
PHYSICAL REVIE%' E VOLUME 51, NUMBER 4 APRIL 199S

Film orientational correlations from random planar sections
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We reveal how various film orientational correlations are related to the correlations of the curves
which are the intersections of the film with a random plane. We suggest that the relations we have found
can be used for recovery of film orientational correlations by analyzing planar sections of bulk material.
The relation of the film orientational correlations with the density-density correlations is also discussed.

PACS number(s): 61.20.Qg, 61.90.+1, 68.10.—m

The structure of a three-dimensional system with a
quasi-two-dimensional subsystem is a problem relevant to
a wide area of studies of membranes and surfaces [1]. Ex-
amples range from cell tissue, foams, sponge phase to mi-
croemulsion. For example, in cell tissue the tight con-
tacts between the cell walls determine the short range or-
der, but correlations on somewhat larger distances are
not well understood. In the present paper, we describe
how the film orientational correlations may be related to
the correlations of the curves arising from the intersec-
tions of the film with a randomly selected plane. The re-
lation we derive may, therefore, be used for the recovery
of the film orientational correlations by analysis of ran-
dom planar sections of the material. Examples of such
planar sections include sectioned cell tissue, or, perhaps,
freeze-fractured microemulsion.

The curves we discuss on the planar section correspond
to those places where the plane crosses the film. Let us
denote by e(r) the normal to the film at the point r. The
projection of the vector e onto the plane is e"=e—(e n)n,
where n is a normal to the plane. If the sectioning plane
crosses the film at the point r, e1(r)/~ e'~(r) ) is just the nor-
mal in the plane to the curve at the point r. Let us con-
sider all pairs of such intersection points separated by dis-
tance r. We seek a relation between the correlations of
r, e (0), and e'(r) and the correlations of r, e(0), and e(r).
The orientational randomness of a section plane implies a
distribution of angles p and p, between the vector r,
which necessarily lies on the plane, and the vectors e'(0)
and e"(r), respectively. Let us choose a suitable cartesian
system of coordinates. Let the Z axes be along
r, r =r (0;0; 1),e(0) is in the XZ plane, and
e(0)=(sina;0;cosa). Let g be the polar
angle in the XF plane, so that
e(r)=(sina, cosgsina, sin/cosa, ). The angles a and ai
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are the angles between r and e(0) and e(r), respectively,
and a, ai E [0;tr];gH [0;2m]. The orientation of the plane
is given by the angle tb:n=(cosP;sing;0). The angles P
and pi depend on the orientation of the plane, so that

{& (p, p, ) &,
={@t(a,a, , g) &„,

@ (a, ai, g)= f dg4[P(a, g),P(a„g g)],—
(2)

(3)

where the averaging {&o, is defined to be carried out
over only those film configurations in which the film
passes through the points 0 and r. Thus, statistics from
planar sections can provide {@ (a,a i, g) &o, for any func-
tion @ that is obtained via the transformation [which is
defined by Eqs. (3) and (1)] of some function 4. The com-
plete class of functions that can be obtained by this trans-
formation is not clear in advance. Fortunately, simple
geometrical arguments help us to find some examples of
functions 4, which transform into representative func-
tions 4~. In fact, we can readily determine
{Y(a, ai, g) &0 „where Y is an angle between any two
vectors we are interested in [any pair of e(0), e(r), r or
their linear combinations]. To see this, let us imagine
that we can obtain the projections of two vectors (call
them vi and vz) onto any vector a. The projections can
be collinear (a.v, )(a.v2) )0 or anticollinear,
(a.v, )(a vz) &0. It is easy to prove that if we gather the
statistics of both cases for a random choice of vector a in
three-dimensional space, we would find

2V,' ~{Y(r)&o,
N

(4)

coscx
p(a, p) =sgn(sing)-rccos

1 —sin a cos P

and p, =p(a, p —g). By sgn(x), we mean the sign of
x;sgn(x) =1 at x )0 and sgn(x)= —1 at x ~ 0. Notice
that in (1) we have chosen the interval PH[ —m-, m. ].
These results are direct results only of three-dimensional
geometry.

The average {&~ of a function 4(P,P, ) in the plane
may be derived by the averaging of the 4 over all the
possible plane orientations:
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where X, is the number of the anticollinear cases, and X
is the total number. In fact, we may take the vector a to
be in our section plane, but then we must include the
weight sin[ar] [where L(a, r) is the angle between a and
r] to our statistics. We can also use the projections v')

and v( of the vectors v, and vz onto the plane instead of
the vectors v& and v2 themselves, and the result will be
the same. It is now convenient to rewrite all of this in

I

terms of the statistics of angles, rather than statistics of
signs. Thus, it is straightforward to evaluate
I/2n f „dysin/(a, r), where y is the polar angle on the
section plane, and A = A (P,P, ) is that region of qr which
correspond to anticollinear cases. In this manner, we
have expressed the relation (4) in terms of P and P, . We
present here two such examples:

+)(p,p))=@o(p)= '

—sinlpl when lpl E 0;—
2 '2

—(2 —sin
I pl ) when

I pl &
2 2'

l@o(p)—40(p, )l when pp, &0

@2(p,p))= 40(p)+No(p)) when pp(&0;Ip p, l
&+-

2m —C&o(P) —@o(P&) when PP& &0; IP—
P&I &~

4",(a, a„g)=a;
4t~(a, a„g') =z(e(0),e(r) )

=arccos(sina sina&cosg+ cosa cosa
& ) .

(7)

The integrals (3) of (5) and (6) [along with (1)] are not well
known and so we have checked numerically the results (7)
and (8).

Both (N~&)o, and (@z)o, represent the orientational
structure of the film. We have now shown that they cor-
respond [by the Eqs. (2) and (3)] to the averages (C&, )~
and (@z)~, respectively.

We now wish to present some other examples that may
be of interest. It is instructive to consider the transfor-
mation (3) of the function cos "p, n =1,2, 3, . . . , which
leads to the integral,

(cos "p) =—cot "a
7T 0 1v'x(1 —x)

sj.n o,'

n

1+cos a

(cos "+ p) (2n —1)!! (2n —3)!! 1!!+ ) cos &
2"n! 2" '(n —1)! 2'1!

(2n —5 )I! 3t|
cos cx

2" (n —2)! 2 2!

(2n —7)!! 5!!+ 2 cos cx2" (n —3)! 2~3!

(2n —1)!!+ I ~ ~ + "cos "a.
2"n ~

(10)

Here, P„ is the Legendre polynomial of order n.
Thus, (cos "p) is just a polynomial of odd powers of

Icosal, up to (2n —1) power. The simplest example is
(cos p) = Icosal. Conversely, inverting the system of po- =y (p(r, )p(rz)e(r, )e(r2) ), (12)

lynomials (10), one may obtain that Icos " 'al for any
n =1,2, 3, . . . is the result of the transformation (3) of a
polynomial of even powers of cosp, up to the 2n power.
However, we can obtain more. The result for a function
(sgnpcos "p) is just the right hand side of Eqs. (9) and
(10) multiplied by sgn(cosa). This means that one may
also obtain cos " 'a for any n =1,2, 3. . . as a transfor-
mation (3) of a product of sgnp and a polynomial of even
powers of cosp, up to the 2n power. A particularly in-
teresting example is

cosa=(sgnpcos p)

The corresponding average ( cosa )0, is related also to
some film density correlation functions, as we will explain
below.

So far, we argue, we have established how a range of
film orientational correlations may be related to the
correlations of the intersections of the film with a random
plane. For a comparison, we wish to list here all the pos-
sible orientational correlations, which are related to the
film density correlation functions. The density correla-
tion functions had been intensively investigated in the mi-
croemulsion physics [2], and one possible application of
our work is in that field.

The usual bulk-bulk correlation function is
G(r)=—($(0)$(r) ), where P(r) is the density of the bulk
material (i.e., the interfilm medium) at a point r. (In case
of a microemulsion the Fourier transform 6 may be
determined by bulk-contrast neutron scattering [3,4].)
We wish to consider the tensor [5],

8, Br2G(lr& —r2I)=(VP(r&)VP(r2))
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where p is the film material density. The coefficient

& Ivyl &,x=
po ~po

(13)

~, ,
E( lr, —r, l ) = & &y(r, )p(r2) &

=xg( lri —
r2l ) & e(r, ) &.. ., . (18)

where ( I Vgl )& is
I Vgl, averaged (only) over the film, Po

is the average density of the bulk material, po is the densi-

ty of the film and b is the width of the film. The approxi-
mation in (12) assumes that the density and width of the
film are not correlated with its curvature and approxi-
mately constant throughout the film. The width of the
film is supposed to be small in comparison with the
interfilm distances; the boundary between the film and
the bulk material is supposed to be sharp, so either p(r) is
neglected if the film does not pass the point r, or p(r) =po
if the film passes the point r (see the analogous considera-
tion in [5]). The last point is essentially used in the next
step.

Let us denote by 4'o the subset of configurations, c, in
which the film passes through the points 0 and r and note
that for these configurations p(0) =p(r) =po. The entire
set of configurations is denoted by S, and we have the fol-
lowing simple relation:

poX, «e(0)S e(r)exp( —H (c) )
(p(0)p(r)e(0)e(r)) =

X,~&exp Hc—
=g (r)(e(0)se(r) ), , (14)

Here g(r)= (p(0)p(r) ) is the film-film correlation func-
tion. The tensor

X,~& e(0)e(r)exp( —H(c))
&e(0)e e(r) ), ,—:

X,~+ exp Hc—
0

(15)

1 G"(r)
g(r)
2 G "(r)
y' rg(r)

( cosa cosa i )o r

( sina sinaicosg )o,=—

(16)

The bulk-film correlation function E(r)= (P(0)p(r) ).
(In the case of a bicontinuous microemulsion, it may be
determined experimentally from contrast matching ex-
periments [6]. One can derive, analogously to (12) and
(14),

represents the orientational correlations of the film.
The normal-normal tensor (e(0)Se(r) )o, may be con-

tracted with vectors to produce averages with scalar
values. We may obtain a scalar result from (15) by two
independent methods: Either we take the trace of the
tensor or the double scalar product with r [5]. Thus,
from the bulk-bulk (G) and film-film (g) density correla-
tion functions, and using the result (15), one may obtain
any linear combination of the averages:

Thus, from bulk-film (E) and film-film (g) density corre-
lation functions one can obtain

(cosa), ,= ——1 E'(r)
X g(r)

(19)

This relates the width, b, of the film to the Porod's slopes
of the Fourier transforms G(k)-k and g(k)-k
The restriction in Eq. (20) is the usual one, and k, is the
principal curvature [8,5,7].

We have now provided a link between film orientation-
al correlations and bulk or bulk-film density correlations,
thereby providing a potential means of relating statistical
analysis of fractures samples to more conventional exper-
imental approaches. One remarkable result is that the
orientational correlation function ( cosa )o, may be
determined in two independent manners [see (19) and
(11)]. This would permit one to compare our approach to
the recovery of orientational correlations from the planar
sections, with the alternative using the density-density
correlations.

For the use of a microemulsion, however, the main
weakness in the argument is that the fractured surface
may be nonplanar. Thus, though there are suitable
freeze-fracture electron microscopy images [9,10], there
may be difhculties with local correlations between the
section "plane, " possibly curved, and the film. In this
case, the comparison mentioned above would be rather a
test on the planarity of the section "plane. "

Finally, we believe that the present work establishes
good means of studying film orientational correlations
and might be applied to two-dimensional cuts of cell tis-
sue and similar systems that contains a two-dimensional
subsystem, thereby revealing the implicit three-
dimensional correlations. This might be an interesting
field of study in the biological sciences.

The work was supported, in part, by the Higher Edu-
cation Authority of Ireland, and the Digital Equipment
Company.

Before proceeding further, let us notice that the rela-
tions (16), (17), and (19) are relatively model independent
and yield orientational correlations, which are of a
geometrical nature, in terms of the density-density corre-
lations.

Notice also the important Porod's limit [7]. For small
r (approximately fiat film) we have, in particular,
( cosa cosa, )o,= 1 and ( sina sina, cosg )o,=0, and so
[see (16), (17), and (13)]

'2
0o 2 k G(k) for (lk„l) «k « —. (20)

1

bpo g(k) b
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