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Ballistic annihilation kinetics: The case of discrete velocity distributions
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The kinetics of the annihilation process A + 2 ~Bwith ballistic particle motion is investigated when
the distribution of particle velocities is discrete. This discreteness is the source of many intriguing phe-
nomena. In the mean field limit, the densities of different velocity species decay in time with different
power law rates for many initial conditions. For a one-dimensional symmetric system containing parti-
cles with velocity 0 and +1, there is a particular initial state for which the concentrations of all three
species decay as t, where t is the time. For the case of a fast impurity" in a symmetric background
of + and —particles, the impurity survival probability decays as exp( —const Xln t). In a symmetric
four-velocity system in which there are particles with velocities +v i and kv2, there again is a special ini-

tial condition where the two species decay at the same rate t, with a-=0.72. Efficient algorithms are
introduced to perform the large-scale simulations necessary to observe these unusual phenomena clearly.

PACS number(s): 02.50.—r, 82.20.Pm, 03.20.+ i, 05.20.Dd

I. INTRODUCTION

In this article, we describe some intriguing aspects of
the reaction kinetics in single species annihilation
A + A —+S when particles move ballistically with a
discrete distribution of velocities. Unexpected long-time
phenomena occur that depend fundamentally on the form
of the initial velocity distribution. The results discussed
here are complementary to our earlier work on ballistic
annihilation with a continuous distribution of particle ve-
locities [1]. For this latter system, the exponents charac-
terizing the decay of the concentration and the typical ve-
locity depend continuously on the form of the initial ve-
locity distribution. For discrete velocity distributions,
however, the decay kinetics exhibits a fundamentally
richer character with fundamental differences in long-
time behavior for small changes in the initial conditions.

Our investigation is also inspired by earlier work by
Elskens and Frisch and independently Krug and Spohn,
who considered the kinetics of the "two-velocity, " or
"+," model in one dimension [2]. Here the initial veloci-
ty distribution of reactants is

P(u, t =0)=p+5(v —uo)+p 5(u+uo),

with p++p =1. The spatial distribution of reactants
has minimal infIuence on the kinetics as long as the distri-
bution is nonsingular. For convenience, we therefore
consider the distribution to be Poisson in this paper.
When p+ &p, the majority species quickly reaches a
finite asymptotic limit, while the minority density decays
exponentially in time. In the interesting situation where
the initial densities of the two species are equal, the densi-
ty decays as [2]

c (t) ~ Qc (0)/vot

in the long-time limit. This relatively slow decay, com-
pared to the rate equation prediction of t ', stems from
initial density Auctuations. In a region of length L there
will typically be an imbalance of the order of &L in the
number of + and —particles. After a time t—=L has
elapsed, only this initial number difference will remain
within the region. Therefore the local particle number is
proportional to &L and Eq. (1) follows. Thus the system
organizes into domains of like velocity particles whose
typical size grows linearly in time as the reaction
proceeds (Fig. 1).

Consider now a simple and natural generalization to
the three-velocity model [3]. Without loss of generality,
the initial distribution of velocities may be written as

P(v, t =0)=p+5(v —v+)+p 5(u+1)+p&5(v),

with p++p +pa=1. We will primarily focus on the
symmetric case where v+=1 and p+=p =p+. The
space-time evolution of this system in one dimension for
two representative values of (pz, po) is shown in Fig. l.
One of our basic goals is to understand the time depen-
dence of the mobile and stationary concentrations for
different initial conditions. Particularly intriguing is the
transition from a regime where the stationary particles
persist, for po & —,', to a regime where stationary particles
decay more rapidly than the mobile particles, for po & ~.
At a "tricritical" point located at po= —,', the concentra-
tions of both the mobile and stationary species decay as
t ~ [4]. While there is now a theoretical approach to
compute this exponent exactly [5], there is not yet an in-
tuitive understanding of this striking behavior. Another
intriguing facet of this system is the decay of a "fast im-

purity, "
namely, a single particle with velocity +1 in a

system with equal concentrations of 0 and —1 particles.
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of discrete velocity models in the mean field limit. We
first treat the conventional rate equations, which are
based on one-dimensional kinematics. The shortcoming
inherent in the assumption naturally leads us to consider
"constant speed" models and the correct d-dimensional
kinematics. We find a rich kinetic behavior that depends
on the ratios of initial concentrations, the particle radii,
and the speeds of the different species. In Sec. IV we
study the kinetics of one-dimensional systems. Given the
subtle nature of many of our observations, relatively
eKcient and specialized algorithms were developed to
provide sufficient data to determine the long-time
behavior with confidence. For the symmetric three-
velocity model, we investigate in detail the t decay
associated with the tricritical point and the
exp( —constXln t) decay of the fast impurity problem.
We then consider the kinetics of the symmetric four-
velocity model, once again concentrating on the mul-
ticritical behavior associated with the initial condition
where both the fast and the slow particles decay at the
same rate.

4000— II. MEAN FIELD THEORY
WITH ONE-DIMENSIONAL KINEMATICS

2000— A. The three-velocity model

0—
2000 4000 6000 8000

By considering the dominant contributions to the impuri-
ty survival probability, we find that this quantity decays
asymptotically as exp( —const Xln t).

Another class of interesting behavior is exemplified by
the symmetric four-velocity model with initial velocity
distribution

P(u, t =0)=p, (5(u —u, )+5(u+u, ))

+@2(6(u —v2)+5(v +u2)), (3)

with v2 & v, and p, +@2= 1. According to the rate equa-

tions, the more mobile species decays as t ' ' while the
less mobile one decays as t ', independent of the initial
concentrations. In one dimension, however, either the
slower or the faster particles dominate in the long-time
limit, depending on their relative initial concentrations.
At a critical value of p, /p2, which depends on v i /v2, nu-
merical simulations indicate that both species decay ast, with a -=0.72. We shall also argue that systems with
symmetric velocity distributions with n & 4 components
exhibit behavior that is characteristic of either the three-
velocity model, if n is odd, or the four-velocity model, if n
is even. Thus we focus primarily on three- and four-
velocity models as the simplest in the family of symmetric
discrete velocity models.

In Secs. II and III we discuss the annihilation kinetics

FIG. 1. Space-time representation of particle trajectories in
the symmetric two- and three-velocity models, where particles
move with velocity 0 or +1. Shown are (a) go =0.0, p+ =0.50
and (b) p0=0. 25, p+ =0.375.

The mean-field rate equations for the three-velocity
Inodel are deceptively simple, but lead to relatively com-
plex behavior. For symmetric velocity distribution, the
rate equations for the concentrations of the left-moving,
right-moving, and stationary species, c (t), c+(t), and
cp(t), respectively, are

Cp = —Cp(C+ +C ),
c+ = c+(cp+2c ),
C = C (Cp+2C+ )

(4)

where the overdot denotes time derivative. The numeri-
cal factors of 2 reflect the fact that the rate of a + —col-
lision is twice that of +0 or —0 collisions, if we assume
that particles move only in one dimension. It is in this
spirit that the above rate equations are referred to as
mean field theory with one-dimensional kinetics. A more
complete approach that incorporates d-dimensional kine-
matics will be outlined in Sec. III.

To solve these equations, it is helpful to rewrite the
rate equations in terms of g=(c++c )/cp and
P—:(c+ —c )/cp and the modified time dx =cpdt. This
gives

0'+0=0' 0'+0=4'0 (5)

from which it is evident that 4 —W =const=a &0.
Thus the equation of motion for 4 becomes
4'= e "(4 —a ), with the solution

where the prime denotes differentiation with respect to x.
Use of the integrating factors V=ge" and @=Pe" sim-
plify these equations to

% '=4'e, 4 '=4% e
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%(y) =a coth coth %(0) —ay
ticles given by

—2c ~ (0)/co(0)
cp( oo ) =cp(0)e

where we have introduced the timelike variable
dy =e "dx, with y = 1 —e a monotone increasing
function of t.

To classify the long-time behavior, consider the rela-
tive composition triangle p++p +p0=1. As indicated
in Fig. 2, a given initial condition typically evolves to a
"phase" where only a single species persists in the long-
time limit. Consider first the stationary, or "0," phase
cp( ~ ) )0. From the definitions of x and y, the condition
cp( ~ ) )0 implies that y —1 —e "as t ~ ~, which leads
to i( -e ". Thus the concentrations of the mobile
species decay exponentially in time in the 0 phase. In-
terestingly, for p+ =p stationary particles persist even
if the initial concentration of stationary particles becomes
small. However, the width of this phase becomes vanish-
ingly small in this 1imit. To determine this width, note,
from Eq. (4), that on the boundary where the densities of
the stationary and positive particles decay at the same
rate, the asymptotic solutions of the rate equations are
c+,cp~ 1/t, while c —1/t . Thus the boundary be-
tween the 0 and + phases can be identified by the ratio g
approaching a finite limit as t ~ Do. Since 1 —y ap-
proaches 0 as t —+ oo, a finite limiting value for g=e
requires that the argument of the hyperbolic cotangent in
Eq. (7) goes to zero. One thereby finds that the width of
the 0 phase region vanishes as exp[ —1/cp(0)] as
cp(0) —+0.

For the symmetric system, a detailed computation
gives the asymptotics

Thus, while a residue of stationary particles always per-
sists, their concentration is astronomically small if the in-
itial concentration of stationaries is small.

For the asymmetric three-velocity model, the corre-
sponding rate equations are

cp cp(uc+ +c )

c+ = —c+ [ucp+(1+u)c ],
c = —c [cp+(1+u)c+ ] .

(10)

While we are unable to solve these equations, we can
readily find the asymptotic behavior. In the 0 phase, the
rate equations for the mobile particles have the asymptot-—~ve, (~) —tCO( oo3
ic solutions c+(t)—e and c (t)-e . Simi-
lar exponential decays characterize the behavior of the
minority species in the other two phases. On the separa-
trices, however, two species decay at the same rate while
the minority species decays faster. For example, on the
separatrix between the 0 and + phases, one has
cp-c+ ))c . Substituting this into Eq. (10) yields the
asymptotic solution c+,cp=1/ut, while c -t
Similarly, on the separatrix between the 0 and —phasesc,cp =1/t and c+ t-

The long-time persistence of stationary particles also
occurs in a general (2m +1)-component model with ve-
locities 0= v0 & v1 « . v and corresponding concen-
trations cp(t), c, (t), . . . , c (t). The rate equations for
these concentrations are

—co( oo )tc+ —
—,'cp( m )G(A, )e

(8)
Cp = 2Cp g UJC&

J=1
cp(t)-cp( ~ )exp[6(A, )e ' ],

with G(A)=exp[ f, (dz/z)e '—f '(dz/z)(1 —e ')],
~=2c+(0)/cp(0), and the final density of stationary par-

Pp

k —1 m

Ck
— Cpck Vk 2Ck Uk g C~ + g UJC~.

j=1 j=k

»«oducing x = fpdt'c, (t') and the dimensionless con-
centrations pk =ck/cp, we obtain a closed system of
equations for pk(x) and an additional equation for cp(x)

d 1npk

dx

d lnc0

dX

k —1

u„—2 g (v„——u, )P, , k =1, . . . , m,
j=1

(12)

FIG. 2. Phase diagram of the symmetric three-velocity model
in the mean field limit within the relative compositon triangle
defined by triangular region p+ +p +po = 1. The regions
marked by +, —,and 0 are phases where only positive, nega-
tive, or stationary particles, respectively, persist in the long-time
limit. Along the boundaries between +0 or —0, the concentra-
tions of the two competing species decay as t ', while the
minority species decays as t . The width of the 0 phase region
is vanishingly small as p0~0.

which immediately leads to the lower bound for final den-
sity of stationary particles

cp( ~ ) )cp(0)exp
m

g cj(0)
cp 0

(14)

Since vk ) uj for k )j, the first of Eqs. (12) gives
Ukx

Pi, (x) ~gk(0)e . Substituting-these into the equation
for c0 yields

c,(x) P7l

ln ) —2+/(0)(1 —e ' ),
cp(0)
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For the three-velocity case this bound is exact and coin-
cides with Eq. (9). Thus stationary particles always sur-
vive in the symmetric (2m +1)-velocity model, although
the final residue is vanishingly small when their initial
concentration is small.

ity in a background of particles moving at the same
speed. From this, the general mean field theory follows
naturally.

A. The impurity limit

B. The four-velocity model

For the symmetric four-velocity model, denote by c,
and cz the concentrations of species with velocities +U1
and +U2, respectively. Without loss of generality, let
U2) U, and set U1=1, v2=U. The rate equations for this
system are

Let background particles of radii R move with identi-
cal velocities v, which are uniformly distributed in angle,
i.e., P(v, t =0)=5(~v~ —uo). If we temporarily neglect
the annihilation events among background particles, then
by an elementary mean free path argument, the
(infinitesimal) concentration of the impurity species with
radius RI varies as

c1 = 2c 1 2Uc1c2& c2 = 2Ucg 2Uc1cg (15) cr cr cu Q—a —i(R +Rr ) ~

with the asymptotic solution

c,(t)-t ', c,(t)-t (16)

Thus the faster species decays nonuniversally as t
This asymptoti. c behavior is reached only at very long
times, however, when the initial velocities are nearly
identical. Essentially the same equations were solved in
the context of heterogeneous diffusive single-species an-
nihilation in which particles have different diffusion
coefficients [6].

Analogous behavior occurs in the symmetric 2m-
velocity model with concentrations c, (t), . . . , c (t) and
speeds +U, with U1 & . (U . The rate equations are

k —1 Pl

ck= 2ck Uk g cr+ g vrcr. (17)
j=1 j=k

Introducing now x =2fodt'c, (t') and Pk =ck/c„P,
—= 1, we obtain

d lnpk = —g (Uk
—U. )pr, 2 ~ k ~ m,

j=1
d lnc1

dx

where Qz, (R) is the volume of a sphere of radius R in
d —1 dimensions.

If the impurity moves with velocity w, then the decay
rate must be averaged overall directions of relative veloci-
ties v —w. This leads to

cr = —crcvQ& i(R +Rr)

f d8(sin8)" '+I+e +2ecos8
X f d 0(sin8)

0

crcv Q&—,(R +Rr )V(e) (21)

with e=w/u. To find the impurity concentration cr we
must first determine the background concentration c.
Since a background particle can be considered as an im-
purity of radius R moving with velocity U, we apply Eq.
(21) to obtain c = —c UQ& i(2R)9'(1), with the asymp-
totic solution c(t)—[uQ& i(2R)V(l)t] . Using this in

Eq. (21) gives

Qq i(R +Rr )V(e)cr-t with a=a(Rr, e)= . (22)
Qg , 2R 1

For example, when there is a stationary particle in a uni-—aO(d)
form background of moving particles, cr —t ', with

(19)

Thus a more mobile species k decays nonuniversally with
an associated exponent equal to the velocity ratio vk /U1.

As in the (2m +1)-velocity model, one can straightfor-
wardly derive Pk(x) ~gk(0)e " ' . This, together
with the equation for c, and the relation P, —= 1, shows

ViX
that c1-e . Combining this result with the definition
of x proves that x —+ao as t~~. It therefore follows—(va —v, ]x
that in the long-time limit Pk(x)-e " ' . Reexpress-
ing this in terms of c (t) leads to.

—vz!c,-t, c2-t

I ( —,')I (d —
—,')

ao(d) = P(0) /V(1) =
2 'r (d/2)

(23)

and I is the gamma function. Note that ao(d) is rational
for odd dimensions and transcendental for even dimen-
sions: ao(l)=1, ao(2)=~/4, ao(3)= —,', etc. Interesting-
ly, ao(0O )=1/&2, which can be understood by noting
that in the limit d —+ ~, two arbitrary particles always
move orthogonally with relative velocity U&2. The ex-
pression for ao( ~ ) [~. (22)] essentially involves the in-
verse of this factor.

III. MEAN FIELD THEORY
WITH D-DIMENSIONAL KINEMATICS

We now generalize the rate equations to account for
d-dimensional kinematics. This should be viewed as the
"true" mean field theory of ballistic annihilation. It is
convenient to consider first the kinetics of a single impur-

B. Stationary and moving species

Consider now the d-dimensional analog of the sym-
metric three-velocity model in which there is a finite ini-
tial conceIitration of stationary particles of radii R0 and
mobile particles of radii R all moving with speeds U. The
appropriate rate equations for the corresponding concen-
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c= uQ~ ](R +Ro)coc

c=—uQ& &(R+Ro)[coc+Azc ], (24)

where A& = V(1)Q& &(2R)/Q&, (R +Ro). Introduc-
ing the modified time variable T =uQ&, (R +Ra)
X jodt'c (r') gives the linear equations

«0 dc
0 g~ O d (25)

trations co(t) and c (t) are similar to those for the above
impurity limit except that one must account for the
inAuence of stationary particles on moving particles. The
rate equations become [compare with Eqs. (4) with
C+=C ]

that depend on the relative magnitudes of p and v:

c,(t)-t ', cz(t)-t ", 1&v&@,

c,(t)-t "i, c,(r)-t ', v&p, &1,
ci(t)-t ', cz(t)-t ', v&@& 1, @&1&v .

(30)

In the two remaining cases of 1 & v &p and v & 1 &p the
asymptotic behavior depends also on initial concentra-
tions. The first and the second asymptotics are realized
when (p —1)/(p —v) &&c2(0)/c, (0), respectively, while
the third asymptotics occurs if (p —1)/(p —v)=c2(0)/
c, (0). Parenthetically, for an arbitrary number of mobile
species of equal radii in three dimensions, a similar
analysis gives

which can be readily solved to give

co(T) =co(0)e
-T ~dT

c ( T)=c (0)e —co(0)dT 8 —8
(26)

U) 3vj
c (t)-t ', p. = +j 4U. 4Uj 1

(31)

where u
&

is the smallest velocity (therefore, p&
—=1). Thus

the least mobile species decays as t ', while the more
mobile species decay nonuniversally.

For A, &
~ 1, the concentration of the mobile species de-

cays exponentially in real time t while stationary particles
always persist:

co( oo ) =co(0) 1+(A& —1)
c(0)
co(0)

—1/(A, —1)d

(27)

For k& &1, there are three different regimes. For small
initial concentration of mobile species c(0) & 1/(2 —kz),
the density of moving particles decays exponentially in
time, while stationary particles persist with a residue still
given by Eq. (27). At the critical point c (0)= 1/(2 —X&)
and co(0)=(1—Az)/(2 —A&), both species decay as t
Finally, for c(0) & 1/(2 —Az), both species decay as dis-—1/A, dtinct power laws in time: c(t)-t '»co(t)-t
(Amusingly, these same three qualitative regimes occur in
the one-dimensional three-velocity system. ) For example,
in three dimensions, A,3=&24[2R/(R +Ro)]; hence the
threshold between different behaviors A, 3=1 occurs when

Ro/R —=3.42673. Thus the stationary particles always
persist if their relative size is small Ro/R 3.42673,
while for R0/R & 3.426 73 stationary particles may
disappear if their initial concentration is small enough.

IV. KINETICS IN ONE DIMENSION

A. Geometric approach
for the symmetric two-velocity model

For completeness and to provide a framework to dis-
cuss the three- and four-velocity models, we first give a
geometric derivation for the decay of the concentration
in the two-velocity or + model when the initial concen-
trations of the two species are equal. This approach is
based on the equivalence between the kinetics of the par-
ticle system and the smoothing of one-dimensional
stepped interface (Fig. 3). In this mapping, a right-
moving particle in the + model is equivalent to an "up"
step in the corresponding interface. This up step moves
to the right at the same speed as the initial particle. Simi-
larly, a left-moving particle is equivalent to a left-moving
"down" interface step. An annihilation event in the par-

C. The two-speed model

For the d-dimensional two-speed model, with c,R,
and U the concentration, radius, and speed of the jth
species, j= 1,2, with e= u

& /u2 & 1, the rate equations are

C] = C
& pC]C2& C2 = pC]C2 VC2 (28)

where we have set u, Q&, (2R, )9'(1)=1 by rescaling the
time and have introduced

( Q~ )(R)+R2) p(e) ) Qg )(R2)
@=6 v=E

Qq, (2R, ) P(1) Qg, (R ) )

(29)

Equations (28) give rise to three asymptotic behaviors

FIG. 3. Equivalence between the time evolution of the two-
velocity model and a one-dimensional "wedding cake" interface.
The collision partner of the initial particle is indicated in both
the particle and the interface representations by the small ar-
rows.
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(2n )!
n!(n +1)! (32)

Asymptotically, this collision probability varies as n
as n —+ ~. Consequently, the probability that the initial
particle survives potential encounters up to the 2nth
neighbor S„=—1 g„&„—f„ leads to a survival probability
that decays as S„-n '~, or c(t) —t '~ in the continu-
um limit.

B. The three-velocity model

ticle system corresponds to the disappearance of a tier in
the interface. Clearly, the collision partner of a given up
step is the first down step to the right, which is at the
same height as the initial step.

Since up and down steps are uncorrelated and occur
with equal probability, the probability f„ that the initial
up step (defined to be particle 0) collides with its
(2n +1)st neighbor is exactly equal to the first passage
probability for a random walk to return to the origin at
2n +2 steps. Thus the initial right-moving particle an-
nihilates with a left-moving (2n + 1)st particle with prob-
ability [7]

determined up to and including the collision time of the
initial left-moving particle. Right-moving or stationary
particles for which the collision time is determined are
then removed from the stack. From the stored array of
collision times one determines c+(r) and co(t) by count-
ing the number of particles of a given species that survive
at that time.

With this method we simulated 5 X 10 particles to 10
time steps in approximately 30 CPU s on a DEC/AXP
3000/400 computer workstation. Our numerical results
are typically based on 100 realizations at each initial con-
centration. These simulations reveal the following basic
results (Fig. 4): For pa (—,', co(t)- lit and c+ (t) —t
The crossover to the asymptotic behavior becomes pro-
gressively more gradual as p0~ 4 from below and there is
a substantial time range for which c+(t) and co(t) decay
at nearly the same rate before the final asymptotics is
reached. (This is the primary reason for the erroneously
reported nonuniversal behavior based on data from direct
and much less extensive molecular dynamics simulations
[1].) Exactly at po= —,', the data indicate that both c+(t)
and ca(t) decay as t, where extrapolations of local
slopes of neighboring points in Fig. 4(b) give a-=0. 665

For the three-velocity model, there does not appear to
be a similar geometric construction to help determine the
kinetics. We therefore resort to qualitative arguments, as
well as numerical simulations, to determine the long-time
behavior. In one dimension, we expect the kinetics to be
different from mean field predictions because of the ten-
dency of like velocity particles to cluster, as observed in
space-time graphs (Fig. 1). For concreteness, we focus
on the symmetric system where p+ =p =—p+ and first
investigate whether stationary particles persist for any
value of p0 by numerical simulations. Because of subtle
crossover effects, a direct molecular dynamics approach
is inadequate to yield accurate results and we therefore
developed a more e%cient approach in which all collision
partners and corresponding collision times are identified
at the outset.

In this algorithm, stationary or right-moving particles
are placed on a stack (first in, last out) as they are initially
created. When a left-moving particle is created, its col-
lision partner is determined immediately, since this
partner is necessarily one of the particles from the al-
ready existing stack. (There is a particular case in which
a negative velocity particle is deposited when the stack is
empty. This exits the system, since free boundary condi-
tions are employed. To ensure that this effect does not
give spurious results, only particles from the middle half
of the system are considered. ) The determination of the
collision partner of the left-moving particle is accom-
plished by straightforward comparisons. If the upper-
most particle on the stack moves to the right, then it is
the collision partner and the collision time is recorded.
On the other hand, if the "last" particle on the stack has
zero velocity, one must compare the collision time be-
tween this last particle on the stack and the left-moving
particle, and the collision time between the last particle
with "earlier" outgoing particles from the stack. All col-
lision partners and corresponding collision times are
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FIG. 4. Representative simulation results for the symmetric
three-velocity in one dimension. Shown are double logarithmic
plots of c+(t) (+), c (t) (V), and co(t) {o) versus t for (a)
p0=0. 10, p~ =0.45 and (b) at the tricritical point
po =0.25, p~ =0.375. Each successive data point represents an
increase in t by a factor of 1.2.
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p+
P0

P+ —upp/(1+ u) = 1+0
pp/(1+u)

P + p —pp/(1+u)
Pp+ upp/(1+ u)

(33)
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(Fig. 5). When the time difference between these points is
the factor 1.2 '=46, a smooth sequence of local ex-
ponents is obtained. However, similar results are ob-
tained for di6'erent choices of time delay factors. The
trend in the local exponents suggests, in fact, that a =

3 a
result that has now been obtained by an exact calculation
[5]. Additionally, we estimate the relative amplitude
c+(r)/cp(t) —= 1.17. For pp ) 4, cp(t) saturates to a finite

limiting value that appears to be proportional to
(pp —

—,'), while c+(t) decays faster than a power law in

time. Based on these results, the phase diagram shown in
Fig. 6 is inferred.

The location of the tricritical point, where all three
species decay at the same rate, may be found by the fol-
lowing heuristic argument [8]. Since half the stationary
particles react with + particles, the fraction of + parti-
cles available to react with — particles is simply

p+ —
—,'p0. This is proportional to the number of + —an-

nihilation events per unit length P+ . Similarly, the rel-
ative number P0 of 0—annihilation events per unit
length is equal to —,'p0. Now we assume that
P+ /P0 =2, based on the expectation that the relative
number of annihilation events is proportional to the rela-
tive velocities of the collision partners. Combining the
resulting relation p+ —

—,'p0=p0 with the normalization
condition 2p+ +p0 =1, we find the location of the tricrit-
ical point to be p0= —,',p+ =p

It is straightforward to generalize this argument to the
asymmetric velocity distribution (+u, 0, —1). Since the
++ —symmetry is now broken, we must consider sepa-
rately the ratios P+ /Pp and P + /Pp+. Following
the same considerations as in the symmetric case, these
reaction numbers are

FIG. 6. Phase diagram of the symmetric three-velocity model
in one dimension. Along the dashed line, c~(t)-t ', while
co(t)-t . At the tricritical point {0),all species decay as
t '. Along the solid lines, the nature of the decay is un-

known, except very close to the extrema which correspond to
the "fast impurity" problem (see the text).

Together with the normalization condition, we find, for
the initial concentrations at the tricritical point,

1 1 U 1 1
p0= —,p+ =—1+, p =—1+4' 4 1+U ' 4 1+0

(34)

While Eq. (34) involves uncontrolled approximations,
especially since symmetry considerations no longer apply,
it is relatively accurate. For example, simulations with
U =2 suggest that the tricritical point is located at p0 =—,',
and p+ =0.402, compared to p+ =

—,', =0.416 from Eq.
(34). Generally when u varies from 0 to oo, the tricritical
point moves along the straight line parallel to the base of
the composition triangle. At the extreme limits of v =0
and ~ the three-velocity model degenerates to the two-
velocity model for which we know that Eq. (34) is exact.
The available numerical evidence also supports the ap-
parent general equality p0 =

—,'. Another interesting ques-
tion in the general asymmetric case is whether the three
coexistence curves really coalesce at one point or whether
there is an open region where all concentrations decay at
a similar rate. Numerics cannot answer such a question
definitely, but the evidence appears to favor the hy-
pothesis of one single tricritical point where all three
coexistence lines merge.

Numerical results also suggest that near the tricritical
point of the symmetric model p0= —,', p+ =

—,', the long-
time kinetics depends on a single scaling variable g= th,
where A=p0 —

—,
' is assumed to be small. The scaling as-

sumption for the concentrations gives

-0.68
0.00 0.05

1/t

0.10

cp(r, b, )-r '~'Pp(tb, '),
c+(t, b, )-t '"P~(th'),

(35)

FIG. 5. Local exponents for C(t):—c+(t)+c (t) {+)and
c,(t) (o) versus 1/t at the tricritical point. These exponents
are based on the slopes of points whose time di6'erence is the
factor v.= 1.2 ' =46 from the data of Fig. 4(b).

with Cp(g) and C ~(g) finite at /=0 to reproduce the
t decay at the tricritical point. This implies that
cp(t, b, )-b, , as is observed numerically. For 6(0 the
scaling predictions agree with simulations if
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& (g)-( —g) ' ' d & (g)-( —g)' ' as
Thus scaling provides the 6 dependence of the asymptot-
ic behavior for 6&0, namely, co(t)-(tb) ' and
c+(t) —(6/t)' . Additionally, the crossover time from
tricritical behavior to the final asymptotics scales as 6

Since the concentration of stationary particles satu-
rates to a finite value for 6)0, Co(g') —g as g —+ ~. In
this regime, c+(t) will eventually decay rapidly, presum-
ably exponentially, leading to a similar decay of C+(g) as
g~ &n. This has a remarkable consequence for the spa-
tial distribution of immobile particles. Since the cross-
over time is of order 6, c+(t) should decay asymptoti-
cally as exp( —th ). The residual concentration of the im-
mobile particles, however, goes as 6 . The two facts ap-
pear contradictory, since the decay law for c+(t) implies
that immobile-free intervals of length of order 6 must
be reasonably frequent. The resolution of this difhculty is
presumably that immobile particles are distributed on a
fractal set on length scales up to 6 . A consistent value
for the fractal dimension of this set is —,, since this value
indeed implies that there are 5 ' particles in an interval
of length 6 . This observation has been verified numer-
ically.

C. The impurity limit of the three-velocity model

When the concentration of one species is negligible
while the other two species have equal concentrations, it
is possible to determine the asymptotic survival probabili-
ty of the impurity. " These results are worth emphasiz-
ing both for methodological interest and because of their
unusual nature. First consider a stationary impurity in a
background of + particles. By the mutual annihilation of
+ particles, their density decays as c+(t)-t '~ On the.
other hand, a stationary particle survives only if it is not
annihilated by particles incident from either direction.
Since each of these two events is independent, it follows
that co(t)-[c+(t)] —t ' in the limit po«p+. This
same argument continues to apply if the impurities are
"slow, " i.e., their velocity w satisfies

~
w~ & 1. The full sur-

vival probability is again a product of single-sided sur-
vival probabilities, each of which decays as I;

More precisely, suppose that the impurity starts at the
origin with velocity m and that there is a Poisson distri-
bution of initial separations of the background particles.
The impurity survival probability at time t, S ( t, w),
equals the product of left- and right-sided survival proba-
bilities S (t, w)S+(t, w). Since S (t, w)—=S+(t, —w), we
only need to compute S+(t, w) This one-sid. ed survival
probability is given by

271

P(x2„+i ) (1+w)t)= f e 'dz .
(i+~)f (2n)!

Combining Eqs. (32), (36), and (37) yields [9]

(37)

S+(t, w)=1 —f e 'I, (z)

=e " ""[Io((1+w)t)+I,((1+w)t)] . (38)

(39)

in agreement with the rough argument given above.
Particularly intriguing behavior occurs in the comple-

mentary "fast" impurity limit with a vanishingly small
initial concentration of + impurities in a background of
equal concentrations of —and 0 particles. By a Galilean
transformation, this system can be viewed as an impurity
of velocity +3 in a + —background. More generally,
we consider the decay of a fast impurity with speed
~w~ ) 1 in a + —background. An asymptotic argument
suggests that this survival probability decays slower than
an exponential but faster than a power law in time.

The basis of this argument is to consider a subset of
configurations that gives the dominant contribution to
the impurity survival probability, but is suKciently sim-
ple to evaluate. For the impurity to survive to time t, the
background + particles must annihilate among them-
selves up to this time. On a space-time diagram, these
self-annihilation events appear as a sequence of isosceles
triangles that do not extend to the world line of the im-
purity. We posit that the dominant contribution to the
survival probability stems from a sequence of systemati-
cally larger self-annihilation triangles that just miss the
impurity world line (Fig. 7). From basic geometry, the
base of the nth triangle x„equals xoP", with
13=(w +1)/(w —1). Here the separation between suc-
cessive triangles is neglected, an approximation that is
valid as the number (and size) of the triangles becomes
large. Under this assumption of abutting triangles, the

where I, is the modified Bessel function. Thus the com-
plete survival probability is

S(t,w)=e '[Io((1+w)t)+I, ((1+w)t)]

X [Io((1—w)t)+I, ((1—w)t )]

S+(t,w)= g f„P(x2„+,)(1+w)t) .
n=0

This is simply the sum over all collisions partners of the
probability that the collision time between the impurity
and each of its potential collision partners is greater than
t. For a Poisson distribution of interparticle separations
with unit density, the probability that left-moving
(2n + l)st particle is located at xz„+,) (1+w)t is

2x) 2x 2x

FIG. 7. World line of a fast impurity in a background of
equal concentrations of background + particles. Successive tri-
angles of self-annihilating background particles are indicated.



BALLISTIC ANNIHILATION KINETICS: THE CASE OF. . . 3985

number of such triangles that comprise the self-
annihilation sequence up to time t is X=ln(t/xo )/InP.

By construction, collision partners in the background
define the sides of an individual self-annihilation triangle
that encloses more local self-annihilation events. If these
collision partners are separated by a distance x„, the ex-
istence probability of the self-annihilation triangle is
(x„/xo) ~ as n ~ 0O. The impurity survival probabili-
ty S(t) is therefore the product of occurrence probabili-
ties for the sequence of self-annihilation triangles up to
time t, leading to

S (t) —g(2xog")

~p —3N /4

-exp[ —ln (t/xo)/~4lnP] . (40)
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FICx. 8. Plot of the survival probability of a fast impurity.
Shown is 1nS(t) versus 1n (t)/ln)t) for tu —1=0.0005, 0.001, and
0.002 (+,8, and X, respectively).

This result should be accurate when the number of self-
annihilation triangles is large, a situation that occurs
when w 1. In this limit, it is impractical to directly
simulate the large systems needed to confirm the above
prediction. We have therefore written a program that
tracks only the impurity and the potential collision
partners at any given stage of the reaction. Particles that
are part of local self-annihilation events need not, and are
not considered, leading to negligible CPU requirements.
With this method we have simulated 10 realizations of
an impurity with w as small as 1.0002. In this case, the
mean impurity lifetime is approximately 340, but there
are a few configurations with substantially longer life-
times. For w & 1.005, a plot of the logarithm of the sur-
vival probability versus z =ln (t)/InP exhibits good data
collapse and relatively linear behavior over a substantial
range (Fig. 8).

From S(t) given in Eq. (40), the mean impurity lifetime
(t ) =I S(t')dt' is readily computed to be proportional
to [(w+1)/(w —1)] . While this is in excellent agree-
ment with numerical results, the use of the asymptotic
form for S(t) even for t of order unity in the integral for
(t) has yet to be justified. One additional amusing

feature is that for w~1+, the probability that the im-
purity annihilates with a right-moving particle vanishes
as (w —1)'~ . When w =1, the impurity becomes one of
the right-moving background particles, which can only
annihilate with left-moving particles.

D. The four-velocity model

We focus on the symmetric system with particles of ve-
locities +u& and +u2 and relative concentrations p, /2
and p2/2, respectively. According to the mean field
description, the more rapid particles disappear more
quickly for any p &,p 2 & 0. However, we find three re-
gimes of behavior in one dimension (Fig. 9). Depending
on @=u, /uz, there is a critical value p*, (E) such that for
p& &p*, (e), c,(t)-t ', while c2(t)-t '~ . The cross-
over to these asymptotic behaviors sets at progressively
later times as p, approaches p; (e) from below. The con-
verse behavior occurs for p, )p', (e). Roughly speaking,
in these two cases the system reduces to the two-velocity
model as the minority species disappears. However,
when p, =p f (E) both species decay at the same rate.
Based on extensive simulations, this decay appears to be a
power law t, with a=0.72+0.01 (Fig. 9). This value is
obtained by performing a least-squares fit to the data on a
double logarithmic scale in the time range where linear
behavior is most evident, typically for 10 ~ t ~ 10 . The
error estimate is based on the variation of the exponent
values for systems with p, within 0.01 of the critical
value.

For detecting this power law behavior, direct molecu-
lar dynamics is once again inadequate. We therefore
developed a more efficient algorithm, which can be
viewed metaphorically as "pick up sticks. " This ap-
proach is applicable for any initial velocity distribution
with nondegenerate collision times. We first identify the
collision times of all nearest-neighbor pairs and then sort
them in ascending order by a standard O(X in&) algo-
rithm [10]. Next, these near-neighbor collision times are
sequentially added to the list of true collision times if a
consistency criterion, to be specified below, is satisfied.
At each storage event, the particle pair (n, n +1) associ-
ated with the underlying collision is removed from the
system. Correspondingly, the collision times associated
with (n —l, n) and (n + l, n +2) must be discarded, while
the collision time associated with the new nearest-
neighbor pair (n —1,n +2) is computed. If any of these
three collision times is smaller than the next near-
neighbor collision time in the previously sorted list, it is
necessary to re-sort the current list of collision times be-
fore continuing with the sequential storages of true col-
lision times. Since the largest nearest-neighbor collision
times will never be reached before re-sorting is necessary,
the sorting is performed only on a small fraction of the
smallest of these collision times at each stage. With this
method we simulated 2. 5 X 10 particles to 10 time steps
in of the order of 70 CPU s on a DEC/AXP 3000/400
computer workstation. Our results are typically based on
50 realizations at each initial concentration.

The location of the critical point for the symmetric
four-velocity model may also be estimated by the same
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approach that was applied for the three-velocity model.
Let P" be the number of annihilation events between +
and —particles of type j, j =1,2, and let P;, iWj, be
the number of annihilation events between, say, a + par-
ticle of type i with both + and —particles of type j.
There are two "mass" conservation laws P22+P21 p2
and P»+P, 2 ~p„as well as the symmetry condition

P2y =P &2. We further assume that P22 /P2~ =2 indica-
tive of the fact that the relative velocity between + and
—v2 particles is equal to 2v2, while the average relative

P2 3

1+2v, /vz
(41)

Equation (41) reproduces the expected results in two ex-
treme limits of U

&

=U2, where it gives p2 =p &, while for

velocity between, say, a +U2 particle and an arbitrary
+U& particle is equal to U2. Analogously, one also has
P»/P, 2=2v, /v2. Combining these relations, the ratio
of initial densities at the critical point is
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FICi. 9. Representative simulation results for the symmetric four-velocity in one dimension. Shown are a series of double logarith-
mic plots of c&(t) ( ) and cz(t) ( o ) versus t for (a)—(c) v
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= 1 and U2 =2 for
p& =0.35, 0.38, and 0.40. Each successive data point represents an increase in t by a factor of 1.5.
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U& =0, the three-velocity tricritical point is reproduced.
For two particular cases that were simulated extensively,
?.".q. (41) gives pz/p& =1.5 for @=2 and pz/p& =1.065 for
@=1.1, while the corresponding estimates from simula-
tions are 1.6 and 1.20. Thus, while Eq. (41) reproduces
the correct qualitative trend for the location of the tricrit-
ical point, it is less accurate than the corresponding pre-
diction of the three-velocity model.

V. SUMMARY

Ballistic annihilation when the particle velocities are
drawn from discrete distributions is a problem that ap-
pears ripe for further exploration. There is a rich array
of phenomena in which the underlying discreteness of the
particle velocities is crucial. We have focused on simple
and generic situations to elucidate these features. The
mean field description of ballistic annihilation is decep-
tively simple, but leads to rather complex behavior. Par-
ticular attention was paid to distinguishing between the
case of one-dimensional kinetics (which is the basis of
conventional mean-field theory) and d-dimensional kinet-
ics, in which averages over all particle directions in d di-
mensions is accounted for. Since the "number" of species
is infinite, it is dificult to imagine that large-scale single-
species heterogeneities could form. The absence of such
spatial organization suggests that the mean field approxi-
mation is applicable when d & 1.

In one dimension, the relative initial abundance of
various species fundamentally determines which species
predominates in the long-time limit. For the symmetric
three-velocity model there is tricritical behavior in which
all three species decay as t when p+ =—', and po =

—,'.
In the fast impurity limit, the survival probability of the

impurity decays as exp( —constXln t). For the four-
velocity model, mean field theory predicts that the faster
species decays with a nonuniversal power law, while the
slower species always decays as 1/t. However, in one di-
mension, the relative initial concentrations again deter-
mine whether the more rapid or the slower species can
dominate asymptotically. At the threshold between these
two regimes, the densities of all species appears to decay
at t, with a-=0.72.

It is important to mention that Piasecki and Droz
et al. have very recently developed a powerful analytic
method to solve for the kinetics of one-dimensional of
ballistic annihilation models exactly. In particular, they
obtain the t decay for the density at the tricritical
point of the symmetric three-velocity model that we in-
ferred from simulations. Their method also appears to be
applicable to general velocity distributions. However,
even in the three-velocity model, the construction of ex-
plicit solutions from their formalism is a formidable task.
Thus it still would be desirable to develop either continu-
um approaches or other analytical methods that would
provide better intuitive insights into the intriguing quali-
tative features of ballistic annihilation.
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