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An approach to finding exact solutions to the binary fragmentation equation is presented. This ap-
proach is used to solve a general class of exact solutions with a fragmentation rate
F(x,y) =(x +y) 6(x —y). This fragmentation rate describes a type of depolymerization in which the
polymer chains always split in the middle at difTerent rates that depend on the length of the polymer
chain and the homogeneity index a. For u & 0, corresponding to the case where larger sized fragments
are more likely to split into two equally sized pieces, the asymptotic form of the scaled cluster size distri-
bution C'(g) decays as g' ' exp( —P/2coa) as g~ oo and exp[ —a(in)) /21n2] as $~0, where ( is the
scaled mass. For a (0, we get a "shattering" transition. In this case, the scaled cluster size distribution
has an asymptotic form that depends on the initial conditions. Finally, our approach is compared and
contrasted with other approaches currently used to find exact solutions to the binary fragmentation
equation.

PACS number(s) 05.20.—y, 02.50.—r

I. INTRODUCTION

Polymers degrade (depolymerize) in a variety of ways
such as shear action [1,2], chemical attack [3], and expo-
sure to nuclear, ultraviolet and ultrasonic radiation [4,5].
Theoretical predictions of the evolution with time of the
size distributions of the polymers during such processes is
of great interest and importance. There are two ap-
proaches in use. The first approach relies upon statistical
and combinatorial arguments [6—8]. The second ap-
proach has been through the analysis of a kinetic equa-
tion modeling the depolymerization [9—11].

We favor the kinetic equation approach. Here, the
fragmentation (depolymerization) process can be de-
scribed by the evolution in time of the size distribution
c(x, t), where x is the size of the fragments (polymer
chains) and t is the time, through a kinetic equation.
This theoretical approach is mean field since Auctuations
are ignored. Fragments are assumed to be distributed
homogeneously at all times throughout the system, i.e.,
there is perfect mixing and the shape of the fragments is
ignored. Thus, the size of the fragments is the only
dynamical variable that characterizes a fragment in the
kinetic equation approach. Much effort has been expend-
ed in finding exact solutions to the kinetic equation, in or-
der to study specific practical problems and to provide a
general understanding of the behavior of physical systems
in which fragmentation occurs [3,12-19]. Additional
solutions would be useful for both theoretical and practi-
cal applications.

Of considerable importance are scaling solutions.
These are solutions in the long-time, small-size limit
where the distribution evolves to a simpler form. This
form is universal in the sense that it does not depend on
the initial conditions. Most experimental systems evolve
to the point where this behavior is reached. A scaling
theory based on a linear kinetic equation has been de-
rived for quite a large class of models [16,20—22].

The time evolution of the fragmentation process de-
pends on the behavior of the probability of breakup for
the fragments. For breakup rates increasing su%ciently

quickly with decreasing size or mass, a cascading breakup
occurs in which a finite part of the total mass is
transferred to fragments of zero or infinitesimal mass.
This so-called "shattering" [15,23] or "disintegration"
[24] phenomenon is accompanied by violation of the usu-
al dynamical scaling [20] as well as mass conservation.

%'e present an exact solution to a class of models via a
different approach. This class of exact solutions has a
fragmentation rate F(x,y) =(x +y) 5(x —y), and
represents a situation in which fragments always split
into two equally sized pieces, although at different rates
determined by e. This choice is motivated by experimen-
tal studies on systems undergoing depolymerization
through shearing [25], stretching [26], and irradiation [4].
These studies found that bonds in the center of the poly-
mer chains break preferentially to those at the ends. The
basic features of scaling solutions, including the singular
case where the inverse moments of the cluster size distri-
bution fail to converge, are discussed. Scaling solutions
to the rate equations for positive homogeneity index cz

are given. The asymptotic form of the fragment size dis-
tribution at large size is almost completely determined by
the value of a. In the small-size limit, we determine the
general conditions on the relative breakup rate, which is
of the classical log-normal form for the small mass tail of
the distribution. This is characteristic of a random multi-
plicative process [27]. Properties of the solution for long
times and negative a are also discussed. The typical size
is now determined by the initial size distribution rather
than evolving dynamically. Criterion for the existence of
a "shattering" transition are also discussed.

Finally, the approach developed in this paper is com-
pared and contrasted with other approaches currently
used to obtain exact solutions. Prospects for further
research are suggested. In the appendix the approach
developed in this paper is used to derive some well-
known results [14].

II. MODEL AND SOLUTIONS

The general form of the binary fragmentation equation
can be written as
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F(x,y)=(x+y) 5(x —y) .

Then (1) becomes

((3/Bt)c(x, t)= —
—,'x c(x, t)+2 +'x c(2x, t) .

The initial conditions are

c (x,O) =f(x)%0 .

(2)

(3)

(4)

Although this problem is linear, it is not trivial to
solve, even for monodisperse initial conditions (except
when a=O [17]). We present a slightly different ap-

I

3 x

Bt
c(x, t) = c—(x, t) f dy F(x —y, y)

+2f dy c(y, t)F(y —x,x),
where F(x,y)=F(y, x) is the rate at which particles of
size (x +y) breakup into particles of size x and y.

In this paper we look at

proach to solving such problems in which the initial con-
ditions are nonzero.

Define the Laplace transform of c (x, t) with respect to
tby

P(x, s)= f dt e "c(x,t),
0

(5)

in which case c (x, t) is given by the inverse Laplace trans-
form

f(x) 2 +'x P(2x, s)
(s+ —,'x ) (s+ —,'x )

(7)

Iterating this expression yields

c(x, t)= f ds eP( x, s),
27Tl y —i oo

and Re(s) & y to ensure convergence. Taking the Laplace
transform of (3) with respect to t gives

P(x,s)= g I2"'"+" +"x" f(2"x)/(s+ —,'x )[s+—,'(2x) ][s+—,'(2 x) ] . [s+—,'(2"x) ]] .
r=0

(8)

For monodisperse initial conditions f (x)=5(x —1) this
becomes

c(x, t)=e g —,5 x ——
0 r! 2" (10)

which is the solution obtained by Bak and Bak [17].
Case 2: aAO. After performing the contour integrals

we get

—2x t OO

c (x t) =e 2 f (x)+ y 2r(r+1)al2+2rf(2rx)'

r
—x (1—2 )t2

X
k=o g (2 —2" )

m EIk

where the set Ik is defined by

Two cases must be distinguished at this point.
Case 1: a=0. Performing a simple contour integra-

tion yields

c(x, t)=e 'l g, f(2"x) .
(2t)"
r!

c(x, t)-[s(t)] 4[x/s(t)], (14)

for t~ao, where s(t) is the size of a typical time-
dependent cluster mass, and the exponent —2 is required
by mass conservation. For splitting models, the transfor-
mation

c„(t)=c (x, t)(dx /dn )dn (15)

between the discrete and continuous forms of the cluster
size distribution leads to a discrete version of the scaling
ansatz [22]

c„(t)-s(t) '4(l/2"s(t)),
where x = 1/2" (and n is a positive integer). Substituting
(15) into (3) gives

1 ds (t)
(t)a+1 dt

[ ——,'@(g)+2 +'N(2$)]P

+24(g)
dg

We believe that the class of exact solutions for a&0 is
new.

III. SCALING THEORY

The scaling ansatz for the cluster size distribution can
be written as

Ik = [0, 1,2, .. ., k —l, k+1, . . . , r] .

For monodisperse initial conditions this becomes

c (x t) —e 2 5(x I)+ 2r(r+ l)al2+r5
—2I t l

r=1 2"

(pk «1)tztXg e ' Q(2 —2"
k=0

m EI"
k

(12)

(13)

(17)

where the separation constant a) is positive since s(t)
must be decreasing with time in a fragmenting system
and g=x /s (t). Then

r

cx) O,

s(t)- e ', a=O, t~ ao (18)
(t —t)'l' ~ a&0,
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These expressions are valid if scaling holds. Filipov [24]
has shown that a & 0 is a necessary and sufhcient condi-
tion for the validity of scaling. For a & 0 a singularity in
s (t) is encountered within a finite time t„and shattering
is anticipated.

We have

co g +24(g) = [ —
—,((li(g)+2 +'@(2$)]P, (19)

co(1 —p) . m&,
1 1

(20)

where the scaling moments m& are defined by

and in the scaling region cx) 0. The case (x=0, for which
scaling is not valid, will not be considered here.

Multiplying (19) by g~ and integrating from 0 to
with the assumption that N(g) vanishes at these values
yields, for P&1,

tie analysis than that used to derive (25) is required. Con-
sider a cutofF mass M, ( t) defined by

M, (t) = f dx xc(x, t)

with

M, (t)~M(t) as a~0+ .

(26)

(27)

The cutofF'mass loss is given by

dM, (t)/dt= —
—,
' f dx x +'c(x, t) . (28)

Substituting (29) into (3) yields

4(x /1 ) = (x /l ) ' '

Hence,

(30)

It was anticipated that shattering occurs for negative
values of a, when scaling breaks down. When a &0, we
propose the ansatz

c(x, t)-e ' N(x/1), x~O, taboo . (29)

mp= f ding~@(g), (21) c(x,t)-(x /I )I I

—
e (31)

which is precisely the Mellin transform of 4(g) (except
for a trivial shift of 1 in the definition of p). Similar cal-
culations to those performed in [22] yield

T

g
—2e —(g /2coa)

@(~)-
e

—
( a/2»2)(»g)

g ()
2

L

Then,

(22)

c (t)-
(I/2") t '/ e (' '/ ~ ), s(t) &&$/2"

(«2»&)(»()( /2 )) s(r) » I/2&
(23}

These results are of a similar form to those of Cheng and
Redner [22], and are consistent with the solutions
presented above.

IV. SHATTERING TRANSITION

Formally, the mass of the system is de6ned by

M(t)= f dx xc(x, t),
0

so that

dM(t) p ~ Bc(x, t)

= f dx x[—,'x c(x, t)+2 +'x c—(2x,t)]=0,
0

(25)

indicating that the mass is conserved. However, when
the fragmentation rate increases sufficiently fast as the
size of the fragments decreases to zero, a cascading of the
fragmentation occurs such that mass is lost to zero-size
fragments. This cascading process, which has been
named "shattering" [15,23] or "disintegration" [24], is
somewhat similar to gelation in coagulating systems,
where mass is lost to an infinite gel molecule [28,29].
Gelation and shattering are signalled by the condition
dM (t)/dt & 0. When shattering is suspected a more sub-

as x ~0, and t ~ ~ with u & 0.
Substituting (31) into (28) gives

& I
—l~l,

dM, (t)/dr ——(in2/21I~I
—

2)e ' &0 . (32)

Thus shattering does occur for +&0. It can be shown
that shattering does not occur for n ~ 0.

V. DISCUSSION

Using a kinetic equation approach we have derived
solutions of a fragmenting system for a model where the
fragmentation is a function of the size of the piece break-
ing up, and the pieces always split into two equally sized
pieces. These models have various applications. For ex-
ample, the case F(x,y)=(x +y) 5(x —y), with a&0, de-
scribes a process where the rate of breakup increases with
size. This type of fragmentation has been observed and
studied when polymers degrade under tension (stretching)
[26], or in the presence of a destructive force field such as
ultrasound [4].

A scaling theory has been derived. The results are
similar to those of Cheng and Redner [22], and appear to
be consistent with the exact solutions presented in this
paper. The shattering transition has been located and
discussed. Again, the results agree with those already
known for shattering [15,20,22 —24].

The approach used to find solutions presented in this
paper may be applied to other linear (fragmentation)
problems in which c (x,0)=f (x)%0. The usual ap-
proach to such problems is to 6nd a solution for mono-
disperse initial conditions f (x)=5(x —1}, then general-
ize to a solution for any initial conditions as follows:

c(x, t) = f dl f(l)c((x, t),
0

where c((x, t) is the solution for monodisperse initial con-
ditions. Another approach is that due to Charlesby [30].
Here, exact solutions are found by iterating the moment
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equations to find explicit expressions for the moments.
The moments are then written in a form that resembles
their definition and the form of the size distribution
c(x, t) is deduced by comparing the two expressions for
the moments. This approach is very effective, albeit in-
direct. In our approach, which is much more direct, we
solve the problem for any initial conditions, and avoid
the issue of finding a solution for monodisperse initial
conditions. The only difhculty one might encounter
when applying our approach arises when one has to per-
form contour integrals to invert the Laplace transform
(p(x, s) to recover c (x, t)

As a prospect for further research, it would be interest-
ing to see what results one would obtain with the ap-
proach described above if one looked at problems with
sources and sinks. With this approach it may be possible
to investigate problems with time-dependent fragmenta-
tion rates.
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a+i (X)

c(x, t)= —x +'c(x, t)+2I dy y c(y, t), (A 1)

subject to the following initial conditions:

c (x,0)=f (x)v—"0 . (A2)

Taking the Laplace transform of (1) with respect to t
gives

P(x, s)=,+, dx, x, P(x „s) .f (x) oo

(s+x +') (s+x +')

(A3)

Iterating this expression, and swapping the order of the
integrations as we go along, yields for et% —1,

support under Cxrant No. GR/J25918.

APPENDIX

We derive the results presented in [14] to illustrate how
our approach works on a more general problem. Consid-
er (1) for I' (x,y ) = (x +y) . Then (1) becomes

f(x) 2 f(x() "
1 2

P(x, s) = +- dx)x ( g ln
(s+x +') (s+x +') x (s+x, +') „or! (a+1)

s+x +'
1

s+x +' (A4)

P(x, s) = +f (x) 2
dx,f(x, )x ~(s +x ~+'

)
'+'"~+"

(s +x n+ (
) (s +x a+ 1 )1+2/(a+ ) )

(A5)

For +=1, 0, —
—,', —

—,', ——,', . . . , we can invert this by contour integration to obtain the following solution in closed
form:

c(x, t)=e 'f(x)+(a+1)e " 't I dx, f(x, ) xL('I
~+( +,)(t(x +' —x, +')), (A6)

I ())
( ) ~ rn. . ( x)

, (m r)!r! (r —1)!— (A7)

where the associated Laguerre polynomial L"',(x) is
defined by

To obtain a solution for o.= —1, one can apply the ap-
proach described above, or take the limit a~ —1 in (A6)
as in [14].
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