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Anomalous convergence of Lyapunov exponent estimates
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Numerical experiments reveal that estimates of the Lyapunov exponent for the logistic map
x, +,=f (x, )=4x, (1—x, ) are anomalously precise: they are distributed with a standard deviation that
scales as 1/N, where N is the length of the trajectory, not as 1/&N, the scaling expected from an infor-
mal interpretation of the central limit theorem. We show that this anomalous convergence follows from
the fact that the logistic map is conjugate to a constant-slope map. The Lyapunov estimator is just one
example of a "chaotic walk"; we show that whether or not a general chaotic walk exhibits anomalously
small variance depends only on the autocorrelation of the chaotic process.

PACS number(s): 02.50.—r, 05.45.+b

Estimating the Lyapunov exponents for a dynamical
system from a finite trajectory of length X is an impor-
tant task in nonlinear time series analysis. These ex-
ponents characterize the average rate of divergence of
nearby trajectories, and a positive exponent is a necessary
condition for chaos. The estimate depends on the initial
condition x

&
and the length Xof the orbit; for one dimen-

sional dynamics, we have
N

X(N, x, ) =—g 1n~ f'(x, )
~

. (1)
N, 1

Oseledec's theorem [1] assures us that the limit

limpet „X(N,x) exists and is the same value (call it A, ) for
almost all x [2]. Our interest is in the rate at which
A (N, x ) approaches A, as N —+ ao . In particular, we want
to think of A, (N) as a random variable, and estimate the
scaling of the variance var(A, (N) ) as a function of N.

Two sources of uncertainty are inherent in such an es-
timate: first, from a time series alone, one can only ap-
proximate the derivative f'(x); second, the finite trajecto-
ry provides only a sample of the natural invariant mea-
sure. The error from both sources tends to decrease as N
increases, but we will consider the second in isolation
from the first, and assume that f'(x) is known precisely
at each point on the trajectory.

Note that if f(x) is known, there may be more efficient
ways to estimate the Lyapunov exponent than to just gen-
erate a length N trajectory and invoke Eq. (1). For in-
stance, in Refs. [3], a cycle-expansion approach is used;
these calculations are based on identifying and character-
izing the unstable periodic orbits that are the skeleton of
the attractor. If, in addition, the invariant measure is
known, one may compute the exponents directly, at least
for one-dimensional (1D) maps.

The central limit theorem of probability gives most
physicists the intuition that the statistical (as opposed to
systematic) error of an approximation based on N obser-
vations should scale as 1/&N or, equivalently, that the
variance should scale as 1/N. While this intuition is
often valid for the Lyapunov exponent estimation, we

will show that exceptional cases exist for which the vari-
ance exhibits 1/X scaling. We characterize a class of
these exceptional cases, specificially those where the map
is conjugate to a constant-slope map. We also show, for a
larger class of estimators, that anomalous scaling occurs
when a certain autocorrelation condition is met, and re-
late this result to the question of when chaotic walks
mimic the properties of random walks.

We are aware of several instances in which chaos ap-
pears to violate the central limit theroem [4,5], and, in
this paper, we will describe another situation in which
this occurs. We are also aware of cases (such as in Ref.
[6]) in which chaos successfully imitates the properties of
random sequences; we will propose a necessary condition
for this successful imitation.

Consider the logistic map

f(x)=rx(1 —x ),
where the parameter r is in the range 0 r 4, and esti-
mate the Lyapunov exponent from Eq. (1) from a single
orbitx, ,x2, . . . , x~, where x, =f(x, i).

The estimator of the Lyapunov exponents is an ordi-
nary arithmetic average of values y, =ln~ f'(, ) ~. If the x,
(and therefore, the y, ) are independent identically distri-
buted (IID) random variables, then it is straightforward
to show that the variance should scale as 1/N. If x,
arises from a time-autocorrelated process (such as chaos)
where the autocorrelation decreases rapidly with time de-
lay, then one might expect, from an informal interpreta-
tion of the central limit theorem, that the variance of
R(N) should still scale as 1/N, possibly with a different
prefactor. While this is often true, we will see that there
are cases in which this prefactor is zero.

In particular, Fig. 1 shows that, for r =4, the
var(X(N)) —1/N . This anomalously fast convergence
occurs only for special values of the map parameter r; in
general, as shown in Fig. 1, the variance scales as 1/X for
large N. Also, if some dynamical noise is added to the
map, as in Fig. 2, then the ordinary 1/X scaling is again
recovered. We note that the choice r =4 is not a
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f(x)=rx(1-x)
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sufFicient condition for this special scaling; it requires a
special choice of the observable y as well. For instance,
we see in Fig. 3 that the estimator for ( x ) has a variance
which scales in ordinary fashion with N.

In general, suppose that f(x) is conjugate to the map
g(8), and the absolute value of the derivative Ig' is con-
stant. That is, there exists a homeornorphism h which
maps 0 to x such that

hof =gob:8~x . (3)

We will further assume the h is di6'erentiable and that the
derivative is nonzero for most values of 0.

From the chain rule,

f'(x, )=
dx

dx, +i
dOt+ 1

dO, +)
dO,

dO,

dx,

=h '(8, +, )g'(8, )/h '(0, ) . (4)

For maps f in this class, the Lyapunov estimator is given
by Eq. (1):

f(x)=4x(1-x)+e (mod 1)

10
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N

FIG. 1. Variance of an estimator of the Lyapunov exponent as a
function of the number N of points in the trajectory. These are numeri-

cal estimates based on 1000 trials. Shown are various parameters r. The
dotted lines exhibit slopes corresponding to 1/N and to 1/N scalings.
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FIG. 3. Variance vs N of the estimator for (x) for a time series
given by the logistic map with r =4. The dotted lines have slopes corre-
sponding to 1/N and 1/N scalings.

~(N) =—g lnlf'(x, ) I

N=—g lnlh'(8, +, )g'(8, )/h'(0, ) I

t=i

1
N 1

N
=—&»Ig'(~, )l+ —g»lh'(~, +&)/h'(~, ) I

=lnlg'I+(I/N)lnl[h'(8~+()/h'(8))]l .

It follows that lnlg'I is the Lyapunov exponent, and that
as long as var(lnl h'(8)

I ) is bounded, the variance of A(N)
will scale as 1/N . Note that the restriction on
var(lnlh'(0)l) is not trivial: there are other homeomor-
phisms that conjugate the logistic map to an equivalent
tent map, but are not necessarily smooth, so
var(lnl h'(8)

I ) is not necessarily bounded.
Not only do such maps exhibit anomalously fast con-

vergence of the Lyapunov exponent estimator for chaotic
trajectories, but a further remarkable property is that if
the Lyapunov exponent is estimated from an unstable
periodic orbit of the chaotic map with period p, then
0 ] op + ] and the Lyapunov exponent estimator given by
Eq. (5) will be exact [since h'(8, )=h'(8~+, ) for N any
multiple ofp].

In the case of the logistic map with r =4, the celebrat-
ed transform of Ulam and von Neumann [7] uses

h(0)=sin 0

z
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g(e) =h 'If[h(8)] j =h ofo h
r

20 for 0~0&a/4
m —20 for m/4~ 0&~/2.

(7)
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That is, g (8) is the tent map on the interval [0,n. /2].
In this case, h'(8)=2sin8cosO=sin(28) and lg'(8)l

=2, so Eq. (5) gives

FIG. 2. Variance of an estimator of the Lyapunov exponent as a
function of the number N of points in the trajectory. The map was

iterated with Gaussian noise of rms amplitude e. Again, the dotted lines

exhibit slopes corresponding to 1/N and to 1/N scalings.

k(N, 8& ) = ln2+ —[ln I
sin(2 + '8& }I

—ln
I
sin( 28& }I ] .

We see immediately that for most values of O, A, (N, e) will
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be near ln2 for large N. The exceptions will be those
values near 0~=km. /2 for integer k. The points 8
are preimages of the unstable fixed point at the origin; as
such they have different asymptotic dynamics, and illus-
trate the restriction to "almost all" x in Oseledec's
theorem.

Treating the initial 8P [O, m/2] as a uniform random
variable, the expectation value of A,(N) is given by

& R(N) ) =ln2+ ——f in~sin(2 +'8)~d8
N m 0

(20)y(»= —gy, =—[f"(xi)—xi]

has a variance which scales like 1/N .
Example 2. You do not need chaos to find a coun-

terexample to the intuitive notion that the central limit
theorem should apply to series with a finite correlation
time. Let xo,xl, . . . , xN be IID random variables, and
let y, =g(x, ) —g(x, &) for any function g. Then it is
clear that y, and y, will be independent as long as

~
t —s

~

~ 2. However,

1n sin 20 d6
7T 0

N 1
y(N) =—gy, =—[g(xz) —g(xo)]

t=l
(21)

or

& R(N) ) =ln2+ —[& In/sin(2 +'8)/ ) —
& in/sin(28)

f ) ],N

where we use the notation &f(8) ) to denote the average
(2/~) f 0 f(8)d8 Using 8. '=2"8, we see

& In~sin(2 "8)
~ ) =—f In~sin(2"8) ~d 8

7T 0

2 1 2"7T/2f ln~sin8'~d8'
o

=—f ln~ln8'~d8'= & in~sin(8)
~ ), (12)

0

which implies from Eq. (11) that &A,(N) ) =ln2. The vari-
ance is given by

& [R(N) —ln2]')

= 1
& [In~sin(2 +'8)~ —In~sin(28)~] ) (13)

=(1/N )[&[in~sin(2 '8)~] )
+ & [In~sin(28) ] )
—2& [ln~ sin(2 + '8)

~ ][In~ sin(28)
~ ] ) ] (14)

=(2/N )[&ln~sin8~) )
—

& [In~sin(2 +'8)
~
][in(sin(28)

~ ] ) ] . (15)

effectively independent, and we can approximate the
average of the product with a product of averages. Then

var(X(N))=(2/N )[&(In~sin8~) ) —&1n~sin8~) ] (16)

f (lnsin8) d8

2 7T/2
' 2f ln sin 8 d 8

0

(18)
6N2

(17)

y=f(x) —x . (19)
It is straightforward to see that the estimator of &y ),

in agreement with the numerical simulations in Fig. 1.
Example 1. Given an arbitrary map f(x), one can dev-

ise special statistics which will be estimated with anoma-
lously small variance. A trivial construction is

where so =0 and the y, arises from some stationary pro-
cess; they may be IID random numbers, autocorrelated
random numbers, or even a chaotic time series (this last
situation is referred to as a "chaotic walk" in Ref. [6]).
We can rewrite the walk equation [Eq. (22)] as

st=y, + +y (23)

and then the estimator for &y, ) is given by y(N) =s~/N.
Whenever the walk has anomalously small variance, the
estimator will be anomalously precise.

When y, are independent random numbers, then Eq.
(22) is an ordinary random walk, and its variance is

var(s~) =N var(y), (24)

so

var(y(N)) =var(y)/N .

However, if the y, are nontrivially autocorrelated (re-
gardless of whether they were generated by a determinis-
tic or a stochastic process), then this result has to be
modified. In particular, if

~( )=&y,y, „)/&y,'), (26)

where & ) is an average over t, then one can write

var(s~) =
& (y, + . +y~) ) (27)

N= g &yyJ) (28)
l, 1 =1

N= g &y )A(i —j). (29)
i j =1

Of the N pairs (i,j), with 1 ~ i,j & N, there are N —
~n~ of

them for which i —j =n. Thus

N
var(s~)=var(y) N g A(n) — g ~n~ & (n)

n= —N n= —N

We will take the N —+ ~ limit, and consider only those
cases for which the autocorrelation of y decays rapidly
with lag time. In particular, we will demand that there
exist constants a and g&2 such that

~
A(n)~ &a~n~

(30)

will have anomalously small variance.
The estimators we have spoken of can be rephrased in

terms of general (not necessarily random) walks. These
are dynamical systems of the form

St St —1+yt ~
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For many processes, including chaos (as long as it is mix-
au oregressive moving average (ARMA)

[8] processes, the autocorrelaton deon ecays exponentially, so
'

y et. The condition implies thatis con ition is easil me N

N

r~—= g A(n),
n= —N

~n~ A(n)
n= —N

(31)

(32)

0.5—

(33)

(35)

are bounded in the X—+ ~ limit. Then,

var(s~) =(Nr~ r„')v—ar(y) .
Let ~ and ~' be the large N limits of ~ and

var stt)-Nr var(y) asymptotically for large N, and

var(y(N))-var(y)/(N/r) . (34)

When w)&l we can interpret ~ as an effective autocorre-
lation time inasmuch as Eq. (34) is th
with Are lacwi rep aced by N/r. In other words, it is as if there
were X/~ independent terms.

On the other hand, if ~=0, that is,

lim g A (n) =0,
n= —N

then anomalous scaling will be b d.e o serve . In particular,

(36)var(y(N) }-var(y)/(N /r')
Anomalous scaling is observed when
Eq. (35) holds.
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FIG. 4. The partial sum ~& =1+2t A(1)+ + A+ A(1V)j vs X. Note
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Heagy, Platt, and Hammel [6] observed experimentall
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wa'ks; while the wery ere not concerned particularl with
the variance of the walk vk variable, we would suggest that

y wi

those processes forp s for which the condition in Eq. (35) holds
wi provide anomalous results f th

'
s or eir system as well.

et us briefly mention that the general topic of anoma-
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cent exam le fp e of a simple chaotic system that exhibits
anomalous diffusion.
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