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Two-color nonlinear Boltzmann cellular automata: Surface tension and wetting
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We have designed and tested a two-color nonlinear Boltzmann cellular automaton to study
hydrodynamic phenomena related to surface tension and wetting in two dimensions. Our rules for
collisions of colored particles allow for both miscibility and Bexible control of the interfacial tension
and the interface thickness. The contact angle of two fiuids on a surface can be adjusted from
complete wetting to complete nonwetting in a continuous way. Problems of the dynamical contact
angle and drop deformation in a shear 8ow and in a gravitational field are also studied in detail.
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I. INTRODUCTION

Cellular automata (CA) models are used to facilitate
generation of solutions to nonlinear partial differential
equations [1,2]. These models are defined in terms of fic-
titious particles which move synchronously between sites
of a regular lattice and undergo collisions on the sites of
the lattice. The collision rules needed to simulate hydro-
dynamics should be chosen in a way that guarantees a mi-
croscopic conservation of mass and momentum and does
not have spurious symmetries. Frisch, Hasslacher, and
Pomeau [3] (FHP) have shown that such two-dimensional
(2D) CA can be easily constructed and that the behav-
ior characteristic of the 2D Navier-Stokes equations is
imitated provided one considers triangular lattices and
suKcient averaging over lattice cells is made. Similar
methods to study 3D systems have also been developed
[1,4].

The CA approach allows one to study many body phe-
nomena in a toy kinetic model from which hydrodynamic
behavior is readily obtained after simple coarse grain-
ing. The CA have been used to study two-Quid systems
with interfaces [5], viscous fingers [6], systems undergo-
ing the liquid-gas transition [7], suspensions [8], polymers
[9], and phenomena of dispersion [10] and diB'usion [ll]
and many other systems.

The CA used in Quid problems are usually of a Boolean
nature: discrete velocity states at a site are either occu-
pied or not, as in the original FHP model and its later

generalizations. The magnitude of the velocity is usually
equal to either 1 or 0. In the latter case we say that
the particle is at rest. The occupation of this state is
also Boolean. The particles are of a unit mass and are
indistinguishable.

Recently, automata involving continuous degrees of
freedom have been introduced [12—14]. The dynamics of
these so called Boltzmann cellular automata (BCA) are
defined in terms of Bows of probabilities. In this case, en-
sembles of microscopic configurations are considered and
the individual event collision rules correspond to one of
the sets of rules used by FHP (e.g. , FHP model II rules).
Compared to the Boolean automata, the Boltzmann cel-
lular automata require no coarse graining and the noise
and equilibration times are reduced significantly.

A linearization of the probability distributions in BCA
around their uniform steady state values is usually
adopted to accelerate the computation [12—15] and has
been used for the development of other eKcient ap-
proaches [16]. While the linearization of the collision
operator is satisfactory for a large class of problems, dif-
ficulties might arise in the study of situations which are
far away &om equilibrium.

We have developed another kind of two-dimensional
BCA which has two additional features compared to the
standard models: (a) the probability distributions are
not linearized, i.e. , the full nonlinear dynamics are con-
sidered, and (b) the collision rules can be modified to
allow for many, no, particles at rest so that for selected
values of no and densities the system becomes Galilean
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invariant. The two features (a) and (b) have been used
separately in the literature on CA [12,13] before but we
have put these two features together in one BCA system
and then generalized it further to two-fluid systems to
stud. y interfaces.

We have employed the single fluid version of our BCA
to study chaotic mixing [17] in rectangular [18] and cir-
cular [19] geometries. We have tested it in simple flows
like Couette and Poiseuille, and studied its viscosity [19].
These studies dealt with single-fluid flows and this BCA
system was found to be very useful and physically ap-
propriate even when the boundaries of the system were
complicated. The single-fluid system that we used. in
Refs. [16,17], has not yet been described in any detail so
we present it here in Sec. II.

In this paper, however, our main focus is on two-
fluid problems. We construct, in Sec. III, a nonlinear
and Galilean-invariant two-fluid, or two-"color, " BCA to
study interfaces. Two-fluid interfaces should be char-
acterized by a depletion of the density in their vicinity
which arises due to an effective repulsion of the two fluids
below the consolute point. The corresponding density
profile is not uniform. We introduce a two-parameter
control of the interface which allows for the coe%cient
of the surface tension and for the interface thickness. to
acquire wide ranges of values. In Sec. IV, we discuss
the resulting properties of an interface between the two
fluids. In Sec. V we consider droplet deformation in a
shear flow.

We then focus on wetting phenomena. These phenom-
ena have been thoroughly investigated in the past, both
experimentally and theoretically [20—26], due to their
great practical interest. Recently [21], the role of long
range forces has been elucidated. and has led to a coher-
ent understanding of the spreading of liquid on a solid
surface. This understand. ing of spreading dynamics is
restricted to simple situations such as the motion of a
drop on a flat surface. Real spreading is affected by sur-
face roughness, chemical heterogeneity, mixed wettabil-
ity [21], etc. Studying these complexities requires theo-
retical tools such as molecular dynamics [23—25], which,
however, has limitations. The BCA, though less realistic,
appears to be well suited to study such problems and we
discuss the simplest applications of it in the remaining
sections of the paper. In Sec. VI we introduce wetting
properties by assigning color to walls and then study the
static contact angle as a function of the relative color
content of the wall. In Sec. VII we consider the effects
of gravity on wetting, and finally in Sec. VIII we focus
on wetting dynamics.

II. SIN&LE-FLUID HOLTZMANN CELLULAR.
AUTOMATA

For convenience, let us introduce our BCA by first d.is-
cussing the Boolean FHP cellular automata.

The FHP cellular automaton is defined on a triangular
lattice [1,3]; at each site there are then seven allowed
velocity states:

c, = (o, o),

c =
~

cos —(n —1),sin —(o —1)
3 3 -)

~ =1, . . . , 6. (1)

The state of the system is defined by the occupation num-
bers s (equal to 0 or 1) of these states at all sites. For
the initial configuration, an average number of particles
p, is assigned at each site, or equivalently p particles per
state (p will be referred to as the reduced density). Note
that p, = (6 + no)p where no is the maximum allowed
number of rest particles at a site.

The cellular automaton updating rules consist of two
steps, propagation and collision, each one occurring at
each time step of the discrete time. The set of the chosen
collision rules determines the viscosity of the system. For
instance, in the so called model FHP II with no ——1 the
rules involve certain classes of binary, triple, and ternary
collisions as described in Ref. [1]. The role of the triple
collisions is to remove spurious symmetries which purely
binary collisions would lead to. However, at low density
the occurrence of such collisions is not frequent. Intro-
ducing particles at rest helps to remove the spurious sym-
metries and. allows one to reduce average flow velocities.
Ternary collisions make the roles of particles and holes
symmetric.

The complete dynamics of the system is described by
the evolution equation

s (t+ l, r+ c") = s (t, r) + C ((s )),
where r is a vector pointing at a node of the lattice
and C ((s )) is the collision operator. For example, the
three-particle collision terIn is represented by

~. = -" -" -"(1- -")(1- -+.)(1- -")3

—s s +2s +4(l —s +q)(l —s +3)(l —s +s), (3)

where the subscript o. + o.' is meant to be taken modulo
6.

In the Boltzmann approach, the integer occupation
numbers of the single-site velocity states are replaced.
by corresponding mean population values (probabilities),
f = (s ), which are real numbers. Furthermore, one
considers the evolution not of individual particles but of
the whole statistical ensemble of trajectories by perform-
ing an exact enumeration of possibilities. The dynamical
equation, also called the lattice Bolzmann equation, is
simply Eq. (2) where we replace the occupation state
by its average value. This approximation is allowed be-
cause there is no correlation between particles arriving
at a node. The corresponding kinetic equation is then

f-(t + 1 r + c=) = f-(t r) + ~-((f-))
Whenever a collision can lead to two possible outcomes
each of the two is assigned a probability of 1/2.

In most implementations [13,28] a linearized version
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of Eq. (4) is adopted. In the linearization approxiina-
tion, a small perturbation from the uniform solution is
considered to contribute to the kinetic equation only to
lowest order. Here we keep the full nonlinear version of
the equation. We note that, with a proper handling of
the algebra of the collision term, the nonlinear problem
is still easily handled numerically so there is no technical
need to introduce approximations.

Extra care is needed when the maximum number of
rest particles no is larger than 1. Consider a situation
where the actual number of rest particles at a site is II;0,

which is assumed to be less than no. Thus two kinds
of collisions are possible —one kind involves a rest par-
ticle and the other one does not. We divide the 128
distinct Boolean configurations (0 or 1 particle at rest)
into pairs —a configuration with and without a rest par-
ticle. Special attention has to be given to pairs which
involve a change in the number of rest particles after a
collision. As an illustration consider a situation, where
there are two possible outcomes —one with ko rest parti-
cles and the other with k0+ 1 particles. The former may
correspond to a collision with a rest particle present as a
passive spectator and the latter to an event involving no
rest particles before the collision but with a rest particle
after the collision. Following Gunstensen and Rothman
[29], we choose the corresponding weights to be propor-
tional to

i&no l
i ko )

and

no
o+ I )I

respectively. If k0 is noninteger the factorials in the com-
binatorials are replaced by I' functions. This does not
change the form of the kinetic equations and allows one
to generalize the CA to contain several rest particles at
a site.

The freedom in the choice of n0 can be used to make
the system Galilean invariant, i.e., to give the right coef-
ficient to the convective (nonlinear) term in the Navier-
Stokes equation. For this purpose n0 has to satisfy the
condition [13]

1 —p0+6=1
1 —2p

When this condition is fulfilled, the BCA leads to the
true Navier-Stokes equation.

In order to check the conditions at which our BCA be-
comes Galilean invariant, we have used the "shear wave
test" [29]. In a BCA of size N x M an initial flow field
is generated such that the center of mass velocity of the
particles has a transverse shear wave v„= u sin2mx/N
which moves horizontally with a velocity v, . Both v and
u are small and the reduced density is fixed at the value
of 1/3. After 1000 time steps we compare the velocity
of the Qow vf~, i.e., the velocity of the center of mass
of the particles, and the measured velocity of the crest
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FIG. 1. Plot of the velocity ratio (velocity of moving par-
ticles vy& divided by the shear wave velocity v, ) versus
the number of rest particles. The reduced density in each
cell is 1/3. The dashed lines show that Galilean invariance is
restored, vg~ /v, = 1, for 18 rest particles as expected.

of the shear wave, for different values of the maximum
number of rest particles, n0. In Fig. 1 we plot the veloc-
ity ratio (vyi /v, ) versus no and we observe that the
Galilean invariance sets in (vga /v, = 1) for no ——18
as predicted by Eq. (5).

The presence of Galilean invariance is especially impor-
tant in two-Quid Qows. Without it the vortex advection
velocity does not match the interfacial velocity [13].

To complete the definition of a CA system, a choice
of boundary conditions (typically periodic if there are no
walls and bounce back reQection in the presence of no-
slip walls) and a set of forcing rules which induce Hows

in the presence of pressure gradients or bulk forces have
to be specified. Implementing the forcing rules is much
easier for BCA than for the Boolean CA since they in-
volve shift of the occupational probabilities, as explained
in our previous papers [18,19].

The initial conditions depend on the Qow we are inter-
ested in, but for a given reduced density p we usually set
f = p, n = 1, . . . , 6, and fo ——pno. Throughout this
paper we shall work with the Galilean invariant choice
of reduced density p equal to 1/3 and no ——18. The
corresponding density of state is then 8.

The dynamical viscosity g can be determined from the
parabolic velocity profile in a planar Poiseuille How [27].
In this case the pressure gradient is obtained by shifting
probabilities f by a tiny amount in the How direction
(+e in 2 and 6, and —e in directions 3 and 5 if the net
How is parallel to the first direction). For p = 1/3 we

get [19] il = 1.46 (we work in units in which the mass
of a particle, its velocity, and the lattice constant are
all unity). We have obtained the same value of rI by
generating a velocity Quctuation and then studying its
relaxation [30]. This method also allows us to measure
the sound velocity c, . For a CA composed of particles of
the same mass with n0 states at rest the square of the
sound velocity is given by [30] c2 = n / d(no+n ) where
n is the number of moving states and d the spatial
dimension. For a reduced density of 1/3, no ——18, and
n =6 the sound velocity should then be equal to c, =
I/~8. This is indeed what we found, within 2%, using a
system of size 256x32.
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III. T%VO-FLUID LATTICE BOLTZMANN
AUTOMATON

We now generalize the BCA system defined in the pre-
ceding section to the two-Buid case. To this end we in-
troduce particles of two colors. The state densities corre-
sponding to the two colors will be denoted by r and 6
for "red" and "blue, " respectively, such that f = r +b
The propagation step is applied to each color indepen-
dently. The collision rules are basically color insensitive,
i.e. , they involve the total densities f, but after apply-
ing them the color content in the states is redistributed
so that particles of opposite color efFectively repel and
particles having the same color attract.

This color sensitive interaction generates surface ten-
sion at an interface between the two colors. One way
to introduce the immiscibility was proposed by Roth-
man and Keller [5] for a Boolean CA. They chose the
after-collision color content in such a wav that the color
gradient times the net blue momentum minus the net
red momentum was maximized. In this way the color
redistribution Bow is mostly in the direction of the color
gradient. A generalized method was used for a BCA
[13]. The procedure consists of two steps. The first step
generates a perturbation in f proportional to a local
color gradient —we find that the size of the perturba-
tion controls the surface tension. The second step follows
the Rothman and Keller paper [5] and consists of redis-
tributing the color content of f to satisfy the color-color
propensities. Both steps conserve the total color densi-
ties and total momentum at each site. Our approach is
a modification of their method. We use the first step
unchanged, but we propose a difFerent way to realize the
redistribution of color content. This way of color redis-
tribution after the collision allows for interfaces of essen-
tially arbitrary thickness.

To proceed we calculate the color gradient vector g at
each node. Following Ref. [5] this vector can be defined
as

R,a,
R, +B,f-''P (R, +B,)

"'4'-
B, , R~B~

Rg+ Bt (Ri+ Bi) (8)

for the moving states and

The second step, of recoloration, has been designed in
Refs. [5] and [13] so that the scalar product of the color
gradient with the color momentum is maximized. This,
however, leads to problems since the resulting interface
has essentially no thickness and is unstable. Note that if
no is large the particles at rest make a powerful bank of
color (for p = 1/3 and no ——18, the total density in the six
moving states is 2 on average, whereas there are of order
six particles at rest); most of the interface nodes will have
three moving states fully occupied by red particles and
three states by blue ones. Only the rest state will contain
both colors. On crossing the interface, there is typically
only one node containing two difFerent colors. All nodes
away from the interface are essentially monochromatic.
This case would correspond to a zero thickness interface
since the color jump takes place over a single node. Such
an abrupt interface would be extremely sensitive to its
orientation with respect to the lattice. This would lead
to nonphysical features such as faceted bubbles of one
color, spatially anisotropic surface tension, etc. A way to
attenuate these spurious Bows is to spread them out over
a wider interface. This can be alleviated by introducing
a new color redistribution on each site proposed below.

In the second step we redistribute the color in such
a way that the red minus blue density along the o.th
direction depends continuously on the angle P between
the o,th axis and the color gradient. In addition to the
conservation of the total red and blue colors on a site we

also demand that f = r + b . This leads us to the
following equations:

j(r) =) c
~

R (r) —B (rg ~,

where R and B are the red and blue total densi-
ties on the neighbor site in the direction o., i.e. , R

, r (r+c ) and B = g, b (r"+c ). We then
increase the total (red+blue) state density in the direc-
tion collinear to the color gradient, and decrease the total
density in all other directions. A smooth way to do this
is given by

f' = f + Pilgl cos2&

where P is the angle between the color gradient (which
need not coincide with any lattice direction) and the di-
rection corresponding to state n. The parameter Pi, typ-
ically of order 0.001, allows us to choose a given value of
the surface tension. The occupation of the rest state is
not affected in this step.

Overall, the presence of the surface tension means that
particles arriving close to an interface have a high prob-
ability of being sent backwards —normal to the interface.

blue

red
red+blue

FIG. 2. Example of color redistribution. (1) State of the
cell just after the propagation step, (2) the collision operator
is applied in a color insensitive way, (3) the directions close to
the color gradient vector g have their density increased, and
(4) the color redistribution.
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for the states at rest. Here, P2 (typically of order 0.2)
affects the thickness of the interface and Bq and Bq are
the total numbers of red and blue particles at the node
being considered. An example of the color redistribution
is shown in Fig. 2. In the next section we discuss the
physical relevance of the two parameters Pi and P2.

t.=500

I

t=250

t=750

IV. INTERFACIAL PROPERTIES

I et us first set Pi and P2 both equal to zero: the sur-
face tension vanishes, the Huids become miscible, and the
interface spreads because of molecular diffusion. This
is shown in Fig. 3 where the density profiles at 1000
and 10000 time steps after setting up the initial red-
blue interface are plotted. The color density profiles
are well represented by error functions which allows us
to measure the molecular diffusion constant. We find
D = 0.25 +0.05.

A two-phase system tends to minimize its interfacial
energy, i.e. , to minimize its interface length. This is in-
deed happening in our BCA as illustrated in Fig. 4. Here,
an initial interface is prepared as a square and then we
observe how it undergoes a shape transformation during
a 1000-step long evolution of the automaton (Pi ——0.002
and P2 ——0.2). The final interface is circular in shape.
Its radius can be determined &om the position of the to-
tal density dip. Figure 5 shows the effective radius of
the circular blob as a function of the angular direction.
The average value of the radius here is equal to 30. The
superimposed fluctuations are seen to be tiny ( 0.1j30)
which demonstrates that our rules generate a surface ten-
sion which is nearly isotropic.

To determine the interface thickness bx, we have per-
formed a simulation on a 64x32 lattice with periodic
boundary conditions along the interface where half of

FIG. 4. Immiscibility: an initially square blob of blue liquid
in a red sea becomes circular in less than 1000 time steps.

the lattice is filled with particles of one color, and the
remaining half with the other color. Along the interface
the boundary conditions are periodic. In the other direc-
tion there are bounce back boundary conditions on the
walls containing the Quid. Figure 6 shows a plot of the
color density profile along a line normal to the interface.
This figure shows that the stable interface extends now
over several nodes of the lattice. From the tangent hyper-
bolic shape of these profiles we can measure the interface
thickness. We defined it as the width corresponding to
a relative concentration variation between 0.25 and 0.75
(color density between 2 and 6). We find that bx is es-
sentially independent of Pi but is controlled by P2 (Fig.
7); the larger the value of P2 the smaller is the Sx.

In Fig. 8 the total (red + blue) density profile along
a line which crosses the interface is plotted. It shows a
depletion in the density at the center of the interface.
This effect is similar to what is observed at interfaces of
real Huids [13] and its strength is proportional to Pi.

An easy way to measure the surface tension coeKcient
is to check Laplace's law for a drop of Quid surrounded
by another Quid. In two dimensions Laplace's law states

(10)

where bp is the pressure difference between the inner and
outer sides of the drop of radius t (measured to the mid-
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FIG. 3. The situation corresponding to complete miscibil-
ity: Pi ——0 and P2 = 0. An initially sharp interface (t = 0)
vanishes due to "molecular" diffusion. The red and blue state
densities are plotted versus position (lattice units) for time
steps 1000 and 10 000.

—2 0 2
angle (rad)

FIG. 5. Radius of the circular blob of Fig. 4 versus the
polar angle (—vr, vr). The fluctuations ( 0.1) in the effective
radius are small compared to the average radius (30).
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0.6
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0 0.001 0.OOP 0.003

FIG. 10. The surface tension (CA units), as measured from
Fig. 9, versus Px.

color. The free energy of a nonuniform system depends
on the square of the density gradient through the inter-
face. In the simplest model the interfacial tension can be
written as

where x is a direction across the interface and S the
stiffness (assumed to be constant here) of the interface.
Consider a situation in which the two phases correspond
to minima of a double-well potential and that the en-
ergy barrier is equal to TV. The interface properties are
then governed by the parameters S and 8 . The density
variation across the equilibrium interface is described by
p tanhx/bx. The interface thickness and p are then
given by

(»)
(13)

respectively.
In order to relate Pr and P2 to S and W, we have com-

puted the integral of the density gradient (&~) across
the interface (which is equal to p/S) numerically. We
find that p/S essentially does not depend on Pr and is
almost linear in P2 (p/S P2). From Fig. 10 we also
have p Pr. Combining these two, we conclude that
S Pr/Pq. Note also from Eq. (13) that W PrP2.
This means that bx 1/P2 which is precisely what has
been demonstrated in the inset of Fig. 7. Thus our sim-
ple understanding of the interface in terms of S and TV

can account for the observed dependencies of p and bx
on the two parameters Pr and P2.

FIG. 11. Sketch of the shape of a drop in a linear shear
How.

(14)

14 = ———arctan A: .
4 2

In Fig. 12 we plot the deformation ratio E versus the

I I I I
i

I I I I I I I I
]

I I

0.4—

characterized by the'tilt angle 4 and the deformation ra-
tio E =

& &
where I and l are the length and the width

of the deformed drop (Fig. 11).
The applied shear rate is G = Uo/H where Uo ——0.042

is the velocity at the horizontal walls. The Bow direc-
tion is from left to right at the top wall and the opposite
at the bottom wall. The moving walls are separated by
a distance 2H = 64~3/2 across the system. The mea-
sured drop deformation is almost linear in Uo. Further-
more, the larger the U0, the larger the tilt angle C with
the horizontal direction. The shape of the drop is de-
termined by a competition between shear, which favors a
slender drop, and interfacial tension, which favors a circu-
lar shape. From dimensional arguments [33], the drop de-
formation depends on the reduced shear rate k = Gbri/p
(rj is the single-fiuid viscosity —which is the same for the
two fluids, g=1.46) and the characteristic time scale of
the phenomenon is r = brI/p For G7 . ))1, the drop elon-
gates and rotates wobbling around its asymptotic equi-
librium direction, whereas for Gw &&1 the drop elongates
and rotates in an overdamped manner. The complete cal-
culation in three dimensions [34,35] (in agreement with
the experiment [33,35]) yields an equilibrium shape char-
acterized by

V. DROP DEFORMATION

0
~ W

tg

0
(D

0.3—

ln order to perform further tests on our BCA we con-
sider small deformations in the shape of an initially cir-
cular drop placed in a slow shear flow (a fast shear would
lead to drop rupture [33]). The theoretical and experi-
mental literature on drop deformation is quite substantial
[34,35]. Figure 1,1 shows the stationary shape of a drop
which initially had a radius 6 of 20. The shape can be

0 I I I I I I I I I I i I I I I I I I

0 0.0005 0 001 0 0015
shear

FIG. 12. The elongation E of the bubble is plotted versus
the shear rate G (inverse time step units).
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t=3000
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shear G. As expected the elongation increases linearly
with the shear rate, and the slope crosses the axis very
close to the origin. Figure 13 shows the plot of the tilt
angle versus the reduced shear. For small shear the tilt
angle is close to 45' (note that in this limit the bub-
ble is nearly a circle, and the tilt angle is not measured
accurately —its value is overestimated). As the reduced
shear rate k is small and arctank k, the plot is basi-
cally linear. The regime with larger k is difIicult to reach
because of the rupture taking place first. Our measure-
ments in 2D (Figs. 12 and 13) lead to E 3k and
CI

4
—3k whereas the 3D calculations [33,34], lead to

Eqs. (14) and (15). Hence we get the main features but
not the same prefactors.

FIG. 13. The tilt angle is plotted versus the strength of the
shear rate (CA units). The first points (shear ( 0.0005) are
not accurate since the blob is very close to a circle. But if
we were to plot the points corresponding to larger shear, the
extrapolated line would cross the vertical axis at an angle of
45' as expected.

FIG. 14. Dewetting of a drop placed on a wall surface of
opposite color, shown at various times of the evolution.

In Fig. 15 we plot the contact angle 0 versus the wall
color ratio [Ri/(Ri+ Bi)]. The data points indicated
by the triangles and crosses are the angles obtained af-
ter 6000 and 18000 time steps of evolution, respectively,
starting from a semicircular drop which corresponds to
a 90 initial contact angle. The shape of the 6000-step
line shows clearly that the system is still in the process of
reaching equilibrium. After 18000 steps most of the wet-
ting situations are fully equilibrated. Further evolution
till 60000 time steps (squares) shows that the complete
wetting situation is afFected by the presence of side walls.
We notice that there are no preferential contact angles
parallel or perpendicular to the lattice, which is consis-
tent with the isotropic surface tension produced by our
BCA. We have tested other rules in which recoloring was
done difFerently, as described in Sec. III, but these lead to
quantized wetting angles. In our case the contact angle
varies basically linearly with the relative color content of
the wall.

VI. WETTING PROPERTIES VII. EFFECT OF GRAVITY

We now consider problems which, like wetting, involve
interactions of particles with a wall. The usual way of
creating a wall with no-slip boundary conditions is to
impose bounce back reHection on the particles arriving
at a node adjacent to the wall. In order to attribute
specific wetting properties to the wall we should assign
to it a particular color content [5]. This will affect the
color gradients on the nodes adjacent to the walls. The
BCA allows one to set the color content on the wall sites
in arbitrary relative proportions of red to blue.

A bubble of one color in contact with a wall of the
same color should spread on the wall completely. On
the other hand, if the wall is of the opposite color, the
blob should be repelled, which corresponds to a perfectly
nonwetting case. Intermediate situations should lead to
a partial wetting. Figure 14 shows the dewetting of a
semi-circular drop placed on a perfectly nonwetting wall
(i.e. , the color assigned to the wall is opposite to the color
of the drop). The dewetting process in this BCA is very
slow. It takes nearly 9000 time steps to complete the
dewetting of a drop of radius 40. In the opposite case of
complete wetting, even more time steps are needed; the
process is eventually afFected by the side walls that the
drop reaches on spreading.

The efFect of gravity can be easily mimicked in a CA
by increasing the densities in the direction of the gravi-
tational force by a small amount. Consider the situation
in which the gravitational force acts perpendicular to the
line set by directions 1 and 4. Suppose the blue Huid is
of lower density and the red Huid of higher density. In
this two-liquid case only the density difFerence between
the Huids is relevant. Thus we modify the output of the
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I I I
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I I I
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I I I [ I
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~100
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0.2 0.4 0.6 0.8
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FIG. 15. Plot of the contact angle versus the relative color
content of the wall. Triangles, crosses, and squares show the
situation after 6000, 18000, and 60000 time steps, respec-
tively.
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FIG. 16. Blob profiles are shown for several values of the
gravitational field (CA units).
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collision step by sending more particles in the upper di-
rections (states 2 and 3) if the site is mainly blue, and in
the opposite directions (states 5 and 6) for red sites. We
apply

FIG. 17. Plots of the contact angle versus the relative color
content for various gravity fields.

(16)

where g is the gravity control parameter. In Fig. 16, we
show that on increasing g from 0 to 0.0003 the profile of
an initial half-circular drop becomes flatter and flatter.

It is easy to characterize the effect of gravity by mea-
suring the increase of pressure along a vertical column of
a one-phase liquid, and then by applying

Ap= p, g, f 6,
where g f is the effective gravity of the system, and p, is
the eB'ective density of the BCA [p, = (6+ Kp) p 2/~3].
For a reduced density of 1/3, no ——18, and g = 0.0003, we
have obtained an effective gravity of g f ——2.93 x 10
The relation between these two parameters is linear.

A simple variational approach shows [36) that in the
case of a two-dimensional large drop on a flat surface,
the distance between the equatorial plane and the apex
h obeys the relation

FIG. 18. A blob within two partially wetting walls with
three different velocities V = 0.489 x 10, 4.58 x 10, and
9.5 x 10 increasing from top to bottom (CA units).

Lpg, f h2
y=

2

With a surface tension of p = 0.28, this equation yields
h = 32.1. We have performed a BCA simulation for var-
ious drop sizes leading to 6 values of 32+3. Considering
the small size of the system (256 x 64~3/2), the agree-
ment between these values is rather good.

Another interesting problem is to check if gravity af-
fects contact angles. Figure 16 suggests that even though
the shape of the drop is drastically affected the contact
angle remains unchanged. Figure 17 shows the contact
angles for various partial wetting cases (the drop is red
and color on the wall varies the red content from 30% to
70%), for the effective gravity g, y equal to 0, 0.982 x 10
and 1.97 x 10 s (corresponding to g = 0, 0.0001, and
0.0002 respectively). The contact angles are seen not to
be affected for small values of G. The slight differences
are mostly due to the difhculty in measuring a contact
angle on a very flattened drop.

100—

I I I
I

I I I i
I

I I I I
I

I I I
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g ~

~ ~ ~
i I l I I I i I I I 1 I l I I

—0.01 0 0.01
velocity

FIG. 19. The dynamical contact angle shown as a function
of velocity (CA units). This is a partially wetting case: the
static contact angle is 45
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only for a completely wetting liquid-gas interface. Very
small contact angles are diKcult to study to a high preci-
sion (the drop can break and the innate lattice structure
does not allow for precise measurement). Our results are
qualitatively consistent with those obtained theoretically
and experimentally by Fermigier and Jenffer [37].

80
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IX. CONCLUSIONS
I I j I I I I I I I I I I I I i I I

—0.01 0 0.01
velocity

FIG. 20. Same as Fig. 19 but for the partially nonwetting
case: the static contact angle is 135'.

VIII. WETTING DYNAMICS

We now ask what happens to the contact angle when
there is a net flow through the system and, more specif-
ically, how the apparent contact angle depends on the
Qow rate.

In order to measure the dynamical contact angle 0, we
perform the following simulation. A partially wetting red
bubble is Bushed between two walls by inducing a Bow
from left to right in a channel (Fig. 18). The velocity
of displacement of the bubble is, from top to bottom,
V = 0.489 x 10, 4.58 x 10, and 9.5 x 10 . As
expected, the dynamical contact angle increases with the
capillary number Ca= pV/p, which is proportional to the
Qow velocity.

In Fig. 19, we have plotted the dynamical contact
angle versus the velocity in the case of a partially wet-
ting liquid. Figure 20 is the same as Fig. 19, but it
refers to the case of a partially nonwetting liquid. Even
though these two plots 1ook physically reasonable, it is
not possible to check whether either Tanner's law [21] or
predictions of the more general theory of Cox [20] are
ful6lled. In fact Tanner's law, which relates velocity and
contact angle through 0 Ca for low 0 values, holds

We have designed a two-Quid nonlinear lattice Boltz-
mann automaton which satis6es Galilean invariance. The
recoloration rules in collisions allow for a convenient way
to introduce and control the surface tension [38].

The molecular difFusion coefI]].cient is measured in the
miscible case. Simulations of drop deformation in a linear
shear flow are in qualitative agreement with theory.

The BCA allows a continuous control of the contact an-
gle from complete wetting to complete nonwetting. The
simulation of the deformation of a drop placed on a sur-
face is in good quantitative agreement with theory. The
dynamic contact angle depends on the Qow rate. Appli-
cation of this BCA to flows and spinodal decomposition
in porous media is currently in progress.
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