter a. at given V = 10 pm s '. The dashed
straight line corresponds to the analytical linear prediction of
Eq. (34). The solid curve corresponds to the numerical resolu-
tion of the dynamic equations.
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FIG. 5. Plot of the dimensionless squared amplitude
versus a. for two sets of data at V=10 pms ' (circles and
squares). The dashed straight line corresponds to the analytical
prediction of Eq. (31) and the solid curve to the numerical reso-
lution of the dynamic equations.

FIG. 6. Plot of the dirnensionless frequency shift —5Q/Q,
versus ~ for the same set of data as in Fig. 5. The dashed
straight line corresponds to the analytical prediction of Eq. (32)
and the solid curve to the numerical resolution of the dynamic
equations.

2 X 10 +5 X 10; hence the mean value (p2) of pz( V)

(p, ) =2X lo

(iii) A quadratic fit of y, (ln V) gives a value of 2 X 10
for m3, well below the dispersion and the accuracy of the
experimental data; hence a conservative value for the
mean value (p3) of p3( V) is

Xg

2A
(34)

This is represented by the dashed line of Fig. 4, but, as al-
ready mentioned, since our data range over values of the
reduced parameter ~tc~ as high as 0.8, it is necessary to use
a numerical resolution of the dynamic equations (6) and
(7). The calculated curve (full line in Fig. 4) is in good
agreement with the data over the whole range of ~lc~. The
same agreement is found for values of V ranging from
0.25 to 10 pm s

In view of the relatively high uncertainties of the
values of the key parameters Do, 3, (p, ), (p2), and

(p3), it seems reasonable to test the predictive nonlinear
analysis of the model with this set of values, without fur-
ther adjustment. Since (p2) (((p, ), we can finally use
for pd(V) expression (5) with m, (p, ) and m2=(p, );
as it appears in Eqs. (6) and (7), me =0.4 only acts to shift
the mean slider position and has no effect on the dynam-
ics in the creep regime.

As a first test, we have analyzed the behavior of the re-
laxation time r(tc) with tr(0. The linear analysis [Eq.
(16)] yields

We then test the data g (tr) and (50/Q, )(tr) for x.)0
against expressions (31) and (32). The corresponding
graphs, for V = 10 pm s ', are plotted as dashed lines in
Figs. 5 and 6; full lines are the results of the numerical in-
tegration of (6) and (7). It is seen that while the weakly
nonlinear analytic result provides a good description of
amplitude data up to values of ~ of order 0.2, deviations
due to higher-order nonlinear effects are much more im-
portant for the frequency shift. Again, the agreement ap-
pears quite satisfactory; the same order of agreement is
found for driving velocities V down to 1 pm s

In conclusion, the present analysis provides two in-
dependent checks of the validity of the dynamic model
that we have proposed to describe stick-slip oscillations
in the creep-controlled regime. In view of the crudeness
of our approach, which reduces the description of the dy-
namics of the elastic slider to a single degree of freedom,
this result may seem surprising. We think that it strongly
suggests that the coherence length, which measures the
average size of collective events of rupture of the ran-
domly distributed microcontacts, is comparable, in our
system, to the sample size [10]. The relevance of our
description thus being established, at least for our experi-
mental system, on a quite firm basis, it now seems
justified to use it to explore the low velocity, fully non-
linear dynamics, in the spirit of the work of Gu and
Wong [11]on rock friction, as well as to try to character-
ize in more detail the crossover to the inertia controlled
regime.
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