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The initial deposition rate of sputtered material along the walls of a trench is calculated numeri-

cally. The numerical scheme is a nonstatistical description of long-mean-free-path transport in the
gas phase. Gas-phase collisions are included by using a "transition matrix" to describe the particle
motion, which in the present work is from the source through a cylindrical chamber and into a rect-
angular trench. The method is much faster and somewhat more accurate than Monte Carlo methods.
Initial deposition rates of sputtered material along the walls of the trench are presented for various

physical and geometrical situations and the deposition rates are compared to other computational
and experimental results.

PACS number(s): 05.20.Dd

I. INTRODUCTION

In this paper we describe a nonstatistical technique for
describing transport of sputtered particles and use it to
calculate the initial deposition rate of sputtered mate-
rial inside a trench. Sputtering metal and other mate-
rial onto substrates is a technique of great technological
importance. The procedure described here in essence ex-
tends calculations of initial sputtering deposition rates to
include gas phase collisions in a nonstatistical scheme [1].

In the past, calculations of the transport of sputtered.
particles have been done using Monte Carlo (MC) and
direct simulation Monte Carlo (DSMC) methods [2—8],
which are statistical in nature. Simulation "particles"
are followed using the computer. They are allowed to
have collisions, which are introduced "randomly" as de-
termined by a random number generator. When suK-
cient particles have been followed, the physical behavior
of the real system can be estimated by averaging the be-
havior of the simulation particles.

To obtain accurate predictions it is necessary to follow
large numbers of particles. This makes the MC method
computationally intensive. The method described here
is usually at least two orders of magnitud. e faster than
MC calculations while providing greater accuracy. It is
nonstatistical in nature no random numbers are used. .
Instead a "transition matrix" is constructed which con-
tains the probability of particles which scatter in one lo-
cation having their next "scatter" at any other location.
These scatters can be with particles in the gas phase or
with the chamber walls.

In DSMC simulations [6—8] a self-consistent transfer
of momentum IIrom the sputtered material to the back-
ground gas can be modeled, which is also the case in the
transition matrix approach. However, the DSMC as de-
scribed in Ref. [8] uses cell sizes that are comparable to
the mean &ee path of the sputtered atoms. In the case
presented here, the mean free path is comparable to the
system size and so the DSMC algorithm would have to
be altered.

The sputtering system studied here is cylindrical and
it is best to use cylindrical coordinates to describe neu-
tral transport through the main chamber. The gas-phase
transport in the main chamber, in the presence of gas-
phase collisions, is the main topic of this paper. The
trench transport, on the other hand, is treated. here as
being collisionless (although this is certainly not neces-
sary with the present method) and if the trench is linear is
best described using Cartesian coordinates. The setting
up of the transition matrix in each case and the inter-
face between the two regions is described next. Then in
Sec. III we describe results and compare them to other
numerical schemes [1] and experiments.

II. CALCULATION OF DEPOSITION RATES

The rate of scattering (number per second) of the sput-
tered particles is calculated, in steady state, by means of
the transition matrix T. The matrix describes collisions
which occur in the gas phase or when particles hit the
walls. We begin with a description of the gas-phase pro-
cess model.

A. Gas-phase transport

The volume of the chamber is divided into "cells," usu-
ally of constant width in each direction. In the cylindri-
cal chamber the coordinates used are (p, z) with the az-
imuthal angle P assumed to be ignorable. The cells are
centered on points (p;, zs), where p; = (i —1/2)Ap and
zi ——(j —1/2)Az, where (Ap, Az) are the cell widths in

p and z, respectively, and i and j are integers labeling
the cell.

The transition matrix element T.", ~-, contains the prob-
ability that a particle which had a scatter in the cell
(i', j') will have its next scatter in the cell (i, j). If the
steady-state scattering rate in each cell is B(i,j), then
scattering at the rate B(i', j') in cell (i', j') will contribute
scattering at a rate
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in the cell (i, j). The total rate of scattering in (i, j) is
obtained by summing over all "initial" cells (i', j') and
adding any production or injection of particles in (i', j')
with rate S(i', j'). Then

R(i,j) = ) T,", ~
, (B. (.i',j') + S(i', j')). (2)

Equation (2) is then iterated until the individual B(i,j) 's

change by less than a user specified amount, typically
10

Collisions with the surface can be included similarly.
More details of the method can be found in Ref. [9] and
in the Appendix. The model of gas-phase transport is
valid, if necessary with minor modifications to include
a more detailed description of the collisions, for all long
mean free path cases.

The angular distribution of particles can also be found
by summing over all initial cells. In this work, we are in-
terested in the angular distribution of particles striking
the substrate surface. The procedure to find the distri-
bution is given next.

FIG. 1. Calculation of angular distribution of particles
striking a surface.

of the chamber wall after the full distance L. Then, the
scattering rate per unit area from a chamber wall will
contribute

B. Angular distribution striking the substrate

In the present work, the distribution of scattered par-
ticles in the main volume is found first. This region is de-
scribed in cylindrical coordinates. This allows us to find
the angular distribution of particles striking a "point" on
the substrate; see Fig. 1. The trench is so small compared
to the dimensions of the chamber that it is effectively at
a point, from the perspective of the calculation in the
main chamber.

Once the main chamber calculation is converged, the
angular distribution of particles striking the substrate
can be calculated. We consider a point at some radial
distance a. We define a set of angles 0 and P so that
0 is the angle from the z axis and P is the angle from
the radial vector p; see Fig. 1. We take a discrete set of
values of 0 (ranging from 0 to ir/2) and P (ranging from
0 to ir), labeled by 0A, and P~, respectively. For each pair
of 0y and P~, the distance I in that direction from the
point on the substrate to a chamber wall is found. This
ray is then divided up into small segments of length Lr.
At some distance r along the ray, we identify a volume
in the range Ar at r, E0 at 0, and AP at P. The rate
of scattering per unit area at the substrate due to this
small volume is given approximately by

B(i,j) [r Ar sin(0I, )A0I, AP~] cos 0y
—exp( —r/A)

V i~, jl 4vrr 2

where b, 0I, and AP~ are the widths of the angular
bins, OI, is the average 0 in the theta bin, and A is
the mean free path of the particle. The small volume
[r Av sin(0g)A0I, AQ~] is contained in the main chamber
cell (i',j '), which has a volume V(i', j') = imp;Spaz.
B(i',j')/V(i', j') is the scattering rate per unit volume
in (i', j'). For each pair of (0~, P~) the scattering rate is
integrated along the ray. The ray will end on the surface

[I sin(0A, )E01,AQ~] cos 0q (4)
—exp( —I /A)

iI ~L2

at the substrate, where S(i', j') is the area of the chamber
wall cell (i', j'). The cosine of the angle made by the ray
at the wall enters the angular distribution leaving the
cell, but is canceled by the same factor coming from the
area of the small wall element in the range A0 and b, P,
expressed in coordinates centered on the substrate at the
top of the trench.

C. Transport in the trench

We now turn to the calculation of the transition matrix
in the trench Tq„„,g. A difFerent approach used previ-
ously to calculate the initial deposition rates in the trench
in steady-state consists of solving "Clausing-like" inte-
grals [1]. While this approach is similar to the transition
matrix (TM) approach described here for the trench, the
TM approach is able to connect the trench calculation to
the main chamber calculation in a seamless fashion. The
former approach assumes an uniform initial flux into the
trench, while the TM approach is able to calculate the
actual angular distribution of sputtered materials com-
ing into the trench and thereby give more realistic initial
deposition rates along the trench walls. There is no as-
sumption about the incoming flux. In fact, this transition
from the main chamber calculation to provide the incom-
ing flux to the trench is the main extension needed for
calculating the initial deposition profiles in the trench.

The trench is so small compared to the dimensions of
the chamber that it is effectively at a point, from the per-
spective of the calculation in the main chamber. Never-
theless, the length of the trench can be treated as infinite
compared to its depth or width.

The sput tered material from the main cylindrical
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chamber enters the trench from the top and collides with
the walls possibly many times before either exiting or
sticking to the trench walls. Neglecting the possibility
of reaction in the trench volume or with the trench wall,
for the present calculation, we make the following set of
assumptions.

(i) The frequency of particle-particle collisions in the
trench (not in the main chamber) is negligible relative to
particle-wall collisions.

(ii) The open end of the trench has a constant flux
of sputtered materials coming &om the main chamber,
which is found as described above.

(iii) The particles reflect perfectly diffusely from the
trench surfaces.

(iv) Surface di8'usion inside the trench is negligible.
These assumptions are similar to those in Ref. 1.

Due to assumption (i), gas-phase collisions in the
trench are negligible (unlike the main chamber calcula-
tion where they are essential) and the transition matrix
for the trench Tt„„,g only involves "transitions" from
collisions with one surface of the trench to collisions with
other surfaces of the trench. The calculation of Tt, „,g
can be done analytically and is described in detail next.
The angular distribution of the sputtered material enter-
ing the trench from the top is found in the main chamber
calculation, as shown in Fig. 2. The main chamber part
of the calculation treats all boundaries as absorbing some
fixed fraction (typically 10/o in the cases presented here)
of the incoming flux, diftusely reflecting the rest; the
source also emits at a fixed rate. The trench is ignored in
the main chamber calculation. Once the main chamber
calculation is converged, the trench transport is modeled
next with the angular distribution entering the trench
being the same all across the top. Once particles are in
the trench the top "absorbs" all particles that return to
it, whereas the walls capture a fraction p of particles hit-

ting them. A more sophisticated treatment of deposition
could be used however; we use a simple phenomenologi-
cal sticking coefIicient to illustrate the trench transport.

This implicitly assumes first-order kinetics (i.e. , p is in-
dependent of the Hux of sputtered particles).

The calculation of T&„„,~ uses the geometry shown in
Fig. 3. The trench is approximated as being infinite in
length and rectangular in cross section. Gas-phase scat-
tering in the trench is ignored, so T&„„,p is the probability
of scattering off' an element of the wall having previously
scattered ofI' another element of the wall. The walls of
the trench are divided into infinitely long strips of width

The calculation of Tq„„,g can be divided into three
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FIG. 2. Chamber geometry.
FIG. 3. Trench geometry: (a) particles hitting the parallel

wall and (b) particles hitting the perpendicular wall.
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parts. First, we find the probability of a particle leav-
ing a trench wall and hitting a parallel wall. Second, we
find the probability of a particle leaving a trench wall
and hitting a perpendicular wall. Finally, given an an-
gular distribution of particles coming through the top of
the trench, we find the probability of striking the trench
walls. We consider these cases next.

We start by considering particles starting at a point yo
on the left trench wall (see Fig. 3). We assume that the
angular distribution of the particles leaving the wall is
isotropic [assumption (iii)]. Then the probability of the
particle hitting an infinitesimal final surface element dS
is given by

1 cos(8„) L . n
7r L~

where 0 is the angle between w, the normal to the initial
surface, and the trajectory of the particle. The trajectory
is along the unit vector L, where L is the vector from
initial point on the surface to the final surface element
dS, and n is the vector normal to the final surface element
dS. The factor cos 0 ensures an isotropic d.istribution of
the particles leaving the initial surface, while the factor
1/vr is the normalization.

If we first consider the particle hitting the parallel wall,
then we have dS = dydz, n = x, I —= ip + (y —yp) +
z, and cos 8 = L.n = zv/I. ip is the trench width. We
then find

y'+A

f dz
dy -- [~'+ (y —yp)'+ z']2 i

where y' and y'+ A are the lower and upper coordinates
of the final cell. Integrating over z and then y we find

1 y'+ & —yo

Q(y' + A —yp)' + ip2

y —yo

g(y' —yp)' + ~'

Since the particles do not all start from a point yo, but
uniformly in the initial cell (i.e. , between yp and yp +
4), we average over the initial cell. This gives the final
probability as

2~ v'(y' - yp —&)'+ ~' - 2v'(y' —yp)'+ ~'

2L
/2. I2 + (y + +)2 ~12 + y20

+ (*'+&)'+yl- v'(*'+&)'+(y. +&)' (9)

+Q(y' —yp + &)2 + ip2 . (8)

For particles &om the same initial cell which hit the
bottom of the trench, the final dS = dx dz, n = y, I
x + yp + z, cos0 = x/L, and L . ri = yp/I. First—
integrating over the anal cell (from x' to x' + Ax) and
then over the initial cell, we find the probability

The probability of going between cells on the bottom
and the right wall of the trench can also be found using
this expression. The probability of particles going out
through the top of the trench can also be found using
Eqs. (8) and (9). These expressions, while only valid for
a nonevolving trench wall, can be generalized to a wall
which evolves in time (see below). Similar integrals have
been described in Refs. [1,10,11].

We now turn to finding the probability distribution for
particles, coming through the top (from the main cham-
ber) and hitting the trench walls. Since, in general, the
angular distribution is not known, analytic expressions
cannot be given. However, once an angular distribution is
found &om the main chamber calculation, it is a straight-
forward task to find where particles hit the trench walls.

The trajectory of a particle entering the trench makes
an angle of 0 between the top normal (—y) and the tra-
jectory and makes an angle P with the local z axis of the
trench. Given the location x where the particle crossed
the top of the trench, one can find where the particle will
hit a trench wall. For each x value on top of the trench,
the &action of particles striking each cell of the trench
walls is computed by integrating over 8 and P. After all
x values are considered, an average probability is found
for particles coming through the top hitting each cell of
the trench walls.

III. RESULTS OF SIMULATIONS

In this section we review the results obtained using the
transition matrix to describe sputtering, with allowance
for transport in the presence of collisions in the main
chamber and into the trench. We then compare our re-
sults to experiment. However, we first show that the
initial deposition rate predicted by our method for an
isotropic flux of sputtered material entering the trench is
in agreement with the results of Ref. [1].

Figure 4 compares the analytic [1] and transition ma-
trix results for initial deposition rates d.efined relative to
the deposition rate on the exterior of the feature. The
aspect ratio of the trench (height to width) is 2 and the
sticking coeflicient p = 1.0. Figure 5 compares the ini-
tial deposition rates for the same trench but with various
values of p. The vertical axis in each figure has been
normalized to the deposition rate on the exterior of the
feature. The horizontal axis is the normalized distance
(i.e., x/ur or y/h) from the bottom corner of the trench
(Fig. 3). All the figures show excellent agreement.

The remaining figures relax the assumption of an
isotropic flux of sputtered material entering the trench.
Instead, the angular distribution is found &om the main
chamber calculation. The cathode (Fig. 2) consists of
the sputtered. material which is titanium. The gas in the
main chamber consists primarily of argon. Only titanium
sputtered ofI' the cathode is tracked in the main chamber
and in the trench. The rate of titanium coming ofI' the
cathode is assumed to be uniform in space and constant
in time.

First the steady-state scattering rates for the main
chamber are found. Any titanium that hits the main
chamber's wall is absorbed with a probability of 0.1, the
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rest being rejected diffusely. Once the steady-state dis-
tribution is found, the angular distribution at some ra-
dius p = a on the substrate is found and the propaga-
tor that describes how the incoming particle Aux is de-
posited onto the trench walls is computed. Finally, given
a value of the sticking coefficient p, the scattering rates
on the walls of the trench are iterated until steady state
is achieved.

For the system studied here (Table I), the angular dis-
tribution at the substrate at p = 0 is uniform in P and
for small values of 0 it is uniform in 0, but there is a

sharp decrease in the Hux for angles 0 ) arctan(B/H),
where B and H are the radius and the height of the main
chamber, respectively. This is expected since in this cal-
culation the mean &ee path of titanium is considerably
longer than the main chamber dimension.

For large values of the sticking coefficient p 1, the
effect of the anisotropy on the deposition rate is to de-
crease it near the top of the trench and to increase it on
the bottom of the trench compared to the isotropic Aux
case (Fig. 6). The bottom of the trench receives more
material per unit area because the incoming particle fIux
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TABLE I. Parameters used in the simulation. TABLE II. Comparison of deposition rates.

Quantity
Chamber radius
Chamber height
Ti mean free path A

Gas temperature

Value
14.288

5.0
40.0
300

Units
Aspect

ratio h/w
1.25
1.5

1.875

Relative depth
of material

in expenment
0.89
0.66
0.41

Calculated depth
p = 0.1 p = 0.2 p = 0.3

0.84 0.72 0.63
0.80 0.66 0.57
0.74 0.59 0.49

is directed mostly downward into the trench.
For low sticking coeKcients p 0, particles achieve

a roughly isotropic distribution in the volume near the
bottom of the trench and a uniform rate of hitting the
walls and bottom (Fig. 7). If the incoming distribution is
peaked downwards (into the trench), then for p 0 the
deposition rate actually decreases near the top. Since
the rate is uniform in the isotropic case, this should be
expected. This is because the incoming particles have a
"high" probability of going to the bottom of the trench
where they are scattered isotropically. When they return
to the top the chance of escape increases as they approach
the top so the deposition rate drops.

As shown in Table II, the sticking coeKcient p can be
estimated by comparing the deposition rate at the cen-
ter of the bottom of the trench to experiment. Since
the evolution of the trench shape is not allowed for, the
calculated deposition rate is essentially the initial depo-
sition rate. That is, once titanium is first deposited onto
the trench wall, the propagators inside the trench will
change. This effect is not included here. While the sim-
ulation results have the correct trend in that the depo-
sition rate decreases as the depth increases and also as
p decreases, the numerical results do not show as much
variation as the experiments. However, assuming a uni-
form deposition rate, each wall will "encroach" by equal
amounts. Therefore the trench as it evolves effectively

becomes narrower faster than it becomes shallower, com-
pounding the low deposition rate on the bottom. This
means that the calculated rates are upper limits and so
we may deduce that a value of p 0.1 or less is reason-
able.

Also shown, in Figs. 8 and 9, is the deposition rate
at different radii and different orientations, all for p =
0.1. Comparing these figures, the deposition rates do not
change appreciably with radius until the trench is near
the radial outer boundary of the main chamber (Fig. 9).
Also, if the trench is rotated so that the trench z axis
is not along the main chamber p axis, the deposition
rates are not strongly effected until, again, the trench is
located near the outer radial boundary. Experimentally,
little variation with p is seen (( 2%) and this may also
indirectly point to a low value of p. The multiple bounces
that occur in the trench when p is low make the Aux
"forget" its initial angular distribution, which is distorted
as p increases. As a result, radial effects manifest later
for p near to zero.

%'hile we have only shown results for an infinite rect-
angular trench, the scheme outlined here can be extended
to more complicated geometries. As long as the walls of
the trench are parallel, the z integral in Eq. (5) can be
done analytically. If one takes the trench as piecewise lin-
ear segments, the other integrals can also be calculated
either analytically or numerically. Similar approaches
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described in this appendix. The first step of the calcu-
lation is to find the rate B at which particles scatter in
each cell of the mesh. Once this is known, it is straight-
forward to find the distribution function f (r, v). For this
reason, we begin by focusing on the scattering rate. Since
R is typically a function of two fewer variables than f, it
can be much more efFective to do the bulk of the calcula-
tions in terms of B. The description of the construction
of the distribution function &om B is given later in this
appendix.

In the present work we use momentum conservation to
find a mean z velocity for all particles of a given species
that scatter in a particular cell. We assume that the
particles of each species are scattered isotrop&cally in the
appropriate reference &arne moving at the mean z veloc-
ity for scattered particles of that species.

The calculation of the scattering rate B will now be
described, first assuming that particles scatter off fixed
scattering centers and have constant mean &ee path A in
space and then assuming momentum conservation and a
spatially variable A. The wall scattering is handled in
a similar fashion to volume scattering, so we begin with
volume scattering and then indicate the differences that
occur when the scattering is ofF the wall.

1. The idealised case

The geometry used here is cylindrical, with symmetry
in the azimuthal angle assumed. Other geometries can be
handled similarly. We first set up a table of probabilities
T,-", , This represents the probability that a particle that
scatters in the initial cell (i', j') will have its next scatter
in the final cell (i, j). In this section our focus is not on
finding T, but how it can be used to describe the neutral
species, so we take A to be constant in what follows next.

The index i refers to the radius p = (i —1/2)Ap, while

z = (j —&/2)Az, with Ap and Az being the mesh spac-
ings in r and z. If one particle per second scatters in
(i', j'), this contributes a scattering rate T,' -, in the cell
(i, j). Similarly the scattering rate R(i', j') in the cell
(i, j) contributes a scattering rate T,",~, R(i', j') in cell
(i j).

If particles are "created" in cell (i', j'), either by chem-
ical reactions or by injection &om outside, with rate
S(i', j'), then the net flux leaving (i', j') is increased by
the amount S(i', j'). If a fraction 1 —cx, ~ ~1 of the parti-
cles scattering in (i', j') are converted to another species,
then instead of the total outward fIux of particles of this
species scattered in (i, j') being simply R(i', j'), we in-
stead have n;I ~~R(i', j'). The outward Hux is thus

E(i', j') = n;, R(i', j') + S(i', j'). (Al)

Summing over all initial cells (i', j'), the total scatter-
ing rate in cell (i, j) is then

R(i,j) = ) T,", ' , (n;, R(i',j') +. S(i', j').).
1' j'

(A2)

T'"'' =~ - A: dA'dALV' ~v av 4' R
(A3)

This equation can be iterated to find R(i, j) in each cell
of the mesh.

The idealized table of probabilities can be found an-
alytically. As stated above, for simplicity we begin by
assuming isotropic scattering and a constant mean free
path. These assumptions can easily be removed, and this
will be done below. If the initial cell has volume AV' and
the final cell has volume LV, if a vector pointing &om
the origin to a point in LV' is denoted X' and the vector
pointing to a point in LV is denoted X, and R = X' —X,
then
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where A = 1./k is the mean free path. Alternatively,
T can in general be found by a MC calculation. Parti-
cles are launched with a uniform distribution throughout
AV'. Assuming isotropic scattering, cos0 = 1 —2gq,
P = 2zq2, and the distance traveled before scattering is
B = —Alng3, where the g's are uniformly distributed
nUmbers between 0 and 1. The fraction of the particles
that subsequently scatter in cell (i, j) is T,

The walls are also divided into cells. The fraction of
the particles from any volume cell (i', j') striking each
cell of the wall, either at the ends in z or at the outer
radius, is recorded. Similarly, the fraction of particles
scattering in any wall cell that go to any other wall cell
or to any volume cell is found. . Particles leaving cells are
(for now) assumed to be distributed isotropically, which
means that for volume cells their number leaving i.n a
given range of 0 and P is proportional to the area dS on
the surface of a sphere in that range of the angles. For
surface cells, the distribution is weighted with an extra
factor of cos 0, where 0 is the angle of the trajectory
from the normal vector to the surface. In addition, it
also weighted with the sin 0 from dS, making sin 0 cos 8
In setting up the table T using the MC, we simply need
to know the angular distribution, either P(0) = sin0 or
P(0, 0 ) = sin 0 cos 0, respectively, and normalize this
suitably so each particle has unit probability of going to
some 0, P. When normalized to a total rate of one particle
per second, the number leavirig a point in the volume per
second in d0 at 0 and dP at P is sin 0d0dg/47r. For a point
on the surface, the equivalent number leaving the point
is sin 0 cos 0 d0dg/vr.

In our cylindrical case the z symmetry of the table
is broken only at the end walls. Therefore transition
probabilities need only be stored in terms of the difference
in z between the pairs of cells {in addition to the initial
and final radii p' and p), considerably reducing the time
to set up the table T and its size.

2. The general transition matrix

cedure described below. Thus the net velocity of that
species is found correctly with some small error in the
angular distribution.

If a precise description of scattering for arbitrary A

and arbitrary angular distribution is needed, the tran-
sition matrix can be set up more exactly. For a given
angular distribution of scattered particles we allow the
appropriate fractions of the scattered particles to move
along "rays" originating from the cell where scattering
occurs. Each ray is described in spherical coordinates as
being in the range 0 to 0+d0 and P to P+dP. As particles
move down the ray, they are allowed to scatter at a rate
determined by the local mean free path A. If the calcu-
lation is overall being done in Cartesian coordinates, for
example, each ray overlaps a series of rectangular cells.
The fraction of the beam that has not yet scattered but
which scatters in a given Cartesian cell c that overlaps
beam 6 can be written

(exp( —r/A) —exp[ —(r + Ar)/A]) aq, sin 0d0dg, (A4)

where A is the local mean free path which is allowed to
vary arbitrarily and the factors ab, are purely geometri-
cal reflecting the overlap of each beam 6 with each cell c.
They can be stored for use in calculating the transition
matrix T, since the elements of T can be found directly
from the ag, 's. The ag, 's are independent of the ini-
tial cell, in Cartesian coordinates, in which case ab is
a three-dimensional quantity. In this case normalization
is achieved by subtracting the fraction of the remaining
particles as each cell is crossed and allowing the rest of
the particles to pass through, some ultimately reaching
the boundary of the simulation region.

For two dimensions, the propagator would in general
be four dimensional, making calculations prohibitively
slow, even for a very simple model of the transport pro-
cess with a well-known propagator. The propagators
used here are all compact in that they can all be found
eKciently with information stored in three-dimensional
form.

The table T as described so far is for A = const. In
the reactor, A is roughly constant but not exactly so. We
now discuss ways to allow for variable A with a "null-
collision" method, which is used in the present work.
Finally, we sketch a very precise treatment of angular
scattering, which will be described fully in future work.

The MC method could be used to generate T for an
arbitrary profile of A, but then the symmetry in z would
be lost, so T would be a very large matrix, and T would
need to be updated during the calculation of B whenever
A changed. In the null-collision method we 6.nd the T
matrix corresponding to A;„, where A;„ is the small-
est A value occurring in the region modeled. In practice
we flnd T for several discrete values of A;„, for use in
different parts of the discharge. Then in each cell the
calculated scattering rate is overestimated by T(A;„).
This can be corrected using a more accurate value of A

to hand how many of the collisions in each final cell were
unphysical or null collisions. The particles that had null
collisions are considered to have collided with their own
species in the momentum-conserving version of the pro-

3. Momentum conservation

The effect of momentum conservation on the scattered
distribution is included. next by allowing the scattered
particles of each species in each cell to have a differ-
ent drift velocity Vp„superimposed on their random
velocity. In the frame moving with V~, the scattering
is treated as isotropic. Vg, is different for each species,
in each cell of the mesh.

There are two aspects to including momentum conser-
vation: the erst involves calculating Vd, and the second
consists of allowing for Vg, in the transition probabilities
used to update B. We begin by discussing how we fj.nd
Vg„and then turn to the use of Vd, in the calculation
of B.

Particles traveling &om cell (i', j') to cell (i, j) are as-
sumed to have the thermal speed Vth (the particles are
monoenergetic in the example given here). Inclusion of
an extra energy variable is straightforward. (Since T is
known for a range of A;„ in any case, the T matrix is
not increased in size by including the energy. ) The av-
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erage z component of velocity of particles scattering in
(i, j) is found by averaging over the particles leaving all
(i, j ) and colliding next in (i, j). This involves the same
integration as in Eq. (A3), but with an additional factor
of cos 0 in the integrand, where 0 is the angle between
the actual velocity and the z axis. This is then multi-
plied by mph, where m is the particle mass, to find the
z momentum brought into (i, j) by particles from (i', j')
which scatter in (i, j).

For a single species scattering off itself, the net z mo-
rnentum of particles scattered in (i, j) is simply obtained
by summing this over all (i', j'). For multiple species
we consider what fraction of the collisions of species a
are with species b to determine the force they exert on
each other. In either case, Vg, (i, j) for particles of each
species, scattered in (i, j), is chosen to conserve z mo-
mentum.

We now turn to the modification of the transition prob-
abilities due to Vd, . The calculation done here is for
steady state and the time of flight from (i', j') depends on
their separation. Further, different parts of the two cells
are at different distances. We find the average distance
B by again using an integral such as Eq. (A3), but with
an extra R in the integrand and normalized by dividing
by T,", ~, The average time of flight is then ts = B/Vgh
and the average additional displacement in z is

bz = Vg, B/Vi„ (A5)

where Vd, is the drift velocity of scattered particles at
the initial cell (i', j').

A better approximation would be to find a range of
bz values along with a weighting factor associated with
each bz. This did not seem warranted at present, but can
readily be included if appropriate.

We have now established how we find bz for particles
traveling between a certain pair of cells. This is the
change in the z position due to the flow velocity Vp, .
This is in addition to the z motion of isotropically dis-
tributed particles in the laboratory frame of reference.
As stated above, we assume bz is small. To find bz in
this way, we need to know the final cell. We move par-
ticle Quxes kom the initial cell to the cells which would

be the final cells if V~, were zero. These cells will be
"intermediate" cells. We use the same probabilities for
going to these intermediate cells as if Vg, were zero.

Having replaced the particle Buxes on the mesh, using
the matrix T to find the probabilities and thus ensuring
exact normalization, we can shift these intermediate cells
by bz. bz is different for each intermediate cell. If for a
particular pair of initial and intermediate cells bz carries
the intermediate cell 30% of the distance into the next
cell, then 30% of the collisions of particles from the initial
cell which were indicated for that intermediate cell will
take place in the next cell. The remaining 70% take place
in the same cell as the intermediate cell. This second step
also guarantees exact conservation of the particle fluxes.

The treatment of the shift bz near the ends of the
cylinder requires further consideration. We consider sep-
arately the cases where bz is towards the end and where
bz is away from it. If bz is towards the end we do the
first step as usual, using T to move particle Huxes to in-
termediate cells. Some of the particles strike the end.
We assume those strike at approximately the right ra-
dius. Then when bz is allowed for, more particles strike
the end at the radius of their intermediate cell. This too
is approximately correct.

If bz is away &om the end, the first step is done as
usual. We also keep track of the scattering rate in an
imaginary volume cell behind the end. Then when bz is
allowed for, some &action of the imaginary cell is moved
into the solution region. The scattering rate on the sur-
face, at that radius, is decreased by the amount of scat-
tering shifted into the volume next to the surface. The
scattering rate added to the volume at each radius cannot
exceed that which was on the surface. This procedure is
essentially the converse of what is done for the opposite
sign of bz. Since bz is expected to be especially small near
the ends, in most cases, these approximations should be
valid.

For the purpose of finding the Vd, carried from the
initial cell (i', j') to the final cell (i, j), the particles are
all treated as originating in (i', j'). The actual number
going to (i, j) from (i', j') is changed by having a nonzero
Vg„but the angle is not changed.
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