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We present a method to estimate perturbative coefFicients in quantum field theory and statistical phys-
ics. We show that our method works in a large number of cases and in a wide variety of areas. The
method is so reliable that it has enabled us to find several errors in various publications.
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I. INTRODUCTION [N/M] =S+ O (x"+ (2.3)

It has long been a hope in perturbative quantum field
theory (PQFT) to be able to estimate, in a given order,
the result for the coefficient, without the brute force eval-
uation of all the Feynman diagrams contributing in this
order. As one goes to higher and higher order, the num-
ber of diagrams, and the complexity of each, increases
very rapidly. Feynman suggested that even a way of
determining the sign of the contribution would be useful.

The standard model (SM) of particle physics seems to
work extremely well. This includes quantum chromo-
dynamics (QCD), the electroweak theory as manifested in
the Weinberg-Glashow-Salam model, and quantum elec-
trodynamics (QED). In each case, however, we must use
perturbation theory and compute large numbers of Feyn-
man diagrams. In most of these calculations, however,
we have no idea of the size or sign of the result until the
computation is completed.

Recently we proposed [1—5] a method to estimate
coefficients in a given order of PQFT, without actually
evaluating all of the Feynman diagrams in this order. In
this paper we would like to describe the method in detail
and present some results.

II. METHOD

and write an equation for the coefficients of each power
of x.

We have written a computer program which solves Eq.
(2.3) and then predicts the coefficient of the next term,
S~+~+ ] ~ It works for arbitrary X and M. Furthermore,
we have derived algebraic formulas for the
[N/1], [N/2], [N/3], and [N/4] PA's where N is arbi-
trary. To illustrate the method, consider the simple ex-
ample

ln(1+x) x x x
x 2 3 c

(2.3a)

We write the [I/1] Pade as follows:

[1/1]= 1+b]x

It is easy to show that

a0=1, b& =-, , a& =-„c=-, .—2 —1 —9

(2.3b)

We can see that the prediction for c is close to the correct
value of c =4. For x =1, we get [1/1]=—,'„close to the
correct result ln2=0. 6931. This is much better than the
partial sum

Our method makes use of Pade approximants (PA).
There are many good references for PA (see, for example
Refs. [6—10]). We begin by defining PA (type I) as

ao+a]x+ +a~x
[N/M] = (2.1)

1+b x+ . +b x

1 —
—,'+-,' =-'=0.8333

If we now take the series

ln(1+x) x x
x 2 3

x
4

(2.3c)

to the series

S =So+S)x + - +S~+~x
where we set

(2.2)

we have So = 1, S) = —
—,', S2 =

—,', S3 = —4. Then

ao+a&x
[1/2] =

1+b ix+b2x
1+x/2

1+x +x /6
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and for x = 1 we obtain

[1/2] =
—,', =0.6923
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very close to the correct value of ln2=0. 6931 (the partial
sum is 0.58). The Pade approximant prediction (PAP) for
the [1/2] is

S4 =7/36=0. 1944,

very close to the correct value of —,'.
This result can be obtained in a way similar to before,

either from first principles or by using Eq. (2.5). These
results and the previous results, along with those for the
[0/3] and the [2/1] Pade's are shown in Table I.

We have applied this method to many difFerent exam-
ples in the perturbative quantum field theory (PQFT), in-

cluding quantum electrodynamics (@ED) and quantum
chromodynamlcs (QCD) as well as staflstlcal physics,
atomic physics, and condensed matter theory. We will

present many successful examples in this paper. Howev-
er, we will not be able to present them all here due to
space limitations. Some have already been presented in
previous papers [1—5]. It will be seen that the PAP's are
very accurate in a large number of cases in a wide class of
expansions.

Consider now the [X/M] PA, given by Eqs. (2.1), (2.2),
and (2.3). By cross multiplying Eq. (2.1) and combining
like powers of x, we obtain the following equations:

aN+1=0=SN+1+SNb1+SN —1b2+ +SN —M+ ibM

ON+2 0 SN+2+SN+1b 1 +SNb2+ SN —M+2bM

SN+M+1

SN+1 SN+M

SN+2SN+M+1

SN —M+1 SN —M+2 SN+1

(2.5)

SN+1 SN+M —1

where S =0 for j & 0.
In this way it is easy to obtain the following results:

SI=S, /So

S3 =S~ /S,

S~ =S3/Sz

S3 =2SISi/SO Si /So

2S 1 S2S3 SoS3 S2
S4=

S1 —SoS2

[0/1]
[1/1] I

[2/1]
[0/2] II

[1/2] III .

(2.6)

to solve for the a s, i =1, . . . , X. Note also that our pre-
diction for the next term SN+M+1 is independent of the
value of the expansion parameter x.

In general, the [N/M] PAP is given by [8]

SN —M+1 SN —M+2 SN+1

(2.4) We now define A„and e„given by [19]

N+M N+M N+M —1 1 N+M —2 2

+ +SNbM

a N +M + 1 0 SN +M + 1 +SN +M b 1 +SN +M —1b 2

+ +SN+1bM

S„S„+2A„=1+@„=
(S„+I )'

The condition

The first M equations in Eq. (2.4) represent M linear
equations for the M unknown b s and the last equation in

(2.4) gives the prediction for the next term Siv+M+, in

terms of the now known b s. Note that we do not need

TABLE I. Pade approximants to the series ln(1+x)/x with

x = 1. PS is partial sum.

(2.8)

ensures that the prediction for [1/1] in Eq. (2.5) agrees
with the prediction for [0/2]. It also ensures that the
[2/1] prediction agrees with [1/2]. We now show that
Eq. (2.8) also ensures that the [X/M] PAP for arbitrary
X and M is exact.

Consider now the geometric series given by

(2.9)

S3
[1/1]
P/S
Exact result
S4
[1/2]
[0/3]
[2/1]
PS
Exact result

0.700
0.833
0.6931

1.0
20.2

0.6923
0.6857
0.6905
O.S833
0.6931

0.12
1.07
0.38

15.8

Series (x = 1)
Value P„,„,

—0.250

0.1944
0.1736
0.1875

2.8
13.2
6.3

0.200

Next term
Value P„„,

S„=(I-l)"ar", n =0, 1, . . . , %+M .

From Eqs. (2.4) it can easily be shown that

S (+1)X+M+I X+M+I
N+M+1 (2.10)

and the PAP is exact. It should be emphasized that this
is a sufhcient condition for the PA to be exact but not a
necessary condition. As we shall see later, there are cases
where e„&0 and yet the PAP is exact. Also there are
many examples where e„~0 and yet the series is not

geometric. In general we shall see the condition e„«1 is

a suKcient but not a necessary condition for the PAP to
be accurate, if not exact.
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III. RESULTS FOR PA PREDICTIONS and

S6= 2/B,
where

(3.1)

A =2S2S3S5 2S,S3S5+2SpS3S4S5

We now present our results for the [2/3] and [3/4] PA
predictions. As we shall see, the reason we have chosen
these values of N and M is that from the [M —1/M] PA,
where X =M —1, we can step up or step down in X and
obtain any [N/M] PAP. Thus from the [2/3] result, we
can obtain any [N /3 ] result and from the [3/4]
PAP we can obtain any [N/4] result, where
N =0, 1,2, . . . , M —2 or X =M, M+1, . . . , by stepping
down in N or up in X, respectively. The result for the
[2/3] PAP is given by

8 —S2 25)5253 +SpS3 SpS2S4+S]54 (3.3)

From this result we can obtain the [1/3] PAP by stepping
down S~ ~SJ &

and putting S
&
=0. This procedure can

be repeated to obtain the [0/3] PAP. By stepping up
S —+$, +, we obtain the [3/3] PAP. This procedure can
be repeated to obtain the [4/3] PAP, etc. This is why the
procedure we used in the first paper [1] of applying the
last four terms in the [1/2] PAP formula is correct. It is
equivalent to using the [2/2] PAP, the [3/2] PAP, etc.

We now present our result for the [3/4] PAP. This re-
sult is much more complicated and the numerator C con-
tains SO terms. Our result is

2S ]S2S4S5 +S]55 Sp525 5 +S2S4
—35q5354+ 25 ) 5354 SpS4+ S3

S]]=C/D,

(3.2) where

(3.4)

C —2(2S2$3S4S7 S3$4S7 S]S/$7 S 2$4$5$7 + S]$3$4$5$7+$3$4$6+ 2$ ]S4$~ $6

+S2S4S6 —5 ) S3S4S6 S2S3S4S556 S2S4S6+S354S5 +S2S455 2S3S4S5 5]S455 +S2S3S5S7

+SpS4S5S7 +5~S2S5S7 SpS3S557 52S4S5S7 S~S3S4S5S7 S2S3S6S7 SpS3S4S6S7 S~55S6S7

+Sp52555657+ S]Sp545657+ 5 [535657 5]S2S357 S3S5S6 5]S354S6 5 f S2S5S6 +S]S3S5S

+Sp$3$g$6 S2S3S5 ) 3$p$4$5$6+S2S7+SpS3S7+S]SgSp Sp$2$g$7+S2S3$6+$]S6 SpSp$6

+S354S5 +S2S5S6+54 +S2S4S5 +535456 5/5456 +SpS456 +Sp55 (3.5)

D —2(S]$3$5+$]$2$4$5—S,S3S4 —S2S3$5 —S]S2S3S6—Sp$3$4$5 )+3$2$3S4

S3 S]S5+5 ][5456+SpS4 +SpS2S5 +SpS3S6 Sp5~5456 +S2S6 S2S4 (3.6)

These results can be checked by observing that the
number of factors in each term must be the same and the
sum of the indices in each term must also be the same.
For example, for the [2/3] PAP, each term in the
numerator of the PAP given in Eq. (3.2) has four factors
and the sum of indices is equal to 12. The term in the
denominator B given in Eq. (3.3) has three factors and the
sum of indices is equal to 6. Thus S6 given by Eq. (3.1)
has one factor and an index number equal to 6 as expect-
ed. A similar analysis can be made for the [3/4] PAP.
Each term in the numerator C given in Eq. (3.5) has five
factors and the sum of the indices is equal to 20. The
terms in the denominator D given in Eq. (3.6) have four
factors and the sum of indices is equal to 12. Thus S8
given by Eq. (3.4) has one factor and index number equal
to 8 as expected. Using MApLE we have derived the for-
mulas for the [4/5] PAP and the [5/6] PAP. However,
these formulas are too long to be given here.

IV. THEOREM FOR STEPPING UP
OR DOWN IN X

%"e now show how one can step up or down in N from
the known result for the [M —1/M] PAP. In this sec-
tion we state and prove the theorem.

Theorem (a) To step d. own from PAP [M —1/M] to
[M —2/M], we step SJ~SJ ] and put S,=0. To step
down further, we repeat this procedure as many times
(once per step) as desired until we reach [0/M]. (b) To
step up from [M —1/M] to [M/M], we step S.~S.+].
To step up further we repeat this procedure as many
times (once per step) as desired for any [N/M],
%=M,M+1, . . . , .

Proof. We write [N/M] as given in Eq. (2.1) and obtain
the linear equations given in Eqs. (2.4). For N =M —1,
these equations become
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aM=O=SM+SM, b, +SM 2b2+ . . +SobM

aM+1=0=SM+1+SMb1+SM 1b2+ . +S,bM

(4.1)

a2M —1 S2M —1 2M —2b1+S2M —3b2

+ +SM —1bM

a 2M 0 S2M +S2M —1 b 1 +S2M —2 b 2 + +SM bM

The first M equations in Eq. (4.1) enable one to solve for
the M unknowns, b„b2, . . . , bM and the last equation in
Eqs. (4.1) allow us to solve for the unknown PAP S2M in
terms of the now known b;, i =1,2, . . . , M.

(i) The corresponding equations for N =M —2 are

aM 1=0=SM 1+SM 2b 1+SM 3b2+ . +S 1bM

aM =O=rM+SM, b, +SM 2b2+ ' ' +SobM

Again, the first M equations in Eq. (4.3) give us the M
b s, i =1,2, . . . , M and the last equation in Eq. (4.3)
gives us the PAP for S2M+, . It can also be seen that one
can go from Eq. (4.1) to Eq. (4.3) by merely replacing
S —+S.+,. It can also be seen that one can repeat this
process to obtain all [N/M] PAP for all N =M,
M + 1, . . . . Thus starting from the [M —1/M] PAP one
can obtain the results for all [N /M] PAP's
N =0, 1,2, . . . . The information for the general [N/M]
PAP is contained in the [M —1/M] PAP. It should be
stressed that one cannot go from the [N/M] PAP where
X &M —1 to PAP's for larger N. One must start with
the [N/M] PAP with N ~ M —l.

V. PABE APPROXIMANTS AND THE
R AND R, RATIOS IN PERTURBATIVE QCD

S2M —2 +S2M —3b1 +S2M 4b2

+ +SM —2bM

2M —1 2M -2 1 2M —3

+ +SM —1bM

where

(4.2)

I (r~v+hadrons)
I (r~evv)

(5.1)

and R is given by

In this section we will consider the R ratio and the R,
ratio in perturbative QCD [11—14]. They are defined as
follows:

S 1=0.
It can be easily seen that Eq. (4.2) can be obtained from
Eq. (4.1) by merely using the replacement S ~S, and
setting S,=0. The first M equations in Eq. (4.2) allow
one to solve for the M b, 's, i =1,2, . . . , M and the last
equation gives us the PAP for S2M, . It is easily verified
that one can repeat this process to obtain all [N/M] PAP
for%=0, 1, . . . , M —2.

(ii) The equations for N =M are

aM+, =O=SM+, +SMb, +SM,b2+ +S,bM,

aM+2 0 SM+2+SM+1b1+SMb2+ +S2bM

(4.3)

a2M =O=S2M+S2M 1b 1+S2M 2b2+ +SMbM,

a 2M + 1
—0=S2M + 1 +S2M b 1 +S2M 1 b 2

+' +SM + lb M

cr„,(e+e ~hadrons)R=
cr(e+e ~p+p )

(5.2)

We first consider R in the general MS-type scheme
given by the parameter t,

=e —t/2
MS (5.3)

2
R =3+ QfR(t) 1.24 g Q—f x', (5.4)

where x =a, /~ and Nf is the number of fermions
(quarks). We neglect the second term in Eq. (5.4) as it is
small in all cases of interest. R (t) is given by

Obviously t =0 corresponds to the MS scheme,
t =ln4w —y=1.95 represents the MS scheme, t = —2.0
for the G scheme, and t =4((3)——", = —0.692 yields our
MS scheme [11]. The scale-dependent R (in the general
MS-type scheme) is given by

R (t) =1+x +x [(1.9857+2.75t) —Nf(0. 1153+0.1667t)]

+x [(—6.6369+17.2964t+7. 5625t )

Nf(1. 2001+2.08—77t+0.9167t )+Nf( —0.0052+0.0384t+0.0278t )] . (5.5)

Our results for t =2, 4, and 10 are shown in Tables II,
III, and IV, respectively [30]. It can be seen that the
method works very well and we can predict the unknown
next term (NT) and next-next (NNT) term. The NNT

terms from the [0/3] and the [1/2] of Eq. (2.5) agree very
well with those from the [2/1] and so are not listed in our
tables. In Figs. 1 and 2, we plot the estimated and exact
terms as a function of t for two representative values of
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FIG. 1. The exact (EXA) and the estimated (EST) coefticients
vs t for the x coefticient of 8 (t) for Xf = 1.

FICx. 2. The exact (EXA) and the estimated (EST) coefficients
vs t for the x' coefficient of R (t) for Xf=5.

Nf (Nf = 1 and Nf =5, respectively). It can be seen that
the agreement is excellent for t & 1 and improves as t in-
creases. The reason for this behavior can be seen as fol-
lows.

From the [1/1] of Eqs. (2.6) and (5.5) we obtain

S3 S~ /S( =3.943+ j.0.92t +7.5625t

The perturbation series for D is

D =1+Do +(D, —PODo lnq /p )
4m. 4~

+ [D2 —(P,DO+2PDD, ) lnq /p
3

2

oo ~s
D(q /p, a, )= g R;

i =0
(5.7)

—Nf(0. 458+1.2962t+0. 9167t )

+Nf (0.0133+0.0384t+0.0278t ) . (5.6)

The exact result is given by the x term in Eq. (5.5). It
can be seen by comparing this term with Eq. (5.6) that
the t', t'Nf, t'Nf', and tNf' coefficients agree. In fact
this agreement is exact. Now we understand why the es-
timate and the exact result agree so well for large t.

The reason for the agreement of the coefficients can be
seen as follows [11]. Consider the function given by

+(PODD ln q /p ] 4a
(5.8)

rz/r, =(D, PODot) /Dp— (5.9)

The t coefficient is poDD which agrees with the
coefficient of the t a, term even if Do&1. The cross term
in Eq. (13) is 2poD, t. This —agrees with one of the ta,
terms. However, the other one does not have an Nf con-
tribution. Thus the tNf coefficients also agree.

We now turn to R . In the general MS-type scheme,
R i,'"' is given by [12,13,14]

Ri'"=3R (t)

where [11]

where Po and P, are the first two coefficients of the P
function. Since t =lnq /p, one can see that

R (t) =1+x +x [(6.3399+2.75t) —Nf(0. 3792+0.1667t)]

+x [(48.5832+41.2443t+7. 5625t ) —Nf(7. 8795+4.9905t+0.9167t )+Nf(0. 1579+0.1264t+0.0278t )] .

(5.10)
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10000,

1000

100

in this case, the agreement is excellent, even for t =0,
and, again, improves as t increases. Again, we can see
why we get this behavior.

From I of Eqs. (2.6) and (5.10) we obtain

S3 Sp/S} 40. 1943+34.8695t+7.5625t

—Nf (4.8082+ 4. 1989t +0.9167t )

+Nf(0. 1438+0.1264t+0.0278t )] .

(5.1 1)

The exact results is given by the x term of Eq. (5.10). It
be seen again that the t, t Nf, p Nf, and tNf

coefFicients agree. Again this agreement is exact. More-
over, the t, t Nf, and t Nf of Eqs. (5.5) and (5.10) also
agree exactly. These equalities can be seen from an
analysis, similar to the one presented for R.

1
0 2 4 6 8 10

FIG. 3. The exact (EXA) and the estimated (EST) coeScients
vs t for the x coefficient of R (t) for Nf = 1.

10000

The results for t =0, 4, and 10 are shown in Tables V, VI,
and VII, respectively [30]. It can be seen that the method
works very well and we can predict the NT and the NNT
terms. The NNT terms from II and III of Eq. (4) agree
very well with those from I and so are not listed in our
tables. In Figs. 3 and 4 we plot the estimated and exact
terms as a function of t for two representative values of
Nf (Nf = 1 and N& =5, respectively). It can be seen that

VI. ERRORS IN THE PAP

In this section we study the % error in the PAP. The
% error P„„,can be expressed completely in terms of
the e„where the e„are defined as before in Eq. (2.6). Re-
call

S~Sn+qA„=1+@„=
(&„+I )' (6.1)

and we write

P„„,=100p .

It can easily be shown that, for the [0/1] PAP,

p = eo/( I+eo) . —

(6.2)

(6.3)

By our step-up theorem, it follows that, for the [N/1]
PAP,

(6.4)

For the [1/2] PAP, we get

6]/&p &2(1+El)

(I+~, ) (1+e2)
(6.5)

1000— The % difference between the [1/2] and the [2/1] PAP's
is obtained by setting @2=0 in Eq. (6.5). Again from the
s«p-up theorem we use the same equation for the [N/2]
PAP,

/ex I ex+1(1+e'z ) N+1 .
(I+a~) (I+a~)

(6.6)

100 To get the [0/2] PAP we step down and set E

F«m Eqs. (3.1), (3.2), and (3.3) we can get the [2/3] PAP
% error. We write

r6 =C/D,
where

(6.7)

10 I I I I I I I I I

0 2 4 6 8 10 C = A3[2A2A3 —2AI A2A3+2AO A I A~A3 —2AI A2A3

FIG. 4. The exact (EXA) and the estimated (EST) coe%cients
vs t for the x' coefBcient of R,(t) for Xf=5.

+2 A 9 —9 g g g +g
—3A~+2A, A2 —AOA~IA23+1] (6.8)
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and

D =A2A3[1 2A]+ApA] ApA]A2+A]A2]

and

(6.9)

all (N, 3) PAP's.
The formula for the [3/4] PAP %%uo error is much more

complicated but can be derived in a straightforward
manner from Eqs. (3.4), (3.5), and (3.6). It is given by

C/D —A4P=
A4

(6.10) r8 =E/I', (6.1 1)

Again we can step up or down to obtain the %%uo error for where

E= A4A,' [2[2A2A3A4A5 A3A4A5 A] A2A3A4A5 A2A3A4A5+ A] A2A3A4A5+ A3A4+2A] A2A3A4

+A2A3A4 A1A2A3A4 A2A3A4 A2A3A4+A3+A2A3 2A3 A1A2A3+A2A3A4A5

+ A0A IA2A3A4A5+ A1A2A3A4A5 A0A1A2A3A4A5 A2A3A4A5 A1A2A3A4A

2A3A4A5ApA1A2A3A4A5A1A2A3A4A5+ApA1A2A3A4A5+A 1A2A3A4A5

+ 1A2A3A4A5 A1A2A3A4A5 A3A4 A1A2A3A4 A1A2A3A4+ A1A2A3A4

+ A0A, A2A3A4 —A2A3] —3A0A]A2A3A4+ A2A3A4A5+ A, A2A3A4A5+ A0A]A2A3A4A5

AOA1A2A3A4A5+ A2A3A4+ A1A2A3A4 AOA1A2A3A4+ A3+ A2A3A4+1

+A2A3+A3A4 A2A3A4+AOA]A2A3A4+AOA]A2A3 I

F A 3A4A 5 [2[A, A 2A3+ A, A 2A3 —A, A 2
—A 2A 3

—A, A 2A 3A4 —A0A, A 2A3]+3A2 —1 —A ]A 2A 3

+ A ]A2A 3A4+ A0A ]A2+ ApA ]A2A3+ A]]A]A2A3A4 ApA ]A2A3A4+ A2A 3A4 A2 j

(6.12)

(6.13)

E/I' —A6
(6.14)

a„= '
e

—]0/3
6n

and, hence,

(6.17)

lim A„=+1,
n~oo

(6.15)

Once again we can step up or down to obtain the % error
for all [N/4] PAP's.

Since the % error can be expressed completely in terms
of the A„=1+e„ it can be seen that for e„«1 the %%uo er-
ror is very small. However, this is a sufficient condition
and not a necessary one. That is, even if the e„are not
small, the % error may still be small due to cancellations.

As will be seen in Sec. XIII, a sufficient but not neces-
sary condition for the PAP to yield accurate results is
that

72 +2A„=
7l +1

For the muon,

n 'T /2 —10y3 m„a„= etl 6' Ale

and again

7t +2A„= —+1.n+1

4

(6.18)

(6.19)

(6.20)

where

S~Sn +A„=1+a„=
(S„+])

(6.16)

Thus in both cases the PAP is very good.
It can be seen that for

S„=( —1)"a„ (6.21)

When this condition is satisfied, the PAP will be very
good. However, even if this condition is not satisfied, it
may still be very good due to cancellations. This condi-
tion is satisfied in QED for the n-bubble diagram [15]
contribution to g —2 of the muon and electron.

For the electron,

the series is asymptotic to

E, (x ) =E (x /6 ),
where E (x) is given in Eq. (12.7). For

S„=a„,

(6.22)

(6.23)
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the series is asymptotic to

E', (x)=E'(x /6),
where E'(x) is given in Eq. (12.8).

(6.24)

VII. EXAMPLES FROM STATISTICAL PHYSICS

We now present in Tables IX—XX some examples of
the PAP from statistical physics. Most of our examples
can be found in Refs. [16] and [17]. Note that in order to
keep this paper from growing much too long we present
only some of our results. In the tables and the text
(X,M) is the same as [NlM]. Table IX gives our results
for the high-temperature susceptibility series of the
square lattice Ising model [18].

One can see that the method works and the PAP's are
very accurate, with the % error decreasing to approxi-
mately 10 ' % for the last known term. The prediction
for the NT should be very accurate. We use e„'+&=@„.

Table X gives the number of closed polygons on a
square lattice [19] and the corresponding PAP's. It can
be seen that the % error decreases steadily as one goes to
higher order. The number in parentheses is the power of
10, thus 0.27( —7}=0.27X10 . It can be seen that the
PAP's are very accurate and the next term (NT} is pre-
dicted. This prediction should be very accurate. It can
also be seen that e' « 1 and decreases steadily as one goes
to higher order. This is a suf5cient condition, but not a
necessary condition, for the PAP's to be accurate esti-
mates.

Table XI describes the chain-generating function for
self-avoiding walks on the triangular lattice [19]. Again
the results are very interesting with the % error decreas-
ing steadily as one goes to higher order. Also, as before,
e'((I and decreases. The PAP for the (4,4) is infinity
since the (3,3) is exact. This is an example of our
theorem, proved in Sec. XII. The prediction for NT
should be very accurate.

Table XII gives the zero-field coe%cients U, for the
honey-combed lattice in the two-dimensional (2D) Ising
model [18]. Again, the results are very good. The two
predictions for the NT agree and should be very precise.

When we first ran this series, the predictions for —24
and —1368 were much too large in magnitude. This oc-
curred because we omitted the first two terms of the
series, 1.5 and 0. In Table XII we started from the begin-
ning of the series, and, as one can see, the predictions for—24 and —1368 are now very good.

Table XIII gives the zero-field coeKcients, U„, for the
plane-triangular lattice in the 2D Ising model [18]. The
results are very good and the two predictions for the NT
agree. Infinity for the [2,2] and the [4,5] are the result of
our theorem since the (1,1) PAP and the (3,4) PAP are
exact. The (2,3) infinity arises because the (1,2) PAP is
0/O.

Table XIV shows the zero-field coefFicients U„ for the
square lattice in the 2D Ising model [18]. Again the re-
sults are very good and the two predictions for the NT
agree.

Table XV gives the spontaneous magnetization
coefficients for the honey-combed lattice [18]. The accu-

TABLE IX. High-temperature susceptibility series of the square-lattice Ising model. NT refers to

the next (unknown) term.

(0,1)
(1,2)
(3,3)
(3 4)
(4', 3)
(5,'4)

(5,'5)

(5,6)
(7,6)
(7,7)
(8,7)

{12,12)
(12,13)
(20,20)
(20,21)
(21,21}
(21,22)
(24,23)
(24,24)
(24,25)
(25,24)
(26,25)
{26,26)
(27,26)
(26,27}
(27,27)

Pade

16
108

1972
5188
5188

34856
89764

229 704
1486 858
3764 311
9496 081

36 212 337 725
89 896 881 041

68 849 212 197681(3)
169 150097 346(6)
41 541 963 877(7)

101 981 266 329(6)
36 912 183 773 288(6)
90 466 431 959 184(6)
22 164 947 092 629(7)

221 649 470 925 546(6)
13 294 400 774 266(8)
32 546 159798 889(8)
79 654 880 661 744(8)
79 654 880 659 339{8)

194906447 3S8 S89(8)

Exact

12
100

1972
5172
5172

34876
89764

229 628
1486 308
3763 460
9497 380

36 212 402 548
89 896 870204

68 849 212 197 172(3}
169 150097 365(6)
41 541 963 949(7)

1019816266 253(6)
36 912 183 772 985(6)
90 466 431 9S9 612(6)
22 164 947 092 555(7)

221 649 470 925 555(6)
13 294 400 774 247(8)
32 546 159 798 489(8)
79 654 880 659 405(8)
79 654 880 659 405(8)

NT

%%uo error

33
8
0
0.31
0.31
0.057
0
0.033
0.037
0.023
0.014
0.18( —3)
0.12( —4)
0.74( —9)
0.11(—7)
0.17( —6)
0.75( —8)
0.82( —9)
0.47( —9)
0.33( —9)
0.38( —11)

14( —9)
0.12( —8)
0.29( —8)
0.83( —10)

0.25
0.074
0.61( —2)
0.016
0.016
0.91(—2)
0.43( —2)
0.61( —2)
0.44( —2)
0.25( —2)
0.34( —2)
0.10( —2)
0.12( —2)
0.4( —3)
0.46( —3)
0.36( —3)
0.41( —3)
0.35( —3)
0.28( —3)
0.32( —3)
0.32( —3)
0.29( —3)
0.24( —3)
0.27{—3)
0.27( —3)
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TABLE X. Number of closed polygons on a square lattice. NT refers to the next (unknown) term.

{X,M)

(o, 1)
(1,1)
(1,2)
(3,3)
(3,4)
{5,4)
(S,S)
(5,6)
(7,7)
(7,'8}

(8,8)
(8,9}
(9,8)
(9,9)

(9,10)
{10,9)
(10,10)
{10,11)
(11,10)
{11,11)
(11,12)
(12,11)
(12,12)
(12,13)
(13,12)
(13,13)

Pade,

4
24.5

114.3
15641.4
81603.2

2520776.4
14382759.9
83301403.3

17332403704.6
104653043328.9
636737111378.9

39007686S7365.8
3900768645S91.6

24045477087166.3
1490S9818372329
149059814952508
928782402852355

58144014582S5866
5814400906586723

36556766563181916
230757492329413778
230757492299121126

1461972664107671386
9293993426515280515
9293993426247752549

592709055867(8)

Exact

7
28

124
15 268
81 826

2521 270
14 385 376
83 290 424

17 332 874 364
104 653 427 012
636 737 003 384

3900 770 002 646
3900 770 002 646

24045 500 114388
149059 814 328 236
149059 814 328 236
928 782 423 033 008

5814 401 613 289 290
5814406 163 289 290

36 556 766 640 745 936
230 757 492 737 449 632
230 757 492 737 449 632

1461 972 662 850 874 880
9293 993 428 791 900 928
9293 993 428 791 900 928

NT

% error

43
13
7.8
2.4
0.27
0.02
0.018
0.013
0.27( —2)
0.37( —3)
0.17{—4)
0.34( —4}
0.35{—4)
0.96( —4)
0.27( —5)
0.42{—6)
0.22( —5)
0.27( —5 }
0.12( —4)
0.21( —6)
0.18( —6)
0.19( —6)
0.86( —7)
0.24( —7)
0.27( —7)

0.75
0.14
0.11
0.04
0.031
0.021
0.017
0.015
0.97( —2)
0.86( —2)
0.77( —2)
0.69( —2)
0.69( —2)
0.62( —2)
0.56( —2)
0.56( —2)
0.51(—2)
0.47( —2)
0.47( —2)
0.43( —2)
0.40( —2)
0.40( —2)
0.37( —2)
0.34( —2)
0.34( —2)

TABLE XI. Chain-generating function for self-avoiding walks on the triangular lattice. NT refers to
the next (unknown) term.

(X,M)

(0,1}
(1', 1)
(1,2)
(2,'1)

(2,2)
(2,3)
(3,2)
(3,3)
(3,4)
(4,3)
(4 4)
(4,5)

(5,'4)

(5,'5)

(5,6)
(6,5)
(6,6)
(6,7}
(7,6)
{7,7)
(7,8)
(8,'7)

{8,'8)
(8',9)
(9,8)
(9,9)
(9,10)

(10,9)
(10,10)

36
150
606
634.8

2742
11 994
11 973
51 882

223 914
223 914

4135 167
4134438

17 673 567
7S 361 184
75 355 045

320 734 924
1 322 798 287
1 362 798 648
5 781 565 021

24497 359 134
24497 638 541

103 673 993 600
438 296 768 643
438 296 789 461

1 851 231 418 710
7 812 439 589 810
7 812439 615 570

32 944 292 663 100

30
138
618
618

2730
11 946
11 946
51 882

224 130
224 130
964 134

4133 166
4133 166

17 668 938
75 355 206
75 355 206

320 734 686
1362 791 2SO

1362 791 250
5781 765 582

24 497 330 332
24 497 330 332

103 673 967 882
438 296 739 594
438 296 739 594

1851 231 376 374
7812 439 620 678

7812 439 620 678
NT

2.0
8.7
1.9
2.7
0.44
04
0.23
0
0.096
0.096

0.048
0.031
0.026
0.0079
0.0002
0.00007
O.OOOS2

0.00054
0.0035
1.2( —4)
1.3( —3)
2.5( —5)
6.6( —6)
1.1( —5)
2.3( —6)
4( —7)
1( —7)

167
0.08
0.026
0.026
0.01
0.0094
0.0094
0.0075
0.005
0.005
0.0042
0.003
0.003
0.0028
0.002
0.002
0.002
0.0017
0.0017
0.0015
0.0013
0.0013
1.2( —3)
1.0( —3)
1.0( —3)
9.4( —4)
8.4( —4)
8.4( —4)
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TABLE XII. Zero-field coefficients U„ for the honey-combed
lattice in the 2D Ising model.

(X,M)

(2,2)
(2,3)
(3,2)
(3,3)
(3,'4)

(4,'3)

(4 4)
(4,5)
(5 4)
(5,5)
(5,'6)

(6,5)
(6,6)
(6,7)
(7,6)
(7,7)
(7', 8)
(8,7)
(8', 8)

(8,9)
(9,8)
(9,9)
(9,10)
(10,9)

Fade

—27
82.5
81.75

—138
606
594.8

—1402.9
4618.2
4608.8

—10572.9
35 011.S
35 005.3

—84 365.2
272 803.1

272 683.4
—669 849.3
2158 678.9
2157 4S4. 1

—5421 719.1
17 310559.5
17 321 197.7

—44 357 521.9
140 662 210.4
140 653 337.5

Exact

—24
93
93

—180
639
639

—1368
4653
4653

—10605
35169
35169

—83664
272 835
272 835

—669 627
2157 759
2157 759

—5423 280
17 319 837
17 319 837

—44 354 277

%%u~ error

12.5
11.3
12.~.

23.3
5.2
6.9
2.S
0.7S
0.95
0.30
0.45
0.47
0.84
0.012
0.056
0.033
0.043
0.014
0.029
0.054
0.0079
0.0073

—0.68
1.4
1.4
0.50
0.83
0.83

—0.40
0.59
0.59

—0.33
0.46
0.46

—0.28
0.37
0.37

—0.25
0.31
0.31

—0.22
0.27
0.27

—0.20

racy improves steadily as one goes to higher order.
P„„,=1.0X10 % for the [8/7] PAP.

Table XVI shows the low-temperature ferromagnetic
susceptibility coefficients for the simple-cubic lattice in
the Ising model [l8]. Again the results are very interest-
ing and the PAP's for the NT agree. Table XVII shows
the low-temperature ferromagnetic susceptibility
coeKcients for the diamond 1attice in the Ising model

[18]. One can see that the results are very good and the
predictions for the NT agree. Table XVIII gives the
low-temperature ferromagnetic susceptibility coeKcients
for the honey-combed lattice in the Ising model [18].
Again the results are very good. Table XIX shows the
spontaneous magnetization coeScients for the plane-
triangular lattice in the Ising model [18]. The results are
reasonable.

Table XX shows the spontaneous magnetization
coefficients for the simple-cubic lattice in the Ising model
[18]. The results are very good.

In Tables XXI—XXV we use the first few coefticients
and then predict all the rest of them [30]. For example,
in Table XXI we give ding/dtu where g is the magnetic
susceptibility for the 20 square lattice Ising model of fer-
romagnetism [20] (high-temperature expansion). We use,
as an input, So, S&, S2, S3, S4, and S5 and then predict
all the rest of the terms as shown in Table XXI. As ex-
pected, the % error now increases as one goes to higher
order as the error accumulates. The results, however, are
surprisingly good. By comparing these results to those of
Table XXVI, where we use all of the previous known
terms and predict only one coefficient at a time, one can
see that the % error for the [7/6] PAP has a 10.2% error
in Table XXI while the % error in Table XXVI is
0.009%. Table XXII shows the same series where we
now use as input So, S&, S2, S3, and S4 and predict all of
the rest of the terms. The results are similar to those of
Table XXI. Note that the [7/7] PAP's for the NT in
Tables XXVI, XXI, and XXII are very close to each oth-
er.

Table XXIII shows the chain-generating function for
self-avoiding walks on the triangular lattice [20] and
should be compared with Table XI. We use So, S&, S2,
S3 and S4 as input and predict all the rest of the terms.
The results in Table XXIII show, as expected, that the

Exact

TABLE XIII. Zero-field coefficients U„ for the plane-triangular lattice in the 20 Ising model. NT
refers to the next (unknown) term.

(W, M) Pade %%uo error E

(0,1)
(1,1)
(1,2)
(2, 1)
(2,2)
(2,3)
(3,3)
(3 4)
(4 3)
(4 4)
(4,5)
(5,5)
(5,6)
(6,5)
(6,6)
(6,7)
(7,6)
(7,7)
(7,'8)

(8.'7}

12
24
48
48

1056
3186
3148
9588

93508
297 897
297 993
960 229

3126 390
3126 175

10268 597
33 989 699
33 989 266

12
24
54
54

138
378

1080
3186
3186
9642

29784
93552

297 966
297 966
960 294

3126408
3126408

10268 688
NT
NT

0
0

11.1
11.1

2.2
0
1.2
0.56

0.047
0.023
0.0091
0.0067
0.00056
0.0074
0.00088

0
0
0.125
0.125
0.14
0.072
0.04
0.0325
0.0325
0.026
0.021
0.0168
0.014
0.014
0.012
0.0102
0.0102
0.0089
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TABLE XIV. Zero-field coefficients U„ for the square lattice in the 2D Ising model. NT refers to the
next (unknown) term.

(N, M)

(0,1)
(1,'1)

(1,2)
(2, 1)
(2,2)
(2,3)
(3,2)
(3,3)
(3,4)
(4,3)
(4 4)
(4,'5)

(5 4)
(5,'5)

(5,6)
(6,5)
(6,6)
(6,7)
(7,6)
(7,7)
(7,8)
(8',7)

Pade

8
16

72
306

1323
1363
5960

27336
27730

128066
613094
612 665

2984 645
14 753 869
14 750984
73 823 947

373 484 271
373 488 763

1907 330 705
9820 750 775
9837 387 041

Exact

8

24
84
84

328
1372
1372
6024

27 412
27 412

128 228
613 160
613 160

2985 116
14 751 592
14 751 592
73 825 416

373 488 764
373 488 764

1907 334 616
NT
NT

/o error

0
33 ~ 3

14.3
6.7
3.6
0.63
1.07
0.28
1.16
0.13
0.011
0.081
0.016
0.015
0.004
0.002
0.0012
2.7( —7 )

2.1( —4)

0
0.5
0.17
0.17
0.116
0.071
0.071
0.05
0.036
0.036
0.028
0.022
0.022
0.018
0.01S
0.015
0.013
0.011
0.011
0.0094

error accumulates as one goes to higher order.
In Table XXIV we present the number of closed po-

lygons on a square lattice [20]. Table XXIV should be
compared with Table X. Again the error in Table XXIV
increases.

Finally, Table XXV shows the spontaneous magnetiza-
tion coefficients for the honey-combed lattice [18] and
should be compared with Table XV. Again, as expected,

the error in Table XXV increases.
In Table XXVI we present the results for the ding/dw

where y is the magnetic susceptibility [8] for the 2D
square lattice Ising model of Ferromagnetism (high-
temperature expansion). One sees that the results are
very good with the % error decreasing to 0.009% for the
[7/6].

TABLE XV. Spontaneous magnetization coefficients for the honey-combed lattice. NT refers to the
next (unknown) term.

(N, M)

(2 1)
(2,2)
(2,3)
(3,2)
(3,3)
(3 4)
(4,3)
(4 4)
(4,5)
(5,4)
(5,'5)

(5,6)
(6,5)
(6,6)
(6,7)
(7,6)
(7,7)
(7,8)
(8,'7)

(8,'8)

Pade

522.7
1718
5704
5721

19029
64 179.6
64 133.3

218 221.7
746 944.5
747 250.6

2574 272.6
8918791.1
8917936.8

31 036 314
108 456 649
108 457 188
380 390 643

1338495 468
1338495 478
4723 664 030

Exact

534
1732
5706
S706

19038
64176
64176

218 190
747 180
747 180

2574 488
8918070
8918070

31 036 560
108 457 488
108 457 488
380 390 574

133 8495 492
133 8495 492

NT

/o error

2. 1

0.81
0.035
0.27
0.048
0.0055
0.067
0.015
0.032
0.0094
0.0084
0.0081
0.0015
7.9( —4)
7.7( —4)
2.8( —4)
1.8( —5)
1 ~ 8( —6)
1.0( —6)

0.022
0.020
0.016
0.016
0.013
0.010
0.010
0.0086
0.0072
0.0072
0.0062
0.0053
0.0053
0.0047
0.0041
0.0041
0.0037
0.0033
0.0033
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TABLE XVI. Low-temperature ferromagnetic susceptibility coe%cients for the simple-cubic lattice
in the Ising model. NT refers to the next (unknown) term.

(N, M)

(0,1)
(1,1)
(1,2)
(2, 1)
(2 2)

(22,3)
(3,2)
{3,3)
(3,4)
(4,3)
(4,4)
(4,5)
(5,4)
(5,5)
(5,6)
(6,5)
(6,6)
(6,7)
(7,6)
(7,7)
(7,8)
(8,7)

Pade

16.3
—1301~ 8

1637.1
564.3

—4171
17 928
18 05S

—54 137
214 098
214 295

—702 351
2602 225
2603 977

—8835 471
31 921 447
31 923 924

—110325 319
392 994 671
392 997 811

—1369 504 263
4844 433 325
4844 450 320

Exact

135
—276

1520
1520

—4056
17 778
17 778

-54392
213 522
213 522

—700 362
2601 674
2601 674

—8836 812
31 92S 046
31 925 046

—110323 056
393 008 712
393 008 712

—1369 533 048
NT
NT

error

88
370

7.7
63
2.8
0.85
1.6
0.47
0.27
0.36
0.28
0.021
0.089
0.015
0.011
0.0035
0.0021
0.0036
0.0028
0.0021

7.3
—0.79

1.7
1.7

—0.52
0.64
0.64

—0.30
0.28
0.28

—0.16
0.13
0.13

—0.086
0.064
0.064

—0.043
0.031
0.031

—0.022

[n /m]

[6/6]
[6/7]
[7/6]

PAP

838 513 161
4292 338 178
2 637 328 855

828 623 100
NT
NT

% error

1.20

VIII. ERRORS FOUND BY PA.P's

This method is so reliable that we have found several
errors in publications based on the PAP's as follows.

(1) In volume 3 of Ref. [18] and Table XVI, we get the
results

where NT is the next-unknown term. If however, we use
the correct value from Sykes et al. [21] the results are

[n /I ]

[6/6]
[6/7]
[7/6]

PAP

838 513 161
3 761 459 955
3 761 255 448

Exact

838 623 100
NT
NT

%%uo error

0.013

and the PAP's for the NT agree with each other very
weH.

(2) In Ref. [22], Eq. (8) for P(g) has a negative g(7)

TABLE XVII. Low-temperature ferromagnetic susceptibility coefticients for the diamond lattice in
the Ising model. NT refers to the next {unknown) term.

(X,M)

(0,1)
(1,'1)

(1,2)
(2, 1)
(2 2)
(2,3)
(3,3)
(3,4)
(4,3)
(4,4)
(5,4)
(s,s)
(5,6)
(6,5)
(6,6)
(6,7)
{7,6)

Pade

64
242
899
983

4655
21 412
98 904

448 491
452 236

2015 940
9159502

41 426 168
186 654 128
186 897 493
838 513 161

3761 459 955
3761 255 448

Exact

44
208
984
984

4584
21 314
98 292

448 850
448 850

2038 968
9220 346

41 545 S64
186 796 388
186 796 388
838 623 100

NT
NT

% error

45
16.3
8.6
0.074
1.6
0.46
0.62
0.08
0.75
1.13
0.66
0.29
0.076
0.054
0.013

0.3125
0.14

—0.0074
—0.0074

0.015
0.0019
0.0082
0.0098
0.0098
0.005
0.0045
0.0036
0.0022
0.0022
0.0015
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TABLE XVIII. Low-temperature ferromagnetic susceptibility coefficients for the honey-combed lat-
tice in the Ising model. NT refers to the next (unknown) term.

(0,1)
(1,1)
(1,2)
(2, 1)
{2,2)
(2,3)
(3 2)
(3,3)
(3,4)
(4,3)
(4,4)
(4,5)
(5,4)
(5,5)
{5,6)
(6,5)
(6,6)
(6,7)
(7,6)

Pade

36
121.5
551
551

4659
8718
8906

35 696
143 361
143 239
570 671

2264 738
2264 668
8942 977

35 167051
35 155 272

137 841 646
538 597 298
538 595 547

Exact

27
122
516
516

2148
8792
8792

35 622
143 079
143 079
570 830

2264 649
2264 649
8942 436

35 169616
35 169616

137 839 308
NT
NT

/o error

33
0.41
6.8
6.8

117
0.84
1.3
0.21
0.20
0.11
0.028
0.004
9.( —4)
6.1( —3)
7.3( —3)
0.041
1.7( —3)

0.25
—0.0041

0.064
0.064
0.016
0.017
0.017
0.010
0.0087
0.009
0.007
0.0056
0.006
0.0047
0.004
0.004
0.0035

term. This term should be positive as later confirmed by
the authors. The results with the minus sign are the fol-
lowing:

seen that the PAP's do not agree with the exact results.
If, however, the correct positive sign is used the results
are improved tremendously.

[1/2]

828.7
1187.1
1615.2
2116.2
2692.8
3347.3
4081.7

792.9
1133.2
1537.8
2009.7
2551.9
3166.7
3856.6

Exact

39.4
90.2

165.5
268.6
402.9
571.8
778.6

% error

2003
1216
876
688
568
485
424

[1/2]

828.7
1187.1
1615.2
2116.2
2692.8
3347.3
4081.7

[2/1]

792.9
1133.2
1537.8
2009.7
2551.9
3166.7
3856.6

1002
1424.3
1922.3
2499.3
3158.8
3904.2
4738.7

error

17.3
16.7
16.0
15.3
14.8
14.3
13.9

where P„„,= 100( [1/2] —(Exact))/(Exact). It can be (3) Cons&«r the Euler Numbers 1, $, 61, 1385, 50521

TABLE XIX. Spontaneous magnetization coefficients for the plane-triangular lattice in the Ising
model. NT refers to the next (unknown) term.

(2 2)
(2,3)
(3,4)
(4,3)
(4,4)
(4,5)
(5 4)
(5,5)
(5,6)
(6,5)
(6,6)
(6,7)
(7,6)
(7,7)
(7,'8)

(8,7)

Pade

—238.1

3859
30 841
29 965

—17 720
241 752
241 734

—143 733
1932202
1928 973

—1312749
15 609 972
15 610019

—11 345 873
127 516921
127 541 268

Exact

—228
4050

30 960
30 960

—17 670
242 402
242 402

—152 520
1932000
1932000

—1312844
15 612 150
15 612 150

—11 297 052
NT
NT

error

44
4.7
0.38
3.2
0.28
0.27
0.28
5.8
0.01
0.16
0.0072
0.014
0.014
0.43

—0.98
42.
29
29

—0.96
23.
23

—0.95
19
19

—0.95
17
17

—0.94
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TABLE XX. Spontaneous magnetization coefticients for the simple-cubic lattice in the Ising model.
NT refers to the next (unknown) term.

(X,M)

(1,2)
(2,2)
(2,3)
(3,2)
(3,3)
(3,4)
(4,3)
(4,4)
(4,5)
(5,4)
{5,5)
{5,6)
(6,5)
(6,6)
{6,7)
(7,6)
(7,7)
(7,8)
(8,7)

Pade

777.7
—2127

7548.6
7519.1

—24 751
80 773.6
78 792

—252 340
846 473
846 652

—2752 719
9205 508
9174 623

—30 381 945
101 941 199
101 543 745

—338 086 890
1133485 933
1133487 959

792
—2148

7716
7716

—23 262
79 512
79 S12

—252 054
846 628
846 629

—2753 520
9205 800
9205 800

—30 371 124
101 585 544
101 585 544

—338 095 596
NT
NT

%%uo error

1.8
0.97
2.2
2.6
6.4
1.6
0.91
0.11
0.018
0.0028
0.029
0.0032
0.34
0.036
0.35
0.041
0.0026

0.93
—0.34

0.32
0.32

—0.16
0.13
0.13

—0.073
0.060
0.060

—0.032
0.028
0.028

—0.013
0.014
0.014

—0.005

The results are shown in Table XXVIII. Here again the
results are very good. The results are much improved
when the correct series is used. Somehow the PAP works
for what we may call the natural series (NS) and not for
the unnatural series (UNS) which is what the series with
an error apparently were. NS are derived from functions
with sensible analytic continuations outside their radius
of convergence and UNS are not, as the PA is a form of
approximant analytic continuation.

Examples of NS are given in this paper, for instance,

NS tanhX

1,2, 3,4

UNS tanhX+ 10 X

1,2, 3, 10

(4) Consider the spontaneous magnetization

TABLE XXVI. ding/dw where y is the magnetic susceptibility for the 20 square lattice Ising model
of ferromagnetism (high-temperature expansion). See Tables XXI and XXII. NT refers to the next
(unknown) term.

(X,M)

(1,1)
(1,2)
(2 1)
(2,2)
(2,3)
(3,2)
(3,3)
(3,4)
(4,3)
(4 4)
(4 5)
(5,4)
(s,s)
(5,6)
(6,5)
(6,6)
(6,7)
(7,6)
(7,7)

No. of input
coefticients

3

5
6
6
7
8
8
9

10
10
11
12
12
13
14
14
15

Pade

98
201

82
288
961
963

1820
4876
5172

10 160
33 584
33 932
67 746

177 201
178 461
370 472

1033 105
1034923
2172 702

48
164
164
296
356
956

1760
5428
5428

10 568
31 068
31 068
62 640

179092
179092
369 160

1034 828
1034 828

NT

error

104
22.8
49.8
2.8
0.48
0.76
3.4

10.2
4.7
3.9
8.1

9.2
8.2
1.1
0.35
0.36
0.17
0.009
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TABLE XXVII. Bernoulli numbers: 1/6, 1/30, 1/42, 1/30, 5/66, . . . .

(N/M)

(2, 1)
(2,2)
(2,3)
(3,3)
(3,'4)

(4 4)
(4,5)
(5,'5)

(5,6)
(6,6)
(6,7)
(7,7)
(7,8)
(8,8)

Pade

0.0467
0.1986226
1.00236
6.4426

51.7136
508.917

6040.26
85 220.6

1411219.5
27 123 755.9

599 135 504.1

15 077 304 588.9
4289 118(5 )

13 697 456(6)

Exact

0.7576
0.25311
1.1667
7.09216

54.9712
529.124

6192.12
86 580.3

1425 517.2
27 298 231.1

601 580 873.9
15 116315 767.1

4296 146(5)

% Error

38.4
21.5
14.1
9.2
5.9
3.8
2.5
1.6
1.0
0.64
0.41
0.26
0.16

4.62
1.47
1.38
1.32
1.28
1.24
1.22
1.20
1.18
1.16
1.15
1.14
1.13

TABLE XXVIII. Euler numbers: 1,5,61,1385,50521.

(N, M)

(2, 1)
(2,2)
(2,3)
(3,3)
(3,4)
(4,'4)

(4,5)

Pade

31 446
2147 961

173 959 381
17 684 137 933

2273 197 781 041
356 692 782 234 136

67 755 523 470 897 901

Exact

505 21
2702 765

199360 981
19 391 512 145

2404 879 675 441
370 371 188 237 525

% Error

37.8
20.5
12.7
8.8
5.5
3.7

1.61
1.47
1.38
1 ~ 32
1.28
1.24

TABLE XXIX. Spontaneous magnetization coefficients for the body-centered-cubic lattice (PAD 6).

(N, M)

(3,3)
(3 4)
(4,4)
(4,5)
(5,5)
(5,6)
(6,6)
(7,6)
(7,7)
(7,'8)

(8,8)
(9,'8)

(9,9)
(10,9)

(10,10)
(10,11)

Pade

—6088.2
9972.7
9206.9

—90 185.7
202 969.7

—80 292.9
—1003 165.4

3573 063.9
—4587 323.8
—8306 222.5
53 984 689.5

—112671 954.3
5194 161.5

694 850 424.4
—2160 968 860.3

2231 643 228.6

—6264
9744

10014
—86 976
205 344

—80 176
—1009 338

3579 568
—4575 296
—8301 024
54012 882

—112640 896
5164464

694 845 120
—2160 781 086

% Error

2.8
2.3
8.1

3.7
1.2
0.15
0.61
0.18
0.26
0.06
0.05
0.03
0.58
0.0008
0.009

1.74
0.59
1.66
9.75
0.73
0.83

33.2
1.3
0.64
2.4
4.6
0.68
0.98

2935
1.0
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TABLE XXX. Spontaneous magnetization coeKcients for the face-centered-cubic lattice (PAD 7).

(X,M)

(5,5)
(5,6)
(6,5)
(6,6)
(6,7)
(7,6)
(7,7)
(7,8)
(8,'8)

(8,9)
(9,9)

(9,10)
(10,10)
(11,10)
(11,11)
(11,12)
(12,12)
(13,12)
(13,13)
(13,14)
(14,14)
(14,15)

Pade

—12 489.6
20 502.2
19254.3

—3 493.3
7 086.9
7 939.9

—26 890.7
—144 697.1

873 274.9
—429 070.1

45 663.5
—712 454.8
—619406.2
9 251 173.9

—1 5856 119.2
7 462 809.8

—10983 055.1

21 878 888.0
112690 152.0

—400 706 509.2
410 377 748.2

—23 3554 029.9

Exact

—12 924
19 536
19 536
—3062

8280
8280

—26 694
—153 536

507 948
—406 056

79 532
—729 912
—631 608
9279 376

—15 771 600
7467 336

—10935 114
21 835 524

112752 684
—405 576 168

410287 368

% Error

1.3
4.9
1.4

14.1
14.4
4.1

0.74
5.8

71.9
5.7

42.6
2.4
1.9
0.30
0.54
0.061
0.44
0.20
0.055
0.033
0.022

13.5
0.88
0.88
0.90

—16.3
—16.3
—0.19

2.8
1.58
0.76
0.76

—45.9
1.09

18.0
0.88
0.72

—2.09
—0.36

3.59
—1.69

0.71

coefficients for the face-centered-cubic lattice [18] (PAD
7). The results with S24= —467336 are given in Table
XXXI. However, this term was incorrectly copied from
the paper Ref. [21] to the volume Ref. [18]. The correct
value is Sz~ =7467336. When this is used one obtains (see
Table XXX above)

Thus again the PAP works for the correct series which is
apparently a NS while it does not for the incorrect series,
which is an UNS.

IX. THE R RATIO IN v LEPTON DECAYS

We consider the QCD result for [13,23]

[N /M]

[11/12]
[12/12]
[13/12]
[13/13]
[13/14]
[14/14]
[14/15]

Pade

7462 809.8—10983055.1

21878 888.0
112690 152.0—400 706 509.2

410 377 748.2—233 554 029.9

Exact

7467 336
—10935 114

21835 524
112752 684—405 576 168
41028 768

% error

0.061
0.44
0.20
0.055
0.033
0.022

0.72
—2.09
—0.36

3.59
1.69
0.71

(X,M)

(11,12)
(12,12)
(13,12)
(13,13)
(13,14)
(14,14)
(14,15)

Pade

7462 809.8
774 506 321.2

2263 518 931
—4720 901 059
—4081 493 897

2218 178 476
4179 549 493

Exact

—467 336
—10935 114

21 835 524
112752 684

—400 576 168
41 287 368

% Error

1697
7183

10270
4287
919
441

1.02
—789

1.09
3.59
1.69
.71

TABLE XXXI. Spontaneous magnetization coeKcients for
the face-centered-cubic lattice (PAD 7) (with error).

I (r~hadrons)
I (r~evv)

We considered this quantity in our first paper [1] but
only for X, =3 and Nf=3, where N, is the number of
colors [Gauge group in SU(N, ) ] and Nf is the number of
fermions (quarks)]. R, is known up to four-loop order
for arbitrary N, and Xf and we can predict the next
term. Here we consider R, for a range of values of N,
and Xf. We compare the PAP with the known result at
four-loop order. Our results are shown [30] in Table
VIII. In all cases SO=1. The [1/1] PAP gives S3 and
our estimate for S4 is given by the [1/2] and [2/1] PAP's.

It can be seen that the agreement between the predict-
ed S3 is remarkably good. Moreover, the [1/2] and [2/1]
PAP's for S4 agree very well also.

X. BERNOULLI NUMBERS, EULER NUMBERS,
AND FIBBINACCI NUMBERS

The Bernoulli numbers are 1/6, 1/30, 1/42, 1/30,
5/66, . . . , and, as we shall see, form a NS. The results
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are shown in Table XXVII. It can be seen that the re-
sults are interesting and the % error decreases monotoni-
cally, reaching 0.16% for the [7/8] PAP.

The Euler Numbers are 1, 5, 61, 1385, 50521, . . . , and
also form a NS. The results are shown in Table XXVIII.
Again the results are very good.

The Fibbinacci Numbers are 1,1,2,3,5,8, 13, . . . , . It
can be shown that in this case the [N/M] PAP is exact
where M ~2. Moreover if one generalizes to a, b, a +b,
a+2b, 2a+3b, . . . , the PAP is still exact.

XI. SKRIKS WITH UNCLEAR SIGNS

Although we will discuss series with unusual sign pat-
terns (Sec. XIII), there are some series for which no sign
pattern is apparent. We will consider here four such
series [18] which we denote as PAD 6, PAD 7, PAD 9,
and PAD 10. PAD stands for Pade approximant data.
We will see that, in spite of the fact that no sign pattern
can be discerned, the PAP's are still accurate and the es-
timation method works. In fact, one obtains not only the
correct sign, but also an accurate value.

In Table XXIX we present the results for the spontane-
ous magnetization coefficients (SMC's) for the body-
centered-cubic lattice (PAD 6) [18]. It can be seen that
the results are very good.

Table XXX shows the results for the SMC for the
face-centered-cubic lattice (PAD 7) [18]. Again the re-
sults are excellent. Table XXXII gives the results for the
low-temperature ferromagnetic susceptibility coefticients
(I.TFSC's) for the body-centered-cubic lattice (PAD 9)
[18]. Again the PAP's are very good. Table XXXIII
shows the results for the LTFSC for the face-centered-
cubic lattice (PAD 10) [18]. Again the results are in-
teresting.

To emphasize how remarkable it is that the PAP
method works for PAD 6, 7, 9, and 10, we present the
signs of these series in Table XXXIV. For PAD 6, once
So, . . . , S6 are given (note the slash) then S7 Ss S2,
give the correct signs in each case. The probability for
that, if the signs were random, would be
p =1/2' =3X10 . Similarly, for PAD 7 all the signs
from S», . . . , S29 are correct. In this case p =2X10
Similarly, for PAD 9, p =4X10 and for PAD 10,
p =6X10 . It should be emphasized that the numbers,
as well as the signs, are necessary for this to work. Al-
though we do not understand these remarkable results, it
is apparent that these series are what we have called NS.

S= g a„(—x)",
n=0

S„=( —1)"a„, (12.1)

a„=f t "p(t)dt, n =0, 1,2, . . . .
0 (12.2)

p(t)~0, 0 ~t& ~ .

Theorem II. For every Stieljes series there is a Stieljes

XII. THEGRKMS

In this section we present several new theorems which
apply to the PAP's. First we present two known
theorems [9].

Theorem I. If S is in a Stieljes series for f (x) then the
diagonal Pade (N, N) provides an upper bound and the
(N —1,N) and (N, N —1) provide lower bounds to f (x)
where

TABLE XXXII. Low-temperature ferromagnetic susceptibility coefBcients for the body-centered-
cubic lattice (PAD 9).

(3 3)
(4,3)
(4,4)
(4,5)
(5',5)
(5,6)
(6,6)
(7,6)
(7,7)
(7,8)
(8,8)
(9,8)
(9,9)
(9,10)

(10,10)
(10,11)
(11,11)
(12,11)
(11,12)
(12,'12)

Pade

—541.4
373.3

2927.2
—12 251.9

21 263.6
26 571.5

—217 251.0
527 274.7

—159 529.3
—3017 585.1

10 902 952.4
—13 792 082.3
—29 926 176.9
190397 178.7

—399 555 494.7
—22 638 007.7
2802 235 075.0

—874 325 9456
—8755 658 406

8732 589 890

Exact

—576
519

3264
—12 468

20 568
26 662

—215 568
528 576

—164 616
—3014 889
10 894 920

—13 796 840
—29 909 616
190423 962

—399 739 840
—22 768 752
280 3402 560

—874 3064 909
—874 3064 909

6.0
28. 1

10.3
1.7
3.4
3.7
0.78
0.25
3.1
0.089
0.074
0.034
0.055
0.014
0.046
0.57
0.042
0.0022
0.14

1.0
0.61
8.0
1.6
0.57
1.8
7.2
0.70
0.87

59.8
1.2
0.65
2.7
3.9
0.67
1.0

2163
0.97
0.97



3928 MARK A. SAMUEL, GUOWEN LI, AND ERIC STEINFELDS

TABLE XXXIII. Low-temperature ferromagnetic susceptibility coe%cients for the face-centered-
cubic lattice (PAD 10).

{X,M)

(5,5)
(5,6)
(6,6)
(7,6)
(7,7)
(7,8)
(8,'8)

(9,8)
{9,9)

(8,10)
(10,8)
(7,11)
(11,7)
(9,10)
(10,10)
{11,10)
(11,11)
(12,11)
(12,12)
(12,13)
(13,13)
(13,14)
(14,14)
(15,14)
(15,15)
(15,16)
(16,16)
{17,16)
(17,17)

Pade

—1033.7
657.4
196.3
799.1

2180.6
—25 139.2

39 546.0
—9 424.4

520S 730.1

20 745.8
21 746.0
18 71S.6
22 522.3

—65 713.9
—378 156.4
1279 803.5

—993 854.7
173 506.0

—2148 733
—1829 882. 1

27 914928.5
—47 086 318.0

20 503 116.8
—36 5SS 836.9

76 910446.3
393 006 968.3

—140 3018 924
1403 798 649

—798 532 957.6

Exact

—1080
665
384

1968
2016

—25 698
39 S52
—3872
20 880
20 880
20 880
20 880
20 880

—65 727
—379 072

1277 646
—986 856

176 978
—2163 S04
—1818996

2787 108
—47 138 844

20 789 424
—36 509 652

770 55 330
393 046 656

—140 2934 816
140 3843 388

% Error

4.3
1.1

48.9
59.4

8.2
2.2
0.015

143
2.5(4)
0.64
4.1

10.4
7.9
0.020
0.24
0.17
0.71
2.0
0.68
0.60
0.16
0.11
1.4
0.13
0.19
0.010
0.0060
0.0032

1.5
0.78
1.9

—7 9
0.80

13.4
0.88
0.94

—54. 1
—54.1
—54.1
—54. 1
—S4.1

0.42
2.8
1.6
0.77
0.77

—67.2
1.1

19.2
0.89
0.74

—3.0
—0.20

3.4
1.7
0.72

function F (Z) to which it is asymptotic where

(12.3)

a„(—x)"
G(x)= g (12.4)

Thus F(Z) is the Borel sum of the series S if the Borel
sum exists. The Borel sum exists if ~a„~ ~n!C". C" for
some C and aH n & XO f'or some Xo. In general,

F(Z)= f p(t)G(xt)dt .
0

For example, the series

S= QS„x",
n=0

S„=( n) "n!, —

TABLE XXXIV. Signs for PAD 6, 7, 9, and 10.

PAD 6
7 10 20
+ —0+ —++ / ++ + + + ++ 1/2" =3 X 10
PAD 7
11 20 25 29
+ —00++ ++++/ + + + + + + ++ +
1/2"=2X10—'
PAD 9
7 20 24
+00+ —0+/ ++ ++ + + + —+
1/2' =4X10
PAD 10
11 2021 30 34
+0000+ —00+ + / + + + + + + — + —+ + + + + +
1/2" =6 X 10-'
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is a Stieljes series. This series is Borel summable and is
asymptotic to E(x) where

(the "C„are the binomial coeScients):

E(x)= J
" ' dt,

0 1+xt (12.7)

which is finite for any positive value of x.
The results for x =0.1, 0.2 have been given in an ear-

lier pape.". The results converge to E(x). In fact, we
have been able to obtain a 32-figure agreement to E (0. 1).
For the series S =ga„x" the integral in this case is

1)nC . ( 1 )n(n —1)(n —2)/6

(
—1)"C ++++

(
—1)"C5: +++++ +

( —1)"C6. ++++++

(13.1)

E'(x)= f " '
0 1—xt

(12.8)

The integrand has a pole and the integral is not Borel
summable. However, if one uses the principal value for
E'(x) the results again converge to E'(x) although here
we are unable to get the accuracy noted above for E (x).

Theorem III. If the [N/M] PAP is exact then the
PAP's [N + 1/M] = [N/M + 1). The proof of this
theorem is straightforward using the linear equations of
Sec. II.

Theorem IV. If the [N/M] PAP is given by
[N/M]=C/D and the [N+1/M+1] PAP is given by
[N+1/M+1]=N'/D', then D'~S~+~+, D —C. The
proof of this theorem follows from the determinental rep-
resentation [8] for [N/M] and [N + 1/M + 1]. It follows
that if [N/M] is exact then D'=0. In this case one gets
either [N+1/M+1]= ~, or 0/0. In the latter case, the
[N + 1/M + 1] PAP may still be very accurate.

A consequence of theorem III is that if the [N/M]
PAP is relatively precise compared with neighboring pre-
dictions then the PAP's [N+1/M] and [N/M+1] will
be very close to being equal. A consequence of theorem
IV is that if the (N, M) PAP is relatively precise com-
pared with neighboring predictions, then the
[N+1/M+1] PAP may be very big and much larger
than the exact result, and hence, the % error may be
large.

Theorem V. Iff (n)= S„+)/S„,then

Now one can calculate the e„and the A„=1+e„. For
example, for "C&, 3„=+1,and e„=0. It is obvious
from Eq. (6.4) that the % error P„„,is zero,

P„„„[n/1]=0, n =1,2, . . . . (13.2)

Now for "C„
3„=1+g„=—1 (13.3)

and the PAP is exact. This is also true for
A„= 1+@„=1. From Eq. (6.6) we find that

P„„,[n/2]=0, n =1,2, . . . , (13.4)

and the PAP is exact. From Eq. (6.10) we find that for
nC

3

P„„,[n/3]=0, n =2, 3, . . . ,

for both A„=1 and A„=—1.
From Eq. (6.14) one can easily show that for "C4

P„„,[n/4]=0, n =3,4, . . . ,

(13.5)

(13.6)

for A„=1, 3„=—1, and 3„(—1)". One can continue
this process for "C5, etc. Once the PAP is exact
it remains exact as one goes from [n/1], n =0, 1, . . . ,
to [n/2], n =1,2, . . . , to [n/3], n =2, 3, . . . , to
[n/4], n =3,4, . . . , etc.

In general, we have shown that for m ~ 3, and

f (n +1)—f (n)
f(n) (12.9)

nCS„=[
—1] ar" (13.7)

This is a trivial relation which will be of use later on. If
e„=O then the PAP is exact. For 6„%0, however, the
PAP may still be exact due to cancellations.

Theorem VI. If one makes the scale change x ~x'= Ax
then the % error for the PAP is unchanged. This can be
seen from the % error in terms of the 6„(See Sec. VI).

XIII. SIGNS AND SUMS
OF GEOMETRIC SERIES

As we have shown in Sec. II, the PAP [N/M] is exact
for a geometric series (GS), S„=(+1)"ar"for all [N/M],
M )0. Here we generalize this result for sums of GS.

We have proved the following. The [1/2] PAP is exact
for the sum of 2 GS. The [2/3] is exact for the sum of 3
GS. The [3/4] is exact for the sum of 4 GS. The general-
ization of this result is obvious. In each case the PAP's
remain exact as one goes up in N and M.

Now we can add diFerent sign sequences as «llows

that the corresponding 3„'s are given by

(13.8)

3„=1+a /n,
one can easily show that

p [n /2] ——2a /n

(13.9)

(13.10)

and the error decreases rapidly as n ~~. If, however,

3„=—1+a /n (13.11)

the error decreases more slowly as n ~ 00,

p [n /2 ]—4a /n (13.12)

Thus A„=+1 with the sign sequence given by "C z.
For high enough Pade's, as discussed above, the PAP is
exact.

If
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(0,1)

(1,2)
(0',2)
(2,3)
(1,3)
(0,3)
(3,4)
(4,5)
(3,5)
{5,6)
{7,8)

(15,16)

nC

1

2
1

3
2
1

4
5
4
6
8

16

"C2 nC "C4

TABLE XXXV. Sums of geometric series and different sign
sequences.

n

5„=(—1)"a„= = 1 t "p(t)dt,2n+1 0

where

(14.1)

not reliable, but the PAP and the Pade are very good.
The Pade gives reasonable results even for X =20.

We next consider 4 tan 'X, where for X = 1 the resu1t
should be m. Our results are shown in Table XXXIX.
Again the PAP's are very accurate and we obtain ~ to 14
figures.

Once again the Pade and the PAP are excellent while
the partial sums are not, especially for large X. In fact,
we have obtained m in 32 figures, but due to space limita-
tions we cannot present that many figures here. From
Table XXXIX one can see that theorem I of Sec. XII is
satisfied here. The reason is that the expansion for
4 tan 'X is a Stieljes series with

where P„„,= 100p. It is interesting to note [24] that the
double-geometric series I, ar, abI, a br, a b p, . . . , is a
special case of the sum of two geometric series. Similar-
ly, for the triple-geometric series, etc.

In each case one has to go to higher-order PAP's to get
exact results. One then obtains a table. (Table XXXV)
This table shows the number of GS's (summed for which
the PAP is exact). Once the sign pattern is learned from
one or two complete cycles, the PAP gets all the rest of
the signs (and number) correct. This can be understood
by realizing that we have (for 1 GS) a sum of GS deter-
mined from the sign patterns. For example, for "C& we
need only two terms, for "C2 we need four terms, for "C3
we need eight terms, for "C4 we need eight terms, for "C5
we need 16 terms, etc.

Now using the results in Sec. VI, if we set all e„=e,
n =0, 1,2, then we get cancellations in the formulas for
the % error and we obtain Table XXXVI. Thus the %
error decreases as we go to higher order for two reasons.
The power of e increases and e itself decreases.

XIV. OTHER SERIES

p(t)=, 0 ~t ~1
1

2

p(t)=0, t )0
and, hence,

p(t))0 .

We next consider the series

f (n) =S„+(/S„=a +bn
1+en

for arbitrary a, b, and c.
Our result is (P„„,= 100p)

p [n —1/2]—2(b —ac)(ac bc b)— —
b'c'n 4

Thus the error decreases rapidly as n increases.
Next consider the series

a +bn
1+en

for arbitrary a, b, and c. Our result is

(14.2)

(14.3)

(14.4)

(14.5)

(14.6)

In this section we present our results for various other
series. First we consider [25] tanhX where the series con-
verges only for X(vr/2. We give our results in Tables
XXXVII and XXXVIII. It can be seen that the PAP's
are excellent and we obtain accurate values for tanhX,
even for X )n/2.

One can see that the Pade result is much more accurate
than the partial sums. For x =10 the partial sums are

6(b —ac)
bcn

and the error decreases even more rapidly.
Consider the series

(14.7)

S„=a+bn . (14.8)

It is not hard to show that the (n —1,2) and higher
PAP's are exact in this case. Now let us consider the

TABLE XXXVI. Relative error p for all e„=e.

XO
1

2
3
4
5

26
2E2

262

26'2

2E

2E2

—6e'
—6e3
—6e'
—6e'

E

2E'2

—6e'
—24e4
—24e4
—24e4

E

2E'2

—6e3

—24e4
—120m '

E'

26' 2

—6e3

—24e4
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TABLE XXXVII. Expansion for tanh x and exact value for x = 1 (tanh 1=0.76 159415595 576489).

(N, M)

(1,1)
(1,2)
(2 2)
(2,3)
(3,3)
(3,4)
(4,4)
(4,5)
(5,'5)

(5,6)

Pade
(% error)

0.041
0.62( —3)
0.62( —5)
0.42( —7)
0.22( —9)
0.85( —12)
0.68( —14)
0.94( —14)
0.94( —14)
0.94( —14)

Partial sum
(% error)

5.0
2.0
0.83
0.34
0.14
0.055
0.022
0.0091
0.0037
0.0015

Exact NT

—0.05 396 825
0.021 186 949

—0.00 886 324
0.00 359 213

—0.00 145 583
0.00 059 003

—0.00 023 913
0.9692( —4)
0.3928( —4)
0.1592( —4)

Estimated NT
(%%uo error)

1.18
0.046
0.11(—2)
0.20( —4)
0.25( —6)
0.24( —8)
0.19( —10)
0.11(—12)
0.13( —14)
0.83( —14)

TABLE XXXVIII. Expansion for tanh x and exact value for x = 10 (tanh 10=0.999 999 995 878).

(N, M)

(1,1)
(1,2)
(2 2)
(2,3)
(3,3)
(3,4)
(4,4)
(4,5)
(5,5)

Pade
(% error)

87.0
24.3
11.2
3.3
0.92
0.21
0.042
0.0071
0.0010

Partial sum
(% error)

0.80(7)
0.75(9)
0.77(11)
0.76(13)
0.76(15)
0.76( 17)
0.76(19)
0.76(21)
0.76(23)

Exact NT

—0.05 396 825
0.02 186949

—0.00 886 324
0.00 359 213

—0.00 145 583
0.00 059 003

—0.239 129( —3 )

0.969 154( —4)
—0.392 783( —4)

Estimated NT
(% error)

1.18
0.046
0.11(—2)
0.20( —4)
0.25( —6)
0.24( —8)
0.19(—10)
0.11(—12)
0.13(—14)

TABLE XXXIX. Expansion for 4 tan 'x and exact value for x = 1 (4 tan '1 =m.

=3.1415 926 535 898).

(N, M)

(3,3)
(3,4)
(4,3)
(5,'5)

(5,6)
(6,5)
(7,7)
(7,8)
(8,'7)

(8,'8)
(9',9)

(9,10)
(10,9)

(10,10)

Pade

3.14 161
3.141 589
3.141 587
3.14 159267
3.141 592 650
3.141 592 649
3.14 159265 361
3.141 592 653 586
3.141 592 653 586
3.1415926 535 903
3.1415926 535 898
3.1415926 535 898
3.1415926 535 898
3.1415926 535 898

Partial sum

3.284
3.017
3.017
3.232
3.058
3.058
3.208
3.079
3.079
3.200
3.194
3.092
3.092
3.189

Exact NT

—0.066 666
+0.058 824
+0.058 824
—0.0434 782
+0.039 999 999

0.0399 99 999
—0.0322 580 645

0.03 030 303 030
0.030 30 303 030

—0.02 857 142 857
—0.025 641 025 641

0.024 390 243 902
0.024 390 243 902

—0.0232 558 139535

Estimated NT

—0.06 657
+0.058 800
+0.058 794
—0.0434 779
+0.039 999 908

0.039 999 892
—0.0322 580 630

0.03 030 302 994
0.03 030 302 990

—0.02 857 142 848
—0.025 641 025 635

0.024 390 243 901
0.024 390 243 901

—0.0232 558 139531
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series r„=l/n", k =0, 1,2, . . . . (14.23)

S„=a+bn +cn (14.9)

One can show that the relative error for the (n —1,2)
PAP goes like

Remarkably the error here also goes like 1/n" with the
error given by

2k(k+1)

(14.10)

and, hence, decreases rapidly with n.
Finally let us consider two simple examples. First we

study the series

One can get Eq. (14.24) by merely replacing k by —k in
Eq. (14.22). We have proved Eqs. (14.22) and (14.24) us-

ing MAPLE.

XV. CONCLUSION
S„=n

The (n —1,2) PAP is given by

2n +4n —7n —12n —4S„+2=
2n —4n +1

and, hence,

—8 —4
42n +4n —7n —12n +4 n

and decreases rapidly with n.
Finally we discuss the series

r„=n

The [n —1/2] PAP is given by

S„+I =X/B,
where

%=3n7+6n —21n —36n +13n

+S4n +36n+8

and

B =3n —12n +15n —6n +1
and, hence, the % error is given by

p =X'/B',

(14.11)

(14.12)

(14.13)

(14.14)

(14.15)

(14.16)

(14.17)

(14.18)

We have presented a method to estimate perturbative
coefficients in QFT and statistical physics. We have
given results for the PAP's and a theorem for stepping up
or down in N for the [N/M] PAP. We studied the R and
R, ratios in PQCD, as well as the errors in the PAP. Us-
ing our computer program to solve the linear equations,
we presented a large number of examples from statistical
physics. We have found a large number of other cases in
which the method works well, but have not presented
them here due to space limitations.

The method is so reliable that it has enabled us to And

several errors in various publications. The method also
works in cases where there is no obvious sign pattern.

We have presented several theorems for Pade approxi-
mants and the PAP. We have studied sums of geometric
series and various sign patterns and have presented sys-
tematic results for them. Other mathematical series were
also considered.

In summary, this method of estimation works in a
large number of cases in a wide variety of areas. It
remains to understand which cases are natural series for
which the method works and which are unnatural series
for which the method does not work. Equation (6.15),
however, gives a sufhcient condition, but not necessary
condition, for a series to be a natural series.

After this work was done we were made aware of two
earlier papers on this subject. Luban and Chew [26] con-
sidered a„however their result for the [1/2] PAP is in-
correct. In their notation, it should be

where

X'= —36n +72n,
D'=3n +6n —21n —36n +49n +54n —36n +8,

(14.19)

and, hence, the % error decreases rapidly,

p ——12/n' .

In fact, we have shown that, in general, for

r„=n' k =O, 1,2, . . . ,

(14.20)

(14.21)

2k (k —1)
p (14.22)

%'e have also considered the example

the (n —1,2) PAP gives accurate results with the error
given by

=1[1/2] =
z (C0hi+2Ci Aide+ Czhz) .

Q2
(15.1)

Fleisher, Pindor, Raczka, and Raczka [27—29] discussed
the R ratio in QCD, but unfortunately used an incorrect
four-loop result. For recent results, see Refs. [28,29].
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Note added: Since this paper was initially written we
have made significant progress as follows:

(1) We have found a way of obtaining error bars for
our estimates. This makes our estimates more useful (see
Ref. [28]). These error bars are large when the estimate
is not accurate. In Table XXX (PAD 7) the [8/8] has a
71.9% error because the % error for the [7/7] is small.
See theorem IV. The [9/9] has a relatively large 42.6%
error but the error bars here are large. In Table XXXII
(PAD 9) the [4/4] has large error bars. In Table XXXIII
(PAD 10) the [6/16], [7/6], [9/8], and the [9/9] all have
large error-bars. The [9/9] has a very large error. This is
due to the fact that the [8/8] has a very small error. See
theorem IV.

(2) We have proven the following theorem which pro-

vides a sufticient condition for the PAP's to converge to
the exact result:

If g (n) =d lnS„/dn then a sufficient condition for the
PAP to be accurate is lim„„g(n)=0. Furthermore, if
e„=e '"'—1, and e„—3 /n then the relative error for the
[X/M] Pade is

—Mfd
NM

If e„-8/n then

M!B(B+1)(B+2) . . (B+M —1)
N2M

see Ref. [29].
(3) We have found several more errors in various pa-

pers.
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