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A method is discussed for reconstructing chaotic systems from noisy signals using a symbolic ap-

proach. The state space of the dynamical system is partitioned into subregions and a symbol is assigned

to each subregion. Consequently, an orbit in a continuous state space is converted into a long symbol

string. The probabilities of occurrence for difFerent symbol sequences constitute the symbol sequence

statistics. The symbol sequence statistics are easily measured from the signal output and are used as the

target for reconstruction (i.e., for assessing the goodness of fit of proposed models). Reliable reconstruc-
tions were achieved given a noisy chaotic signal, provided the general class of the model of the underly-

ing dynamics is known. Both observational and dynamical noise were considered, and they were not
limited to small amplitudes. Substantial noise produces a strong bias in the symbol sequence statistics,
but such bias can be tracked and electively eliminated by including the noise characteristics in the mod-

el. This is demonstrated by the robust reconstruction of the Henon and Ikeda maps even when the sig-

nal to noise ratio is =1. Applications of this method include extracting control parameters for non-

linear dynamical systems and nonlinear model evaluation from experimental data.

PACS number(s): 05.45.+b, 05.40.+j, 02.50.Ph

I. INTRODUCTION

In this paper we consider the inverse problem of recon-
structing a model of a dynamical system from measured
time-series data. Such a model might be used for predic-
tion, or control, or many other potential applications.
Constructing models from time-series data has a long his-
tory (see, e.g. , Ref. [l]). However, substantial gaps in
modeling capability remain.

Here we treat the following situation: the system we
wish to model is low dimensional and deterministic.
However, no physical system can ever be fully isolated
from its environment. Therefore, real systems will always
be subject to driving by various forms of dynamical noise.
In addition, the observational data we are given may be
polluted by substantial amounts of measurement noise.
Decomposing a given signal as "chaos plus noise" is not a
well-defined procedure without further constraints on the
decomposition process. In most physics applications,
these constraints are provided by the fact that one often
has some knowledge of the class of models to be con-
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sidered, both for the deterministic part and the noise
(e.g., the noise is white, I/f, shot noise, etc.). For the
decomposition of the signal into chaos plus noise to be
useful the deterministic part of the model should have
relatively few degrees of freedom and be as simple as pos-
sible. This can be made more precise by using, for exam-
ple, a minimum description length criteria [2] or some
other objective measure to avoid overfitting. In addition,
the noise part of the model should be as small in ampli-
tude as possible.

The long-term goal of the present work is to develop
techniques for the analysis and modeling of chaotic sys-
tems from short and/or noisy data sets. Our work is
model based and not black box based. One could be led
to the choice of models either by application of some
classification scheme (e.g. , Refs. [3] or [4]) applied to a
"mystery" signal, or by appropriate experimental design,
or by taking it as a working hypothesis to be tested. We
also assume that the desired model is continuous in the
state space variables. In principle, the techniques de-
scribed here can be used in ab initio reconstruction, but
we do not anticipate that this will be their main area of
application.

In a series of papers (see, e.g., Ref. [4] and references
therein) Crutchfield and co-workers have emphasized the
utility of a symbolic approach to the characterization and
modeling of nonlinear systems. They show, for example,
how to construct an optimal finite-state model using only
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the symbol statistics. Rechester and White [5,6] have
used a symbolic approach to develop a symbolic kinetic
equation as a means to estimate the underlying invariant
density. In the realm of signal diagnostics (as opposed to
modeling) Schwarz et al. [7] have used symbol statistics
to analyze solar flare data. Symbolic techniques have also
been used to analyze physiological signals (see, e.g. , the
review by Elbert et al. [8] and references therein). Also,
a "symbol plane" approach has been developed by Cvi-
tanovic, Gunaratne, and Procaccia [9] to extract topolog-
ical information from time-series data. See also [10] for
an application of symbol plane analysis to experimental
signals.

The interesting aspects of the present work center on
the use of symbol sequence statistics as the target for the
reconstruction of continuous models. In a previous
Letter [11],we considered the effects of additive or obser-
vational noise, especially the high noise situation, while
keeping the dynamical noise trivially small (numerical
roundoff). Here we will treat both observational and
dynamical noise, and neither will be limited to small am-
plitudes.

In the present paper we are interested in the basic na-
ture of reconstruction using symbol sequence statistics.
Therefore, we will focus on the following two questions:
(1) Is reconstruction via the symbol sequence statistics
robust (i.e., is it stable against fluctuations in sampling).
(2) Is the procedure convergent (i.e., is it possible to elimi-
nate bias in the estimation of the model)?

As one would expect, we find that symbol sequence
statistics are quite robust under moderate amounts of ob-
servational noise ( ~10%) or dynamical noise ( ~ 1%).
Consequently, parameter estimation produces reliable re-
sults. Substantial observational and/or dynamical noise
induces a strong bias in the symbol sequence statistics. In
spite of this, the resultant bias in parameter estimation is
much less dramatic and saturates as the noise amplitude
increases. As we will show, by including the noise
characteristics as part of the model the bias in parameter
estimation can be eliminated. Therefore, symbol se-
quence statistics are much more robust measures for
characterizing low-dimensional deterministic chaotic sys-
tems than other quantities, such as the Lyapunov ex-
ponents, the invariant density, etc.

The outline of the paper is as follows. In the next sec-
tion (Sec. II) we give a brief introduction to the topic of
symbol sequence statistics —how to measure them and
how to use them as a target for modeling. We discuss the
topic of symbolic dynamics in order to compare and con-
trast it with the symbol sequence statistics. Next, we in-
troduce the error landscape and discuss its generic prop-
erties by examining the error landscapes in detail for the
quadratic and Henon maps. There are two major effects
which limit the accuracy of reconstruction using the sym-
bol sequence statistics: finite sample fIuctuations and
noise. In Sec. III we first discuss the efFects of finiteness
of the data stream and noise on one's ability to estimate
the symbol sequence statistics. Once this issue has been
addressed, we then consider the effects on the error
landscape. Sections II and III are the foundations upon
which Sec. IV is built. In Sec. IV we discuss, finally, the

reconstruction of chaotic systems using the symbol se-
quence statistics including finite sample and noise effects.
In Sec. V we end with a summary and conclusions.

II. SYMBOL SKQUKNCK STATISTICS
AND THE ERRQR LANDSCAPE

In this section we give an introduction to the symbol
sequence statistics, and compare it with the more familiar
topic of symbolic dynamics. The key concept is the in-
troduction of a discrete partition in the continuous phase
space. This converts the analog signal into a symbol se-
quence, from which the symbol sequence statistics can be
estimated. The observed symbol sequence statistics can
be used as a target for measuring the goodness of fit of
proposed models. This motivates the introduction of the
error function 8. A plot of this function vs the model pa-
rameters constitutes the error landscape, and reconstruc-
tion of the dynamical system amounts to finding the glo-
bal minimum of this landscape. We examine the error
landscape for the clean quadratic and Henon maps, and
demonstrate that these landscapes are fractal.

A. Symbolic dynamics and symbol sequence statistics

Although we will not need much of the apparatus from
symbolic dynamics, our approach is inspired by the
power and simplicity of the ideas to be found there.
Hence, for completeness, we discuss the relationship be-
tween these two techniques. Symbolic dynamics is the
study of the symbolic representation of a continuous
dynamical system, f:M~M. This is obtained by intro-
ducing a partition, p=tP&, P , 2. . . , P ], which divides
the state space I into q disjoint sets, each of which is la-
beled with a symbol s; E I 1,2, . . . , q J—:S. Consequently,
the time evolution (xo, x&, . . . ) of the dynamical system,
f:M~M, is translated into a sequence of symbols label-
ing the partition elements visited by an orbit
s = tso,s„.. . [. After this translation the continuum dy-
namics f is replaced by a shift operation.

For a sufriciently long orbit, a statistical study can be
implemented to estimate the probability of occurrence of
different symbol sequences of various lengths. Here one
must assume that the statistics is time stationary.
Equivalently, we assume that all transients have died out
and the system has reached its asymptotic state on an at-
tractor in the underlying state space.

We introduce the following notation: the observed
time series is denoted by x„=x(t„)for n = 1,2, . . . , N.
(Here we will treat only the case of scalar signals x„CR'.
Generalizations are straightforward. ) This signal consists
of a contribution from a dynamical signal, y, (t„),and a
contribution from measurement noise rl( t„). Thus,
x(t„)=y,(t„)+g(t„).The dynamical signal is assumed
to come from a low-dimensional dynamical system that is
coupled to its environment. The efFect of this coupling
will be modeled as dynamical noise denoted by u(t).
Thus, the dynamical signal comes from a discrete-time
map,

y(t„+,)=F[y(t„)]+u(t„),
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or a Aow,

dt
"=F(y)+u(t), (2)

where y=(y„yz, . . . ,yz) and F is the low-dimensional
dynamical system. Here y, F, and u are all EIR" where d
is the number of degrees of freedom associated with the
low-dimensional dynamical system. Although u H R",
however, we do not assume that u can be generated by d
(or any finite number oA degrees of freedom (e.g., u may
represent coupling to a heat bath or thermal reservoir
with many degrees of freedom which we choose not to
model in detail, but only statistically as "noise"). In addi-
tion, in the present work we will consider only maps.
Many fiows of interest (e.g., flows bounded within a finite

region of the phase space and recurrent) can often be re-
duced to a mapping.

To convert the analog signal stream x (r„)into a sym-
bol sequence we pass it through a threshold function
which takes

X1~X2, . . . , X~ ~ S~ —$1,$2~. . . ~ S

where s„&(0,1). In the following work, a simple two-
symbol partition was used: if X„Cx*then $„=0and if
X„)x then $„=1with x* chosen to be the center of
mass of the data distribution. For a data sample of
length X the probabilities of various symbol sequences
can now be estimated. The symbol sequence statistics
can be conveniently summarized by the symbol tree:

Po

F01 710

oooo F001 5'010 7011 5 100 ~ 101 S 110 + 111

etc.

Here p001 is the probability of observing the sequence
001, etc.

The symbol tree is a compact summary of (coarse-
grained) information about multiple-time-step correla-
tions in the signal. Each level in the tree corresponds to a
particular length of symbol sequence. Our goal is to con-
struct a state space evolution rule [F(y)] which generates
the same symbol tree as the data down to some level L,
where L denotes the length of the sequence under con-
sideration (typically L = 5 was used).

In symbolic dynamics the notion of a generating parti-
tion is of central importance. A partition p is generating
if the partition, together with all its images and preim-
ages, divide the state space into arbitrarily fine regions in
a one-to-one manner [12]. That is to say, as the length of
sequences becomes arbitrarily long a given sequence la-
bels an individual point on the attractor [13]. Hence the
symbol sequence probability p. . . is a coarse-grained12 ''L
description of the underlying invariant distribution. As
one goes to deeper tree levels (longer sequences), this
description becomes finer.

The symbolic dynamics of systems with generating par-
titions are particularly useful in characterizing ergodic
dynamical systems [14,15]. By ergodic one means that
time averages and state space averages are equivalent for
any continuous function in the domain of the state space
under consideration [16].

A hierarchy of entropies can be defined based upon the
symbol tree. At the top of this hierarchy is the topologi-
cal entropy h (p) under partition p:

hO( )—:li
lnN(L)

L

h (p) measures the asymptotic rate at which X(L), the

number of different admissible sequences of length L, in-
creases as one descends to lower tree levels (L —moo ).
[X(L) should not be confused with the length of the mea-
sured data stream, denoted simply as X. The distinction
should be clear from the context. ]

If one takes into account the probability distribution of
different symbol sequences, a Shannon-entropy-like quan-
tity H(p, L) can be defined as

H (p, L)= —g p. . . ln(p. . . ), (3)

„q . H~(p L)
P 1Hl

where H~(p, L) is the order-q Renyi entropy [18] at tree
level L and is given by

H~(p, L)—= (1—q) 'in+ [p. . . ]i .

Considered as functions of the partition p, these entro-
pies are maximal for generating partitions, and such max-
ima are defined as the ith-order entropy h' of the dynami-
cal system f:M~M,

h'—:suph'(p) .
P

The h "s are invariant under change of coordinate repre-

where the sum is over all possible symbol strings appear-
ing at level L. H (p, L) increases as one descends to lower
tree levels and the asymptotic rate is given by the metric
entropy under partition p,

H(p, L)
L

Higher order entropies h q(p) can be defined as [17]
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sentation, hence they provide an experimentally accessi-
ble way to characterize a dynamical system. The metric
entropy of the dynamical system, h ' (the so-called
Kolmogorov-Sinai invariant) is of particular interest
since it is related to the positive Lyapunov exponents, ar-
guably the most important measure of chaos. It is known
that the metric entropy of a differentiable dynamical sys-
tem which preserves an ergodic measure with compact
support can be no larger than the sum of its positive
Lyapunov exponents, A, ; [19]:

A, &0

Equality (the so-called Pesin identity) holds if the ergodic
measure is invariant and has smooth density [20]. Thus,
a positive metric entropy for a deterministic system can
be taken as an indicator of the presence of chaos.

The mathematical rigor of symbolic dynamics and the
experimental convenience of coarse graining would seem
to guarantee this approach a much larger role than it
presently has in the experimental study of dynamical sys-
tems. However, the power of the symbolic approach is
overshadowed by the difFiculty of constructing a generat-
ing partition for any given system [12]. This has proven
to be nontrivial even in the well-studied Henon system
[5,12]. Important progress has been made for Axiom-A
systems where a prescription for constructing generating
partitions has been given and the Pesin identity verified
[21].

It is important to realize that, in addition to the above
considerations, in the presence of noise the very concept
of a generating partition becomes ill-defined since in-
creasingly long symbol sequences do not partition the
state space on ever finer scales, as was pointed out in Ref.
[13]. Hence, the interpretation of the symbol statistics
and the associated entropy hierarchy must be modified.
The symbol sequence statistics of noisy dynamical sys-
tems are still a measure of multiple-time-step correlations
in a noisy signal. This is true even though they might be
biased away from their noise-free values, and biased in
different ways for different types of noise.

It is, of course, possible that there are optimal parti-
tions through which such noise-induced bias can be mini-
mized. Such optimal partitions might be associated with
maximum entropy partitions (at least at low noise [13])
but a general method for finding such a partition in the
noisy case is not known. This is true partly because the
desired properties of such a partition have yet to be pre-
cisely articulated.

B. The error landscape

In general, the reconstruction of chaotic systems from
time-series data is done by varying the model dynamics
such that some error function is minimized. The error
function we have chosen is the "distance" between the
observed symbol tree and the tree generated by the mod-
el. The higher levels of the symbol tree can be computed
if the lower levels are known. Therefore, for some fixed
lowest level I., matching trees reduces to comparing only
this lowest level. For example, at level I =5, there are

2 =32 possible five-symbol substrings. Hence, the tree
branch space at this level is 32-dimensional and the sym-
bol sequence statistics (to level 5) are completely charac-
terized by the 32-dimensional tree branch vector T with
entries (To—=pooooo, T~ —=poooo&, . . . , T3& =—p»», ). We
define the distance between two different tree branch vec-
tors, T and T', as the Euclidean norm of their difference:

For the purpose of introducing the error landscape we
will consider the artificial case with no measurement or
dynamical noise. Thus, the observations represent pure
deterministic dynamics. We denote the tree branch vec-
tor measured from the data by To. Choosing a set of pa-
rameters A, for our dynamical model F(y;A, ), we iterate
Eq. (1) and calculate T(A, ), the tree branch vector for the
model dynamics. The error function 6'(A, ) is a function
on parameter space defined as

8(A, ) = //T(k) —
To// .

A plot of C(A, ) constitutes the error landscape. [In [11]
this function was denoted h(A. ).] Reconstructing the
dynamical system is equivalent to finding a global
minimum in this landscape.

Our first example examines the error landscape associ-
ated with the quadratic map, x„+&=Ax„(1—x„).We
chose a target value for A, , denoted by A,o. (We chose
A.o=3.75, which is known to generate chaotic behavior. )

An initial condition was chosen and iterated using the
map to produce a time series. The time series was then
used to produce a tree branch vector, TO= T(i,o). This
procedure was then repeated for many different values of
A, and the error functions 6(A, ;Ao) —= ~~T(A, ) —T(Ao)~~ were
computed. The results are shown in Fig. 1.

Note the "chaotic monument valley" studded with
high peaks shown in Fig. 1(a). These peaks correspond to
stable high-order periodic windows. Blowing up the re-
gion around A,0 reveals an extremely complex landscape,
Fig. 1(b). Since periodic windows are dense for the quad-
ratic map this rugged landscape is likely to be a fractal.
In fact, Ershov's recent theoretical work on the parame-
ter dependence of the invariant density for the tent map
[22] suggests that the error landscape we obtain should be
continuous, but not differentiable. We expect these quali-
tative characteristics to be generic even in higher-
dimensional parameter spaces. Explicitly, we expect the
error landscape associated with the symbol sequence
statistics to be fractal, with peaks corresponding to high-
order stable periodic motion.

Due to the complexity of the error landscape it is clear
that most conventional search routines will have
difficulty in finding the global minimum. In our study we
employed the adaptive simulated annealing (ASA) code
developed by Ingber [23]. This code has proved to be
capable of finding the global minima.

Our second example examines the error landscape gen-
erated by the Henon map [24],

on the parameter space of A, =(a,b). The parameter
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1.5
( (ao, bo), see Fig. 2(a). The error landscape we obtained

recovers all the features quoted by Gallas [25], and there
is a global minimum at A,~=(ao, bo). Such agreement im-
plies the ability to examine bifurcations using such error
landscapes.

For our last example we considered the error landscape
generated by the Ikeda map [30],

0.5
z =a —bz exp il- l'g

I+(z„~'

0.0
3.4 3.6 3.8 4.0

-D. i'5

0.10

—0 U~.

—0. v'25

0.08

b -3.v3.

0.06
—D. u35

0.04

0.02 —0 045
1.78 1.79 1.8 1.8' 1.82 1.83

0.00
3.745 3.747

I

3.749 3.751
I

3.753

FIG. 1. The error landscape of the quadratic map
(A p= 3.75). The fifth tree level is used. (a) overview; (b) blowup
view.

-0 . .~&5-=-=- —-

space portrait of the Henon map, a so-called "isodia-
gram, " has already been given by Gallas [25]. Basically,
it consists of vast regions of low-order periodic motion or
unstable' dynamics (~x~ ~Do }, and a bounded "chaotic
puddle. " Inside the chaotic puddle there are many is-
lands corresponding to stable periodic motion. The most
remarkable ones Gallas called "shrimps. " The dominant
shrimps lie along a line approximated by

b

- 0. C)25

—i) . U4-

, I'iilr P a

~"

b = —0.583a+ I.02S . (4) -0. 045'-
1.78 1.79 1.8 1.81 '. 82 1.83In addition, the thin shrimp "legs" extended parallel to

this line. Since the system can undergo a period-doubling
cascade as the parameters are varied these structures are
expected to repeat themselves on all scales.

The symbol sequence statistics for periodic motion (low
entropy} are very different from the symbol sequence
statistics for chaotic motion (high entropy). This distinc-
tion implies that, for a given dynamical system, there
should be some similarity between the "isodiagram" and
the error landscape, C(a, b) We have genera. ted the error
landscape for the Henon map for target parameter values

(b)

FIG. 2. The error landscape of the Henon map (ap=1.79,
b p

= —0.0385) is shown for the parameter range
a K{1.775, 1.83) and b E{—0.045, —0.015). (a) %'ithout noise,
the 15th tree level is used (the minimum is at the center of the
yellow area at the lower left while the maxima are red); (b) with
observational noise of amplitude 0.5, the fifth tree level is used.
The minima [now near the point around (1.784, —0.0365)] is in
orange while red is still assigned for the maxima (shrimps).
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with z=x +iy, as an independent test with similar re-
sults, i.e., the error landscape is fractal with peaks corre-
sponding to high-order stable periodic windows.

III. EFFECTS QF FINITENESS
QF THK DATA STREAM AND NQISE

Section II considered the artificial case of zero noise as
a means of introducing the symbol sequence statistics and
the error landscape. We also ignored the issue of the
effects of estimating the symbol sequence statistics using
only a finite amount of data. The present section forms a
bridge between the ideal sitnation discussed in Sec. II and
the applications to chaotic reconstruction in Sec. IV. Be-
fore using the symbol sequence statistics to do chaotic
reconstruction, one must deal with the fact that we can
only estimate the symbol sequence statistics from mea-
sured data; hence one must deal with the fluctuations in
estimates due to the finiteness of the data stream, and the
effects of noise. These technical issues must be dealt with
before we can claim to understand how to apply our tech-
nique to experimental data. The contents of Sec. III are
as follows: first we introduce some basic measures which
can be used to quantify the effects we wish to study;
second we discuss the effects of finite sample size; third
we discuss the effects of measurement noise; fourth we
discuss the effects of dynamical noise. In the final part of
this section we consider the resultant impact of these
effects on the error landscape.

A. Basic concepts

For the sake of clarity, we shall concentrate on an indi-
vidual tree level, L. Two quantities, the Shannon entropy
(more precisely, a Shannon-like entropy) and the bias
function, are useful in addressing the effects of noise. The
Shannon entropy for the Lth tree level is defined as

1 . ln( . . . ),
In(2L) + 1 2 . L 1 2 L

where the summation is over all substrings of length L.
[This is proportional to H (p, L) of Eq. (3) defined earlier. ]
HL is a direct analog to the metric entropy since it is pro-
portional to the metric entropy h' for large tree level
(limL „HL=h 'ln2).

As a measure of information gained or lost to the noise
we define Bl the bias function of the Lth tree level at
noise level o. to be

HL (o ) —Hl (0)&( )=
HL( ~ )

—HL(0)

Hc( 0I2 ) denotes the pure noise case. For white noise, of
course, this is the maximum entropy state and
HL(~)=1. Here the term "white" signifies that the
noise is delta-correlated in time, i.e., that
(rl;21J ) =(ri; )5;~ for measurement noise, and the ele-
ments of the correlation tensor for dynamical noise satis-
fy (u (t;)u„(t)) =(u )5,"5 . In our numerical ex-
periments we have used uniformly distributed and Cxauss-
ian distributed white noise, both of which had zero mean.
In the case of G-aussian noise, the noise level o. signifies

This should be contrasted with the Lth level of the "true"
tree

TL—:lim TL (N, O) .
X~ oo

(The true tree can only be estimated, of course, by com-
puting with a very long clean data stream. ) Bias effects
will be measured by examining the noise dependence of
the ensemble relative to the fixed reference point given by
the true tree. Toward this end, we compute the distance
of the ith sample tree from the true tree,

and the distance of the ith sample tree from the center of
mass of the ensemble,

dL"(N, o ) = ~~ITt' (N, cr ) —(Tt (N, cr ) )
~~

(N.B. at zero noise, DL and dL are identical).
In order to characterize the distribution of

TL'(N, cr), i =1,2, . . . , M, we compute both the means
and the standard deviations of DL"(N, o)and dL'(N, o ):.

M
(DL(N, cr)) = g Dt'(N, o ),

M,.
(7a)

M
(dL (N, o ) ) = g d~"(N, o ),

M,.
(7b)

the rms of the noise (o =(21 )'r, etc.). For uniformly
distributed noise (the type used most often in this paper),
it is more convenient to set o. equal to the width. Where
necessary, we will distinguish between the amplitudes of
dynamical and observational noise. Unless this distinc-
tion is made explicitly, comments regarding the effects of
noise should be understood to apply to both types.

The symbol sequence statistics are influenced by three
factors: the finiteness of the data sample, dynamical
noise, and measurement noise. To examine these effects
consider a large ensemble of symbol trees. We will as-
sume that each tree in the ensemble is constructed from a
symbol sequence of length X and there are M trees in the
ensemble. Furthermore, we assume that the symbol se-
quences used to construct the trees are polluted with
noise level o.. Therefore, each tree in the ensemble is only
a biased estimate of the "true" symbol tree one would ob-
tain from an infinitely long noise-free symbol sequence.

2LLet TL' (N, o )EIR,i =1,2, . . . , M denote a vector
constructed from the Lth level of the ith symbol tree in
the ensemble. This is a 2 -dimensional vector whose jth
component [Tz"(N, o )].=p. . . is the probability of

1 2 L

occurrence of the sequence (s„s2,. . . , sL ), where j is the
decimal equivalent of the binary symbol string s, s2. . .sL.
(Thus, if L =5 then 0:—00000, 1=00001,2=00010, etc.)

The center of mass of the ensemble, denoted as
(TL (N, o ) ), is given by

M
(TL (N, cr) ) = g TtI' (N, o ) .

i=1
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o'' '(N, o )=

oi"'(N, o )=

M
[D~'(No ) —(Dl (N, o ))]

I'. =1

(7c)
1/2

the distributions of D and d are identical [P(D)=P(d)],
as shown in Fig. 3. Also shown in Fig. 3 are the effects of
adding a substantial amount of noise: the center of mass
of the distribution of the T,(N, cr )'s becomes biased away
from the true tree. However, the distribution about the
biased center of mass, (Ti(N, o )), remains roughly the
same, i.e., P(d (N, cr ))=P(d (N, O)). Analogous results
are shown for the fifth level of the tree in Fig. 4. This will
be discussed in more detail in the following sections.

Another important measure is the distance between the
center of mass and the true tree: B. Effects of Rnite sample size

on the symbol sequence statistics

To clarify the meaning of these quantities, consider the
first tree level, Ti'(N, cr ) =(po,p, ), as an example. Al-
though T", (N, o ) is nominally two dimensional its entries
are probabilities. Hence, p0+p1 = 1, and the two-
dimensional vector T", (N, o. ) must fall on the line seg-
ment connecting (1,0) and (0,1). The first level of the true
tree T, lies somewhere on this line as well. We choose T,
as the origin and study the distribution of the T", (N, o )'s

along this line segment. We denote this distribution by
Pr (x) where x is the distance between T, and T", (N, o )

1

along the line segment.
In the zero noise limit, T~i'(N, cr ) is distributed symme-

trically about Ti, with (Ti(N, O) ) =T, in the N ~ oo lim-
it. Also, as mentioned previously, in the absence of noise

80.0

As we pointed out in the introductory comments to
this section, any symbol tree we compute is only an esti-
mate of what might be called the ideal tree, i.e., the tree
one would obtain using an infinitely long sample. In
practice, the ideal tree vector is approximated by com-
puting the tree using the entire data set:

Tl (o ) = lim TI (N, o )
g —+ oo

M
Tr' (N, o )=(TI (N, rr)) .

i=1

(N.B. at zero noise the ideal tree and the true tree are
identical. ) In practice the true tree is unknown, and we
only have experimental access to an estimate of the ideal
(noisy) tree. In general the elements of the ensemble will
be scattered in a cloud about the ideal vector, Fig. 4. The
radius of this cloud can be defined as

P(X) 4p p
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(9)

[i.e., r is the rms value of the set dl'(N, cr ).] Our numeri-
cal experiments indicate that r(N, o. ) scales as N '~ and
is only weakly dependent on the noise level, Fig. 5.
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FICx. 3. The distribution of T, (1V =5000, o.=0) and
T&(X=5000, o.=1.0) in the tree branch space. There are a to-
tal of 10' samples generated by the Henon map with a =1.790
and b = —0.0260. Upper: P(x); middle: P(D); lower: P(d).

FIG. 4. The distribution of T5(N =5000, o.=0) and
T&(X=5000, o.=0.7) in the (32-dimensional) tree branch space.
There are a total of 10 samples generated by the Henon map
with a =1.790 and b = —0.0260.
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C. EÃect of observational noise
on the symbol sequence statistics

The effect of observational noise upon the symbol tree
is relatively easy to understand. We begin by observing
that noise can induce a bias in the tree entries. To illus-
trate this consider the following example: a deterministic
dynamical system with a stable periodic orbit completely
contained within a single partition. Without loss of gen-
erality assume this partition is labeled by zero. A time
series representing this orbit would produce a symbol
string consisting of nothing but zeros. Hence,
[Tl.'(N, O)]0=1 and all other components of the vector(i)

T~i)(N, O) are zero for i = 1,2, . . . , M.
In the presence of sufficiently large noise (observational

or dynamical) the probability of a 1 in the symbol se-
quence is nonzero. Hence, the vector is "biased" away
from its "true" value. If the noise is uncorrelated in time,
and we take the o.~~ limit, then all symbol sequences
become equally probable. In this case all of the I.th level
symbol tree vectors in the ensemble approach
TL™x)=2 (1, 1, 1, . . . , 1), the maximum entropy vector.
Thus, the ideal tree TL(o )=(TL(N, o )) follows some
"bias curve" from its initial position, (1,0, 0, . . . , 0), to
the maxiinal entropy position 2 (1, 1, 1, . . . , 1), as o in-
creases from 0 to ~. The shape of this curve and its
high-noise end point depend on the characteristics of the
noise, e.g., colored noise will generate a different bias
curve than white noise.

More generally, the motion of a chaotic dissipative
dynamical system typically asymptotes to a strange at-
tractor. For these types of attractors the invariant densi-
ty (physical measure) has a highly nontrivial distribution

FIG. 5. The fluctuation of the symbol tree due to the finite-
ness of the data stream scales as r ~ X ' with r the radius of
the cloud and X the length of the data stream. The solid lines
are best-fit curves given by r =roiV ' . (a) clean Henon map,
r0=0. 8996; (b) noisy Henon map with observational noise of
amplitude 0.5 and dynamical nosie of amplitude 0.02 (0.3) in

x(y) component, r0=0.9226; (c) clean Ikeda map, r0=0.9434;
(d) noisy Ikeda map with observational noise of amplitude 0.1

and dynamical noise of amplitude 0.2 in both x and y com-
ponents, ro =0.9882.

consisting of many sharp peaks [26]. The peaks of such
distributions are closely related to low-order unstable
periodic orbits that reside in the neighborhood of the at-
tractor [27].

The observed density is the density one obtains from a
time series. It will be a convolution of the "true" density
with observational noise. The resulting observed density
will resemble the true invariant density except the irregu-
larities will have been smoothed" by the convolution
with the noise distribution. Substantial observational
noise is expected to broaden the peaks and lead to more
uniform symbol sequence statistics. As these statistics
become more uniform there will be a resulting increase in
the Shannon entropy.

In Fig. 6 we plot the Shannon entropy as a function of
observational noise level. The figure indicates that as the
noise level increases the Shannon entropy, Eq. (5), in-
creases. Similarly, the figure indicates that the bias func-
tion, Eq. (6) grows as the noise level increases. The effect
of sample size on symbol sequence statistics is shown in
Fig. 7.

D. Effects of dynamical noise
on the symbol sequence statistics

Here we wish to examine the efFect of nontrivial levels
of dynamical noise. By nontrivial we mean many orders
of magnitude larger than numerical roundoff. Unlike ob-
servational noise, dynamical noise affects the physical
trajectory of the system. As the amplitude of dynamical
noise increases the invariant distribution on the attractor
changes. The most notable change in the topology of the
attractor happens at the "tips" or "sharp folds" of the at-
tractor where the stable and unstable directions are de-
generate. In Fig. 8 we show clean and noisy attractors
associated with the Henon and Ikeda maps. One can see
that dynamical noise causes the tips of the attractor to
stretch further before folding back on themselves. This is
especially true as higher levels of dynamical noise are in-
troduced.

It is important to realize that sufIiciently large dynami-
cal noise can push the trajectory out of the basin of at-
traction. Therefore, in general there is an upper bound
(sometimes quite low) on the dynamical noise amplitude
that can be tolerated before stable dynamics is lost. This
is particularly true when the system is near a "crisis," i.e.,
when parts of the attractor are close to the basin bound-
ary. This upper limit is independent of the reconstruc-
tion method being used.

These subtleties aside, we observe through numerical
experiments that the effect of dynamical noise upon sym-
bol sequence statistics, and the resulting symbol tree, is
similar to that of observational noise. While the symbol
sequence statistics are quite robust in the presence of
moderate amounts of dynamical noise, substantial
dynamical noise produces a bias in the symbol sequence
statistics. The Shannon entropy, Eq. (5), was found to
generally increase as we increase the magnitude of the
dynamical noise that was coupled to the deterministic dy-
namics (see Fig. 9). The same increase was observed in
the bias function, Eq. (6). The slight decrease in the
Shannon entropy at small dynamical noise amplitude
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FICx. 6. The Shannon entropy and bias function in general increase upon the introduction of uncorrelated observational noise, but
they drop slightly at low-noise amplitude. The e6'ect of the observational noise on the symbol sequence statistics is limited to a bias
in the tree branch space. (The means and standard deviations of the quantities D and d are defined in Eqs. (7), while the solid line in
the third plot is 2)L [see Eq. (8)].) (a) The Henon map with a = 1.790 and b = —0.0260; (b) the Ikeda map with a = 1.0, b = —0.7,
~=0.4, and g=6.0.

might be associated with the so-called noise-induced or-
der [28]. The dips in the Shannon entropy and bias func-
tion are insignificant compared with the global trend of
increase. The effect of sample size on symbol sequence
statistics is shown in Fig. 10.

E. Effects on the error landscape

Although the efFect of noise (both observational and
dynamical) on the symbol statistics is, crudely speaking,
limited to a simple shift of the center of mass of the dis-
tribution, the ensuing effect on the error landscape can be
more dramatic. Here, one must distinguish between local
and global effects. Consider the following thought exper-
irnent: for a given model, with parameter values kp mea-
sure an infinite amount of noise-free data and compute
the "true" symbol sequence statistics. Use this data to
generate the true Lth-level tree, TL (A,~) (where the pa-
rameter dependence is now explicitly displayed). Con-
struct the "true" error landscape by using models from
the same class to generate infinite amounts of noise-free
data. The true error landscape is a graph of the following

function:

@'""'(~~o) = ll(Ti(~) —Ti(~o) II
. (10)

This landscape will possess a global minimum at A, =kp.
We now consider the effect of smal'l amounts of noise.

As discussed in the previous sections, the noisy symbol
statistics will exhibit only a small deviation from the
"true" symbol statistics. Hence Tr (A,~;o. && 1) TL (ko)
and the error landscape becomes

6(A, ;A())= ~~TL(A, ) —TL(AO,'cr)~~ .

It is important to recognize that, although the noisy vec-
tor lies close to the true vector, in general no choice of
parameter values A, will lead to an exact match of symbol
statistics. Thus, C(A. ) )0.

Continuity of the invariant distribution implies that for
small noise there will still be a global minimum, denoted

by A, (o ), in the neighborhood of A,o. Hence, the bias in

the parameter estimate, M.( o ) =A(cr ) —A,~, s,atisfies
5A.(cr )—+0 as o.~0. Because of this limiting behavior we
call this a "local" effect.
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noise are plotted against the sample size in the tree branch
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More damaging efFects can occur at high-noise levels.
As indicated above, high-noise levels produce substantial
bias in the symbol statistics. Therefore, for high-noise
levels it is possible for a new global minimum, far from
the target parameter values, to appear. This "global"
efFect is a bifurcation in the sense that the parameter esti-
rnate has a qualitatively new solution. Clearly if such a
bifurcation is present it will lead to a substantial error in
the estimated value of A,o. In the next section we will
show how to remove these efFects by including noise as
part of the model.
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IV. RECQNSTRUCTING THE DYNAMICS -1.0
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In this section we finally address the issue of recon-
structing a chaotic dynamical system using the symbol
sequence statistics. This requires finding the global
minimum of the error function. Because the error
landscape is fractal, this minimum cannot be found using
standard search routines (e.g., gradient descent). We
used the simulated annealing code of Ingber [23] which
performed well. Each of the topics of the preceding sec-
tion (finite-N fluctuations, observational and dynamical

Re(Z)

FIG. 8. The effect of dynamical noise on strange attractors
(Henon: a = 1.790 and b = —0.0385; Ikeda: a = 1.0, b = —0.7,
re=0. 4, and g=6.0). (a) Clean Henon attractor; (b) noisy
Henon attractor with dynamical noises of amplitude 0.06 (cou-
pled to the x component) and 0.7 (coupled to the y component);
(c) clean Ikeda attractor; (d) noisy Ikeda attractor with dynami-
cal noises of amplitude 0.3 (coupled to the x component) and 0.5
(coupled to the y component).
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FIG. 9. The Shannon entropy and, hence, the bias function generally increase upon the introduction of uncorrelated dynamical
noise, but they drop slightly at low-noise amplitude. The effect of the dynamical noise on the symbol sequence statistics is also limit-
ed to a bias in the tree branch space. (The means and standard deviations of the quantities D and d are defined in Eqs. (7), while the
solid line in the third plot is 2)L [see Eq. (8)].) (a) The Henon map with a = 1.790 and b = —0.0385; (b) The Ikeda map with a = 1.0,
b = —0.7, re=0. 4, and g=6.0.

noise, the error landscape) are revisited, now in the con-
text of parameter fitting.

In any experimental situation, one is restricted to using
noisy data to estimate the target tree. In the attempt to
reconstruct the underlying dynamics, one can pursue two
diferent strategies. At low-noise levels, the bias in the es-
timates of the symbol statistics should be small, hence the
model dynamics used to fit the data should be strictly
deterministic. At high-noise levels, the bias in the symbol
statistics will be substantial, possibly resulting in a global
change in the error landscape and subsequent degrada-
tion in the parameter estimates. This can be countered
by computing the model tree using a combined
deterministic/stochastic model. The noise characteristics
then become a new set of parameters to be estimated dur-
ing the fitting process.

A. Parameter fitting in a fractal error landscape

In this paper we are attempting to solve an inverse
problem. Since inverse problems can be notoriously un-
stable, the following two questions must be addressed: (1)
How robust is our ability to estimate parameters'7 (2) Do

small changes in the target tree entries lead to small
changes in the parameter estimates'

To answer these questions we used the Henon map,
with ao=1.79 and ho= —0.0385, to generate an ensern-
ble of sample time series. The ensemble contained 3600
samples each of length N =5000. Next we used these
samples, and a fixed partition, to form an ensemble of
symbol trees. For each tree we selected an initial guess
for the parameters and used the annealing code [23] to
minimize Eq. (11). This procedure results in an ensemble
of estimates for the parameters a and b. Initial guesses
for the annealing code [23] were randomly chosen from
the domain defined by a H (1.0, 1.8) and
b H ( —0.2, —0. 1), while the search range was specified to
be a H( —2, 2) and b H( —2, 2) [29]. The annealing code
was run for a fixed number of iterations (in this case
4X 10 ), and those samples that passed the error condi-
tion 6'(a, b) ~ 56 =10 were retained.

The results of our noise-free study are shown in Fig.
11. We found that approximately 600 of the 3600 sam-
ples passed the error condition. The samples that passed
the error condition produced parameter estimates that
form a cloud which straddles the true target parameters.
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Our numerical experiments indicated that there are two
ways to reduce the amount of scatter in this experiment.
The first method involves increasing the number of an-
nealing iterations. When this was done the rms scatter of
the parameter estimates, Eq. (9), reduced and even more
samples satisfied the error condition. The second method
to reduce scatter involved using longer symbol sequences
to construct the target trees. As stated above, finite sam-
ple lengths result in fluctuations in the tree entries. By
increasing the sample lengths these fluctuations decrease,

which results in reduced scatter in the parameter esti-
mates. This behavior suggests that there is no systematic
bias in our fitting procedure. We conclude from this
study that, in the absence of noise, the inverse problem is
stable and convergent.

Although neighboring target trees produce neighbor-
ing parameter estimates, the distribution of parameter es-
timates in parameter space can be nonuniformly skewed
along striations in the error landscape. This effect, for
the Henon map, can be seen by comparing the distribu-
tion of the parameter estimates (Fig. 11) with the error
landscape (Fig. 2). The long axis of the distribution in
Fig. 11 lies along the line given in Eq. (4) and corresponds
to a direction in which the error landscape in Fig. 2 has a
slow variation. The short axis of the distribution corre-
sponds to a direction in which the error landscape has a
sharp variation.

In an effort to quantify this behavior we note that, in
the absence of noise, there are two major factors affecting
the distribution of the parameter estimates. The first fac-
tor is the finite-X Auctuations previously discussed. The
second factor is associated with different optimization tri-
als. We found, not surprisingly, that using different ini-
tial guesses for the annealing code and/or changing the
bounds of' the search caused the annealing routine to pro-
duce diff'erent estimates for the parameter values (for a
fixed number of iterations and the same target tree). We
denote the standard deviation of the spread in the distri-
bution of the parameter estimates due to finite-N effects
by o.

&
and the spread due to different optimization trials

by 0.2.
In order to examine o.

z we constructed a single target
tree and performed many optimization trials, each trial
using different initial guesses or search bounds. We re-
tained the parameter estimates only if the trial satisfied
the error condition, 8 ~5m. Since all of the trials used
the same target tree the scatter in the parameter esti-
mates is a measure of o.2. The results are shown in Fig.
12(a) where we have plotted the mean values and the
standard deviations of the parameter estimates vs the er-
ror bounds. We note that o z decreases monotonically as
the error constraint is made more stringent.

The asymptotic limits of a and b in Fig. 12(a) are
a =1.792 and b = —0.0255 which differ from the target
values of a = 1.79 and b = —0.026. This difference is due
to a finite-N fiuctuation in the single target tree used.
This finite-N effect can be eliminated by choosing a
different tree from the ensemble for each new annealing
run. When this is done, the standard deviations of the
parameter estimates steadily shrink as one imposes
stricter error constraints, as can be seen in Fig. 12(b), and
the parameter estimates converge to the target values
a = 1.79 and b = —0.0385.

B. Parameter Stting in the presence of noise

-0.060
1.740

I

1.760 1.780
8

1.800 1.820

FIG. 11. Reconstruction results (parameter estimation) from
clean time series produced by the Henon map. Only those re-
sults with error function @(k)( 10 are retained.

Substantial amounts of noise (observational and/or
dynamical) produce a notable bias in the symbol sequence
statistics which induces a degradation in parameter es-
timations. Our numerical investigations suggest that the
bias in parameter estimations saturates rather quickly as
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the noise amplitude is increased (Fig. 13). We emphasize
that these comments hold for the case where noise is not
included in the modeling, i.e., the error function is given
by Eq. (11). The bias can be removed by including noise
in the modeling, as will be discussed in the next section.

To study the effect of noise on reconstruction, we once
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FIG-. 12. The standard deviation of parameter estimates of
the Henon system shrinks as one imposes a stricter error func-
tion constraint. (a) Many reconstruction (annealing) attempts
for one target (a =1.79 and b = —0.026) realization; (b) many
reconstruction attempts for many target ( a = 1.79 and
b = —0.0385) realizations.

again generated a large number of parameter estimates
and recorded those which satisfied specified error bounds.
(The error bound was set higher if the target was polluted
by higher noise. ) As before, the finite-N fluctuations are
dealt with by using different target trees for each optimi-
zation trial. Finally, the mean and the standard deviation
of the parameter estimates were computed and plotted
against the noise amplitude.

In Fig. 13, we plot the results for the parameter esti-
mates of a and b of the Henon system as a function of ob-
servational noise amplitude. In Fig. 13(a) the target was
set at (a =1.790, b = —0.026) and no dynamical noise is
present (aside from numerical roundofI). In Fig. 13(b),
the target values were moved to (a = 1.790,
b = —0.0385) and white dynamical nose of amplitude
0.01 was coupled to the x component, in addition to the
observational noise. In Fig. 13(c) the target parameter
values remains the same as in Fig. 13(b), but dynamical
noise of amplitude 0.02 for the x component and 0.3 for
the y component was present in addition to the observa-
tional noise.

The reconstruction results as a function of dynamical
noise amplitude are presented in Fig. 14. In all these
studies the target parameter values are fixed at
(a = 1.790, b = —0.0385). In Fig. 14(a) dynamical noise
is coupled to the x component and no observational noise
is present. In Fig. 14(b) dynamical noise is coupled to the
y component and observational noise of amplitude 0.1 is
present. In Fig. 14(c) dynamical noise is, once again, cou-
pled to the x component and observational noise of am-
plitude 0.2 is present.

From the results shown in Figs. 13 and 14 one can see
that symbol sequence statistics are reliable reconstruction
constraints in the presence of moderate amounts of obser-
vational and/or dynamical noise. In particular, two- to
three-digit accuracy was achieved for the Henon system
with observational noise of amplitudes up to 0.1 (about
10% of the signal amplitude) and/or dynamical noise of
amplitude 0.01 (about 1% of the signal amplitude). For
higher-noise levels the bias in parameter estimates satu-
rate (i.e., cease to grow with increasing noise amplitude)
even as the bias in the symbol sequence statistics contin-
ues to grow (see Figs. 6 and 9). As can be seen in Fig. 14,
even when the noise was substantial (i.e., the observation-
al noise becomes comparable to the signal, or the dynami-
cal noise reaches its limit before inducing divergent
motion), the parameter estimates are not too far off tar-
get. This is particularly true for the parameter a of the
Henon system.

The apparent success of this approach in recovering
the true dynamics in an extremely noisy environment can
be attributed to our choice of error function. The con-
straint of minimizing the difference in symbol sequence
statistics is much stricter than many other constraints
used in the past by other researchers (e.g. , time evolution
entropy, Lyapunov exponents, etc.). The emphasis in this
earlier work was to use metric invariants as the targets
for reconstruction, the argument being that this gave a
target which was independent of the coordinates (or data
variables) used. The symbol sequence statistics are not in-
variant, hence we must assume that the modeling is done
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in a manner consistent with the observations (as is typi-
cally the case in physics applications. ) Using the full
symbol statistics (as opposed to the metric entropy, for
example) leads to a sharper error landscape.

Take the first tree level as an example. TI'(N, o ) has to
fall on the line segment connecting (1,0) to (0,1). There
are two points, say, (po,p& ) and (p, ,po), having exactly
the same entropy. In the case of deeper tree levels, say
the Lth, TI"(N, cr ) lies on a hyperplane defined by

QJ:,'[Ti' (N, o )]J.= l. There are 2 permutations of the
entries of TI'(N, cr ) which give rise to the same entropy.
Hence, if the entropy were used as the target then each of
these would also give a global minimum. This is particu-
larly problematic in the high-noise situation when all the
permuted vectors are converging in the neighborhood of
the maximum entropy vector. Obviously, minimizing the
difference in symbol sequence statistics is a much more
discriminating measure.
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FIG. 13. Reconstruction results of the Henon system under different observational noise amplitudes. The target parameters are
ao =1.790 and bo = —0.0385. (a) No dynamical noise; (b) dynamical noise of amplitude 0.01 in the x component; (c) dynamical noise
of amplitude 0.02 in the x component but amplitude 0.3 in the y component.



SYMBOL SEQUENCE STATISTICS IN NOISY CHAOTIC. . . 3885

In the next section we will show that by including the
noise characteristics into the model the bias in parameter
estimates can be removed even when the noise dominates
the signal.

C. Modeling the noise

Since the tree branch vectors tend to move as a group
along a unique bias curve, the e6'ects of noise on the tree

can be taken into account by including a model of the
noise in the computation of the model tree. To be pre-
cise, consider the following example: suppose our target
tree was generated by the Henon map with parameter
values (ap bp) and an observational noise level of crp
The target vector is TL (kp, N, o p). We will model the ob-
served time series as a dynamical signal plus observation-
al noise. The dynamical signal is y(n+1)=F[y(n);A, ]
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FIG. 14. Reconstruction results of the Henon system under different dynamical noise amplitudes. The target is set to be
ao = 1.'790 and bo = —0.0385. (a) Dynamical noise is in the x component and there is no observational noise; (b) dynamical noise is in
the y component and there is an observational noise of amplitude 0.1; (c) dynamical noise is in the x component and there is an obser-
vational noise of amplitude 0.2.
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3.4

FIG. 15. The extended error landscape of the quadratic map
is plotted in the range A, E (3.4, 4.0) and observational noise am-
plitude E(0,0.6). The observed data was generated by the
quadratic map with A,o=3.75 and polluted by observational
noise of amplitude 0.4.

where F is the Henon map. The tree vector that results
from evolving the model for the observed time series,
TL(A, , X,o ), is computed using one component of the
time series polluted by measurement noise,x„—=yI(n)+q(n). The noise characteristics are another
set of parameters to be varied. In this extended parame-
ter space the error landscape is given by

6I"""I(k,cr;Ao, pro):—~~TI (A, ,X,cr) Tl (A—o,X, cro)~~ . (12)

This new error landscape will now have a global
minimum at (A, cr) =(A, ,o, pro) (i.e., we optimize the model
over A, and cr ). As mentioned in the preceding section, a
new effect now comes into play: as the observational

noise level increases all of the vectors are biased towards
the maximum entropy vector TL '"'. This causes the en-
tire error landscape to flatten and the global minimum to
broaden (Fig. 15). With such a fiat landscape if the sam-
ple length X is too short then finite-X fluctuations could
lead to false global minima and to poor resolution in the
parameter estimates. In principle this effect can be coun-
teracted by using longer sample strings. Therefore, given
computational resources, available data, and precision re-
quirements there exists an upper bound on the noise level
which can be tolerated.

Our numerical strategy was basically the same as be-
fore: a model of the observed time series was used to gen-
erate 640 sample strings of length X =2X 10 (compared
with N =5000 used for the zero noise computation). The
annealing code was run for a fixed number of iterations.
Due to the larger parameter space, the annealing code
was run longer (typically 15 000 iterations) in order to get
a substantial number of samples to attain the error bound
of 8("""I(a,b, o",ao, bo, cro) ~ 5C = 10 . Approximately
250 samples passed this error condition. As before, if the
annealing code was run longer, more samples joined the
convergent group and the rms scatter was reduced. Re-
sults are presented in Fig. 16 for a measurement noise
level of o (noise)/o (signal) ) 1. Most importantly, notice
that the cloud of parameter estimates straddles the neigh-
borhood of the target parameters. Thus, even though
noise produces a bias in the tree, by modeling the noise it-
self it is possible to remove this systematic error from the
parameter estimates.

To test further the robustness, we added modest levels
of dynamical noise in the generation of the target vector,
in addition to the substantial level of observational noise.
In this test only the observational noise was assumed in
our model of the observed time series. A summary of the
results is given in Table I. In Fig. 17, we show the phase
space portraits of the noisy Henon map (target) and the
reconstructed Henon map.
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FIG. 17. (a) Noisy Henon attractor with a0=1.790 and
bo= —0.0385. The observational noise is of amplitude 2.0,
while the dynamical noise is coupled to both x (0.01) and y (0.1)

components of the map; (b) the reconstructed Henon attractor.
The parameters are found to be a =1.78 and b = —0.041, see
Table I. The clean Henon attractor of a = 1.790 and
b = —0.0385 is shown in Fig. 8(a).

FIG. 18. (a) Noisy Ikeda attractor with a =1.0, b = —0.7,
a=0.4, and g=6.0. The observational noise is of amplitude
0.05, while the dynamical noise of amplitude 0.3 is coupled to
both the real and imaginary parts of the Ikeda map; (b) the
reconstructed Ikeda attractor with a = 1.006 and q =6.029, see
Table II. The clean Ikeda attractor with the target parameters
is shown in Fig. 8(c).

z =a —bz exp i~- l Tf"+' " 1+ ~.„i' (13)

The parameter fitting for the Henon system is reason-
ably sound over the whole dynamical noise range in
which the physical orbit does not diverge. lhis range,
however, proved to be quite limited, therefore we pro-
ceeded to repeat these experiments with the Ikeda map,
which can tolerate a much higher dynamical noise ampli-
tude. This allows us to demonstrate the feasibility of also
modeling substantial dynamical noise. We fit both a and

g in the Ikeda map [30],

with z=x +iy. The target parameter values of the map
were set to be ap=l ~ 0 bp= 0.7 Kp=0. 4, and gp=6. 0.
Its phase space portrait is given in Fig. 7(c). While the
observational noise of amplitude 0.05 (about 10%%uo of the
signal) was modest, three diFerent tests were run with

dynamical noise amplitudes of cr =0.1, 0.2, and 0.3. This
noise was coupled to both the real and imaginary parts of
the Ikeda map, Eq. (13). At each separate noise level, we
obtained a large number of realizations which satisfied
the error constraint of 8'"""'(0.01. These three groups
were then used to compute the mean and standard devia-
tion of the parameter estimates and to estimate the

TABLE I. Reconstruction results for the Henon system by including the observational noise level
into the model. There is also dynamical noise of amplitude 0.01 (coupled to x component) and 0.1 (cou-
pled to the y component of the Henon map) in the target, which is responsible for the remaining small
dc bias. The standard deviations of the reconstruction results are in parentheses.

Target
Noise
level

Reconstruction results

Noise level

1.790 —0.0385
1.790 —0.0385
1.790 —0.0385

1.0
1.5
2.0

1.781 260 (0.009 635) —0.040 784 (0.003 054) 1.026 127 (0.145 554)
1.781048 (0.014619) —0.040805 (0.004571) 1.507154 (0.046310}
1.781 131 (0.016977) —0.041469 (0.006 114) 1.994599 (0.037 629)



3888 TANG, TRACY, BOOZER, deBRAUW, AND BRO%N 51

TABLE II. Reconstruction results for the Ikeda map by incorporating the dynamical noise into the
model. There is also observational noise of amplitude 0.05 (about 10%%u~ of the signal amplitude) in the
target. The standard deviations of the reconstruction results are in parentheses.

1.00
1.00
1.00

Target

6.0
6.0
6.0

Noise
level

0.1

0.2
0.3

0.990225 (0.012 101)
1.005 913 (0.013724)
1.006474 (0.017266)

Reconstruction results

5.990 817 (0.061 517}
6.090413 (0.097 861)
6.029 555 (0.049 497)

Noise level

0.109 384 (0.011739)
0.200999 {0.008 038)
0.301 858 (0.025 179)

dynamical noise amplitude (Table II). The phase portrait
of the noisy Ikeda map (target), and the reconstructed
Ikeda map, are given in Fig. 18.

V. SUMMARY AND CONCLUSK)NS

We have addressed the problem of reconstruction of
chaotic dynamics from short and/or noisy data sets using
the symbol sequence statistics. Our goal has been to de-
velop a useful experimental technique. In particular, we
have demonstrated how to extract parameter estimates
for low-dimensional nonlinear dynamical systems using
the symbol sequence statistics as the target. We find that
this approach is highly robust even in the presence of ob-
servational and dynamical noise. Substantial noise pro-
duces a strong bias in the symbol sequence statistics, but
the bias induced in the parameter estimates saturates
quickly. We also showed that, even in the case where the
noise is comparable to the signal, it is possible —by in-
cluding the noise characteristics as part of the model —to
produce robust reconstructions. Potential applications
include nonlinear model validation, and nonlinear sys-
tems characterization, especially in circumstances where
one has some knowledge of the class of model to be used
and the data set is short and/or noisy.

In the more general ab initio or black box reconstruc-
tion problem, one begins only with a time series and a
very general guess as to the class of models to be con-
sidered. Many techniques have been developed to identi-
fy the proper dimension of the system and eventually
reconstruct a sensible phase space portrait [3]. Once this
is done, one can expand the dynamics in some functional
basis and the reconstruction amounts to finding the prop-

er expansion coefficients. This is equivalent to a parame-
ter fitting problem as discussed in the previous sections,
but now in a much higher dimensional parameter space.
In principal, therefore, our approach can be straightfor-
wardly extended to this situation. In practice, of course,
the computer CPU time required for convergence of the
annealing calculation (or any other nonlinear optimiza-
tion technique) quickly becomes prohibitive as the num-
ber of fitting parameters increases.

On the other hand, any expansion involves truncation
at some order. This is not only a practical consideration,
but also necessary to avoid overfitting. As one possible
solution to choosing optimal models, Rissanen's
minimum description length criterion [31] can be em-
ployed to guide such truncation. In fact, significant pro-
gress has been made recently by applying this criterion to
chaotic signal modeling [2]. As an example of applying
the symbolic approach described in this part to ab initio
reconstruction, one could combine it with the measure-
based orthonormal polynomial expansion method [32,33],
while Rissanen's minimum description length criterion
can be imposed to guard against overfitting. This is a to-
pic for future study.
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