
PHYSICAL REVIEW E VOLUME 51, NUMBER 4 APRIL 1995

Kinks and conformatianal defects in nonlinear chains
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We introduce a type of nonlinear model, in which the nearest-neighbor interactions have multiple
local minima, to describe simultaneously topological solitons (kinks) and localized static confor
mational defects We. analyze the dynamics of the kinks, including kink-defect interactions. By
numerical simulations and a collective-coordinate analysis, we 6nd that the kink propagation can
be strongly modified due to the presence of the conformational defects.

PACS number(s): 03.40.Kf, 63.20.Ry, 61.71.Bb, 63.20.Pw

The dynamics of topological solitons in many solids
can be described by the well known Frenkel and Kon-
torova (FK) model (see the review article [1]),which has
been used to study many physical phenomena including
charge density waves in quasi-one-dimensional conduc-
tors, commensurate-incommensurate phase transitions,
and domain walls in magnetic and ferroelectric systems,
to cite just a few [1—7]. In its simplest version, the FK
model describes a chain of particles (atoms) interacting
via harmonic forces and subject to a sinusoidal substrate
potential. Recently, several important generalizations of
this model have been proposed to describe more realistic
physical situations, e.g. , nonconvex interparticle interac-
tions [4—8].

Chain twisting in polymer crystals has been previously
modeled with the FK-type models [9—13], roithout includ-
ing very important types of physical excitations, which
are associated with torsional disorder such as —tgtg't-
defects in polymer crystals [13,14]. These conformational
defects play a very important role in the premelting phase
of the crystals as they are quite populous due to their low
conformational energy. Furthermore, kinks themselves
may be created more easily in the vicinity of conforma-
tional defects; this mechanism of defect-assisted kink cre-
ation was suggested by Boyd and Sayre [15] on the basis
of dielectric relaxation experiments on polyethylene (PE)
crystals.

The main objective of the present paper is to introduce
a type of nonlinear lattice model to describe not only
kinks but also conformational defects. We consider the
dynamics of a discrete system characterized by rotational
degrees of freedom P . The nearest-neighbor interaction
in the chain is described by the potential, W(P +i-

), which should be periodic in the relative displacement
x = P +i —P . To include conformational defects in our
model we assume that the periodic potential W(x) has
multiple local minima, and that it is approximated by

W(x) = I|.[1 —n cos(x) —P cos(3x)], (1)
n and P being positive, n+P = 1, and n « P. As shown
in Fig. 1, the function W(x) has a global minimum at
x = 0, corresponding to the ground state (GS), and two
local minima at x —+ 3, corresponding to metastable

states (MS). The energy difference between the GS and
the MS is AE = 2o.K.

Similar to the conventional FK model, the on-site (sub-
strate) potential, which is responsible for the existence of
topological kinks, is taken as

U(P) = Uo[l —cos(pP)],

where the parameter I characterizes the inertia of rota-
tion. As has been mentioned above, the chain model
(1)—(3) can be used as an alternative phenomenologi-
cal description of the twisting motions of a long polymer
chain in crystals. In this context, the dynamical variables

represent the setting angles of polymer units. The
nearest-neighbor interaction in such a chain is mainly due
to the torsional energy of the polymer backbone [13], so
it is naturally periodic and has multiple local minima.
The substrate potential U(P) models the effective force
field due to the whole crystal environment [9—14].
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FIG. 1. Structure of the nearest-neighbor interaction po-
tential.

p = 1, 2, ... being an integer.
The equations of motion for the discrete chain may be

written in the standard form,

Irti„—[W'(P„+, —P„) —W'(P„—P„,)] + U'(P„) = 0.

(3)
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For the sake of simplicity, we use dimensionless units
below, assuming I = K = 1. In the continuum ap-
proximation, valid when P changes slowly with n on
the scale of the lattice spacing (equal to unity), we have

/~+i —P~ P~, and Eq. (3) is reduced to

Ptt —W" (Q )P + U'(P) = 0, (4)

where W"(P ) = o. cos(P )+9P cos(3$ ). Assuming that
Eq. (4) has traveling wave solutions of the form P(x, t) =
P(x —Vt)—:P(z), we have

where

F(V) = max(F (Q„V)) ) 2Ue,
z

(6)

F(P„V) = ——V P, + nP, sin(P, ) + 3PP, sin(3$, )

+n[cos(g, ) —1] + P[cos(3$,) —1]. (7)

Expanding F(P„V) into Taylor series in P, we find
from (6) and (7) the (approximate) critical velocity:

V P„—[icos(P, ) + 9P cos(3$,)]P„+pUe sin(pP) = 0.

(5)
From the first integral of Eq. (5), we can show that kinks
exist if and only if the following condition holds (see Refs.
[5,8]):

The analytical solutions (9) can be considered as an
approximate kink solution of (3), and it also can be used
as an initial condition in numerical calculations to find
more accurate kink solutions of the discrete system. We
found that Eq. (9) can provide a fairly good approxima-
tion to the kink solution of Eq. (3) [see Fig. 2(a)]. For
example, at n = 0.3, P = 0.7, Ue ——0.1, and p = 1, Eq.
(10) gives E, = 6.499, while the numerical calculation
yields E, = 6.396.

In addition to the kinks, many types of localized static
solutions exist in the discrete system (3) (P„=0, for all
n). Such static defects appear due to the existence of
the deep local minima (metastable states) in the poten-
tial W(x). Figure 2(b) shows one of the simplest defect
located at the site m = 100. This defect can be approx-
imatedasP =o s6, n= 1, 2, ..., whereh = 1
for n = m, and b = 0 for n g m. The sign function
o = +1 or o. = —1 represents two types of defects de-
noted by D+ and D, respectively. The energy of such
a defect can be estimated to be Eg ——2LE = ao;, and
at a = 0.3, P = 0.7, Ue ——0.1, and p = 1 the analyti-
cal and numerical results are 0.9 and 1.032, respectively.
Note that the system (3) supports many other types of
conformational defects, which might be viewed as super-

7 I

V a + 9P —/4Up(o! + 81'). (8)
6 n=0.2, P=

p=& Uo=

Apparently, this critical velocity is smaller than the
phonon velocity, V~t, = i/n+ 9P. Setting V„= 0 in
Eq. (8) gives a critical value for the parameter Ue,

U 4 ( +8]p) If the height of the substrate potential
is larger than 2U„, there will be no smooth kinks in the
system.

Given the complexity of the nearest-neighbor interac-
tion, it seems impossible to obtain exact analytical kink
solutions for Eq. (5) even though its first integral is
available. However, reasonably accurate solutions can
be calculated by a perturbation method or variational
approach [8]. Here in the case that the substrate po-
tential (2) is much weaker than the nearest-neighbor
interaction (1), it is appropriate to assume that P(x)
varies slowly (~ P ~

&& 1), so that W" (P )
—W"

~ y e ——

(n + 9P) = K; then Eq. (5) can be approximated
by the well known (static) sine-Gordon (SG) equation,
(V —K)P„+pUe sin(pP) = 0. Therefore the kink (an-
tikink) solution of Eq. (4) may be approximated by

g4 (T, t) = —tan exp 6 ), (9)
4, p[x —X(t)]
p (K —V2)/Up
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where A (t) = Vt + xo, V being the kink's veloc-
ity. In fact, it is easy to verify that ]dgl, (x, t)/dx~

2/Ue/(K —V2) « 1, if Ue « K —V. Using the ap-
proximate analytical solution (9), the energy of a static
kink is estimated as

E = 2K +Up 1 —cos p dx=8 UpK p.

(10)
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FIG. 2. (a) Static kink solution obtained by numerical sim-
ulations with damping (dashed curve), compared with the
analytical approximation (9). (b) Shape of the conformation
defect calculated numerically (dashed curve), compared with
the simple analytical approximation (solid curve with filled
circles).
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tions, part of the kink's kinetic energy will be lost due
to radiation of small amplitude phonon waves, thus a
low-velocity kink may be trapped in the potential well
created by the defect, while a high-velocity kink will
be able to pass the defect with a reduced final veloc-
ity. If the kink comes to the defect from the left [see
Figs. 3 and 4(a)], the kink may be refkcted by the de-
fect if its initial velocity is in a small interval which de-
pends on the potential barrier bU. Consider the kink
as a classical particle and suppose that its kinetic en-
ergy after collision is bEI, ——2M, V; —2M, V z, where
V; is the kink s initial velocity, and V, i is the critical
velocity below which the kink will be trapped by the
defect. Then the condition for the kink to be rejected
is bEI, & bU, from which we find the critical value for
V,". V,2

——QV, i + 28U/M, ) V i. Therefore, if the kink's
velocity is in the interval (V i, V,2), the kink will be re-
jected.

To examine the validity of the physical picture derived
from the collective-coordinate analysis, we have simu-
lated the kink-defect interactions numerically taking the
paramters o. = 0.2, P = 0.8, Uo ——0.1, and p = 1. The
results are summarized as follows. If the kink's velocity
is smaller than V„= 0.16, the kink will be trapped by
the defect [Fig. 4(a)]; if the kink's initial velocity is larger
than 0.265, it will pass the defect. Figure 4(b) shows that
after the transimision of the kink, the defect remains un-
changed (which means that the defect is rather stable).
In the velocity interval (0.16, 0.265) we observe that the
kink is reflected by the defect and escapes in the oppo-
site direction [Fig. 4(c)]. These results agree qualitatively
with the collective-coordinates analysis.

Since the effective potential is asymmetric, the results
of kink-defect interactions in which the kink comes from
the other direction (see Fig. 3) are different from those
that have just been described. The incoming kink erst
experiences a repulsive potential which attains a maxi-

mum at about 18 sites away from the defect. Therefore,
at very lower velocity the kink will be rejected by the re-
pulsive potential; and at slightly higher velocity, a kink
will be able to overcome the barrier to interact with the
defect.

It is worth comparing the kink-defect interactions stud-
ied here with the kink-impurity interactions analyzed in
[17]. The major difference is that the static conforma-
tional defect here supports no localized oscillating mode.
However, from the linear spectrum analysis around the
kink we have found that the kinks in our model possess
an oscillating "internal mode" (similar to the case of the
P4 model) at least for some ranges of the model parame-
ters n, P, Uo. Thus, according to the theory developed in
[17], the kink internal inode might play a special role, in-
cluding resonances in the kink-defect interactions. How-
ever, the resonance phenomena, if they exist, are likely
to be very sensitive to perturbations of initial kink pro-
Gle, while exact analytical kink solutions in the present
discrete chain are not available, and discreteness e8'ects
will not be neglegible when Uo & 0.2.

In conclusion, we have presented a nonlinear chain
model to describe simultaneously kinks and conforma-
tional defects. We have shown that kinks can propagate
freely in the chain provided their velocity does not ex-
ceed a threshold value due to the anharmonicity of the
interparticle interactions. However, the kink s motion
can be strongly affected by the conformational defects,
which create an asymmetric attractive potential to the
kink. Trapping, passing, and reBection of the kink are
predicted in terms of a collective-coordinate approach,
and are observed in numerical simulations. Our model
can be used to describe smooth kinks and conformational
defects on long polymer chains, where the dynamics of
the kinks might be significantly influenced by conforma-
tional defects (torsional disorder) as previously suggested
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