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Projection (Green’s function and diffusion) Monte Carlo techniques sample a wave function by a
stochastic iterative procedure. These methods converge to a stationary distribution which is biased,

i.e., differs from the exact ground state wave function.

This bias occurs because of the use of

population control procedures. We demonstrate that these biased Monte Carlo algorithms lead to a
modified effective mass which is equal to the desired mass only in the limit of an infinite population
of walkers. In general, the bias for the energy scales as 1/N for a population of walkers of size N and
is proportional to the expectation value of the kinetic energy. Finally, we consider various strategies

to reduce this bias.

PACS number(s): 02.70.—c

I. INTRODUCTION

In the past two decades, Monte Carlo (MC) methods
have been widely employed for studying quantum me-
chanical problems (see [1] for a recent review). In par-
ticular, they have proven to be valuable in determining
ground state properties of particle [2-4], nuclear [5-7],
atomic [8], and molecular systems [9], as well as of quan-
tum fluids and solids [10-13].

Projection MC methods, which are our concern here,
attempt to project out the ground state of a quantum
system. The various implementations correspond to dif-
ferent choices of the projection operator. It is convenient
to divide them into two main classes: Green’s function
Monte Carlo (GFMC) methods, which essentially use the
Green’s function H ! as a projector, and diffusion Monte
Carlo (DMC) methods, which use the imaginary time
evolution operator exp(—Ht) as a projector. These meth-
ods are best understood as stochastic implementations of
the power method. In that method, the dominant eigen-
value and eigenvector of a matrix or projection operator
A are computed by iteratively applying A on an arbitrary
initial vector |¢) [14]. As the number n of iterations be-
comes large, one has, in Dirac’s notation,

A™|d) = AG (Yo|#)|o) + O(A™), (1)

where )¢ is the leading eigenvalue, |10) is the correspond-
ing eigenvector, and A; is the largest subleading eigen-
value. Then one has [14,15]

<<¢T|An+k|¢) ) 1/k
(Yr|A™|8)

for any trial vector |¢r) and integer k.

In projection MC methods, this power method can be
implemented stochastically as long as the operator A has
non-negative matrix elements (a property that depends
on the basis). For simplicity, we follow the notation of
Ref. [16] and assume that A is a d x d matrix. One first

/\0 = lim

(2)
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defines a set of weights w;, with w; = Z:.i:l A;; and
7=1,...,d. Then the matrix M, defined by

has each column summing to one (Zgzl M;; = 1). This
property ensures the conservation of probability and
makes M a “stochastic” matrix. The matrix A is thus
expressed as a product of the stochastic matrix M and
the diagonal matrix w, i.e., A = Mw. The matrix M
defines a Markov process that is used to generate the se-
quence of states (called configurations hereafter): given
the configuration j, configuration ¢ is chosen with prob-
ability M;;. The matrix w makes it necessary to weight
the configurations so that during evolution, the weight
associated with configuration j is multiplied by w;. It is
easy to show that, on average, the evolution is identical to
the standard power method (i.e., without stochasticity),
so that Eq. (1) is reproduced for mean values. Thus the
configurations after a large number n of steps will form
a sample of the dominant eigenvector. If one considers a
population of N random walkers (« = 1,...,N) in con-
figurations 14, carrying the weight w, accumulated along
the evolution, then

N
F(i) =) 8ii Wa (4)

is an estimator of the ith component of the (unnormal-
ized) dominant eigenvector of A, in the limit of many
iterations. The number of iterations should be chosen
large enough so that subdominant eigenvectors are pro-
jected out. However, in practice, this method of carrying
weights does not work well because the variance of the
above estimator grows exponentially with n, the num-
ber of iterations, while it decreases only with the usual
1/N law associated with random sampling. There are
several possibilities to remedy this problem. One is to
repeat the n iterations a large number of times using R
independent runs (but still using the same initial vector
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|#)). The variance of any estimator will then diminish as
N 'R since the walkers are all independent. This slow
decrease will have to compensate a variance that grows
exponentially in n; thus, in practice, it is necessary to re-
sort to variance reduction techniques. One such method
is to do importance sampling, i.e., to guide the random
walk using a trial wave function. The result is a smaller
variance, though still exponentially increasing with n. A
further reduction of the variance is achieved by “replicat-
ing” the population of walkers [17,18]. The idea here is
to discard low weight configurations and duplicate large
weight configurations. Then, the weights of individual
configurations are kept near a target value, typically 1;
as a consequence, the number N() of configurations at
iteration n (or their total weight) either increases or de-
creases exponentially with n because of the A} factor in
Eq. (1). To avoid this, it would be best to evolve us-
ing the projection operator A/)\g, but of course A is not
known. So, in practice, one uses a population control
method whereby the random walkers are evolved using
A, then the weights are divided by A(n), and finally the
walkers are replicated. The factor A(n) is adjusted dur-
ing the simulation to keep the population size or its total
weight approximately constant. This population control
is sometimes called renormalization because the weights
are rescaled.

This evolution using renormalization forms a Markov
chain in the space of populations of configurations and
has a stationary probability distribution: configuration
i appears with a relative frequency %*(z). It is com-
mon practice to consider that |4*) is proportional to the
ground state wave function. However, this is not justi-
fied; in fact, |¢*) is not a multiple of |1g); rather |*) is a
biased estimator of |t¢). The amplitude of the bias goes
to zero as 1/N, where N is the characteristic size of the
population used in the evolution. The renormalization
introduces a bias as soon as the w matrix is not a multi-
ple of the identity matrix. A qualitative way of arguing
for the existence of such a bias is obtained by consider-
ing the case of a single random walker (N = 1) in the
absence of replication. In this case, the renormalization
procedure amounts to forgetting the weight after each
evolution (the weight of the walker is reset to one). The
evolution thus proceeds in fact according to the transi-
tion probabilities M;; only; the corresponding stationary
distribution (the eigenvector of M;; associated with the
eigenvalue 1) clearly differs from the desired eigenvector
|ho) of A, so there is a large bias. It is reasonable to as-
sume that this bias remains for other values of N and that
it goes to 0 as N — o0, since the procedure in that limit
is equivalent to the nonstochastic case. It is intuitively
clear that renormalization introduces some approzima-
tion in the Monte Carlo algorithm since information is
lost at each rescaling: the absolute scale of the weights
is thrown away; only relative magnitudes are kept.

Soon after the first use of projection Monte Carlo, it
was realized (Kalos [19] and Ceperley and Kalos [20])
that the standard eigenvalue estimator was biased. This
bias was rediscovered by Nightingale and Bléte [21] for
transfer matrix calculations and by Gelbard [22] in the
context of neutronics computations. Methods to reduce

the bias for the energy were proposed by Ceperley and
Kalos [20], Reynolds et al. [9], Nightingale and Bléte [21],
and Umrigar et al. [23]. However, it was Hetherington
[16] who first explicitly stated that |¢*) was biased by
order 1/N, albeit for a particular choice of replication and
renormalization procedure. In spite of these (few) papers,
in many works using projection Monte Carlo, it is not
realized that |1*) is biased or at best the bias is believed
to be negligible. The aim of the present paper is to show
the origin of this population control bias, calculate its
magnitude in a model case as well as its scaling with
various simulational parameters, and consider ways to
remove it.

Our discussion of the bias applies to the GFMC
method, to the DMC method, and also to all stochas-
tic implementations of the power method. In particular,
it applies to MC calculations for transfer matrices in sta-
tistical mechanics and to neutronics. However, we will
present most of the derivations for the DMC method;
the advantage of this method is that it follows from the
standard Feynman path integral formalism, rendering the
discussion simpler for our purposes. After briefly review-
ing the DMC method in Sec. II, we calculate in Sec. III
the errors introduced by a particular choice of the repli-
cation and renormalization. Section IV illustrates the
bias on a pairing Hamiltonian, showing that it can be
rather significant. Finally, we review different strategies
that can be used or have been proposed to reduce this
bias in Sec. V.

II. DIFFUSION MONTE CARLO METHODS
A. Time evolution and estimators

The DMC method was first developed in [18], provid-
ing a technique for calculating the ground state energy of
a quantum system using random walks. There are three
phases in a DMC method: (imaginary) time evolution,
replication, and renormalization. These last two phases
will be discussed in Sec. IIB.

Consider a point r of mass m in configuration space,
placed in the potential V(r). The Schrédinger equation
in imaginary time (with % = 1) reads

1o} 1
a—lf =—Hvy = %—Vzw(r,t) —V(r)y(r,t) . (5)
This is identical to a reaction-diffusion equation: the
right-hand side can be interpreted as a diffusion term
(with a diffusion constant D = 1/2m) and a reaction
term describing a growth or decay process (with the
source-sink term —V%). As is well known, the diffusion
process can be treated via a random walk, whereas the
reaction term necessitates the introduction of a multi-
plicative process.

The imaginary time evolution given by Eq. (5) acts as
a projector which, at large time, selects out the lowest
energy state. It is convenient to shift the potential by a
trial energy FEr, giving
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% _ (Br - Hyp = ﬁvw}(r, t) - [V(r) — Brlw(r,t) .

ot
(6)

The projection operator in the DMC method is thus the
(imaginary) time evolution operator U; = e~ (H—F1)t_If
Er is larger than E,, the wave function will grow in
normalization whereas the opposite occurs for E7 smaller
than Ey. As will be explained in Sec. II B, E7 is adjusted
during time evolution to avoid an exponential increase
or decrease in the normalization. In order to evaluate
U; in practice, it is necessary to resort to the short time
approximation. One first divides the time interval ¢ into
M infinitesimal intervals At and uses the relation

J

M
Ut — H e—(H-—ET)At‘ (7)
n=1

The infinitesimal propagators are then approximated, for
instance, by use of the Trotter formula as

e—(H—ET)Ai — e-—TAte—(V—ET)At + O(AtZ) (8)

where T and V stand for the kinetic and the poten-
tial energy, respectively. (It is of course possible to use
breakups, which are more accurate.) Applying the evo-
lution operator on an initial wave function |@) yields the
ground state o) at large ¢:

o(r) =~ e(Eo—Er)t<¢0|¢)~1/dr(M>...drm) (r|r D) (p(M) | o= AT | 1 (M—1)y o= At[V (+(M D)~ ]

N <r(1)|€—AtT|r(0))e—At[V(r‘°’)—ET]¢(,.(0)). (9)

We have assumed that the potential V(r) is local in
configuration space, so that applying e~ 2t(V—E1) gim-
ply amounts to multiplying by a weight w equal to that
factor. The operator e~2tT corresponds to a diffusion
operator whose matrix elements are

P(r',r) = (r'|e 2T |r)
m \9/2 m "2
= (M) exp (—m(r—r) ), (10)

where d stands for the dimension of the problem.

The idea behind the DMC method is to obtain numer-
ical estimators of the right-hand side of Eq. (9) by use
of sampling techniques. To do so, the repeated iteration
of the propagator e~ (H—Er)At j5 simulated stochastically
using a population of (weighted) random walkers. At
each iteration, a random walker at r is weighted by a
factor w(r) = e AUV ()=E1] and then diffused according
to a (d-dimensional) Gaussian step of variance At/m.
This is analogous to the Feynman separation of the time
evolution operator into two separate propagators (corre-
sponding to the potential and the kinetic energy) [24].
The change in the total population weight can be used
to estimate the energy Fjy of the ground state. Indeed, a
naive normalization (or growth) estimator for Ey can be
written as

1 w(n+1)
EN = ET - E In (W) (11)

with W (™) being the total weight of the walkers at the
nth iteration. As first noted in Ref. [19], this estimator
is biased even after relaxation (after the excited states
have decayed away) as a consequence of the statistical
fluctuations of the W(™)’s. The point is that any esti-
mator should be expressed in terms of matrix elements.
The error in Eq. (11) can thus be interpreted as com-
ing from taking the ratio before doing the average. To
correct this, one should write instead

By =FBr— 5 o)

where (1| = [ dr(r|. These matrix elements must be es-
timated separately using Eq. (9), the ratio being taken
afterwards. (It is true that the statistical errors in the
numerator and denominator will introduce a small bias
in En because it is a nonlinear function of its arguments.
However, this bias will disappear with increasing statis-
tics.)

Another estimator of Ey, based on the coordinate po-
sitions of the random walkers, can be constructed by use
of the expression

iln(<1|e—At<H—ET’|¢o>) . (12

 (rlHlo)
Em = = irlbo)

where |¢r) is an arbitrary trial wave function, and E,, is
called the mixed (or trial or variational) estimator of Ey.
As was the case for the growth estimator, these matrix
elements can be evaluated using Eq. (9); for instance,
{¥7|%o) can be estimated numerically by

(13)

N
($ro) ~ BB (o)~ % S 9 (™)e(r{”)
=1

M
x [ w™Y) . (14)

So far, we have only considered averages. For the
above estimators to be useful, their variance cannot be
too large. In fact, what counts is the signal to noise ra-
tio, that is, the relative variance defined as the ratio of
the variance to the average squared. It is relatively easy
to show that the above estimator has a relative variance
that grows exponentially with nAt, which is the physi-
cal (imaginary) time over which the evolution operator
is applied. Since it is necessary to take this time large
enough to eliminate excited states, this approach is very
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inefficient. In practice, one has to find ways to reduce
the variance of estimators. A natural way to do that is
to guide the random walk rather than to use the simple
diffusion operator. For completeness, we now very briefly
describe this procedure.

One starts with the density function p(r,t) =
P(r,t)r(r), with ¥r(r) being an arbitrary (time-
independent) trial wave function. The guided random
walk is obtained by modifying the diffusion procedure so
as to sample p(r,t) rather than ¢(r,t). For this, one uses
the propagator ¢ (r)e™ (H—Er)Aty1(p). Physically, this
propagator corresponds to a diffusion in an external po-
tential [related to V7 (r)], implemented using the modi-
fied weight factor w(r) = e~ AUEL()—E1] with the “local”
energy Er(r) = ¢7'(r)Hyr(r). At large times, the den-
sity function p(r,t) converges to e~ (Eo=E7)y (r) with
po(r) = to(r)yr(r). Therefore, one can write a mixed
estimator of Fqy as

(bl Hbz" p0)
B, = YT Yr po)
Grlvz po) (15)

this estimator being calculated by averaging separately
the numerator and the denominator along the MC run
for the reason mentioned above. If |3r) is chosen close to
the exact |1)o), the variance on the energy estimators will
be significantly smaller than in the case of no guiding. In
fact, in the limit |¢1) — |¢o), the evolution operator is
proportional to a stochastic matrix and the variance of
the estimators Enx and E,, vanishes. Of course, if we
set Y7 (r) = 1, the evolution comes back to the standard
e~ (H-ET)At g6 that the random walk is unguided. Note
that the unguided random walk asymptotically samples
|10}, whereas the guided one samples the physical prob-
ability distribution |¢9|? (to the extent to which |¢r) is
a good approximation of |1g)). In the following sections,
we will restrict the analysis to unguided random walks
[¥7(r) = 1] for simplicity, but our results could be ex-
tended to the guided case.

B. Replication, renormalization,
and the stationary distribution

As mentioned previously, if one follows N random
walkers, accumulating the weights through successive
iterations, the relative variance on the observables in-
creases exponentially in n, the number of iterations.
In fact, we have calculated that this variance grows as
exp (nAt(H — Er(r))), where { ) stands for the expec-
tation value in the ground state. In the unguided case,
this becomes exp(nA¢(T)), where T is the kinetic energy
operator. Since it is necessary to follow a large number
of steps n to project out the ground state, this approach
leads to large statistical noise, unless the trial wave func-
tion used for guiding the random walk is quite close to
the exact wave function (see [25]). Thus, in practice,
one uses an additional variance reduction scheme, called
replication. In this process, walkers with small weights
are discarded and walkers with large weights are dupli-
cated. Replication is implemented so as to preserve all
average quantities.

Among workers in the field, the simplest replication
is very frequently used (see, e.g., [9,17-19,26]). It con-
sists of considering the fractional part of the weights as
a probability in order to deal with walkers of unit weight
only. For each walker of weight w, one creates int(w + &)
walkers of unit weight, where £ is a random number uni-
formly distributed in [0, 1]. Thus weights less than 1 are
considered “small” and weights greater than 1 are consid-
ered “large.” For reasons that will be apparent soon, it
is convenient to generalize this standard replication pro-
cedure to any dividing value V' between large and small:
it is enough to first divide all the weights by V, apply
the above replication algorithm to these rescaled weights,
and correct afterwards by multiplying all the weights by
V. (The standard replication simply corresponds to the
choice V = 1; in addition, various other modifications to
this procedure have been proposed [16,21].) The use of
replication leaves average values unaffected (for instance,
estimators have the same average value), but lowers the
variance.

We assume the replication procedure given and now
move on to what we call renormalization. An important
consequence of replication is that the number of walkers
is no longer constant in time. Furthermore, replication
introduces noise that is amplified with time. It can be
shown that, even if Er = Ej exactly, the fluctuations in
the total weight of the walkers increase indefinitely with
the number of iterations. For the standard replication,
the weights are equal to 1, so it is the number of walkers
that has a diverging variance. This is inconvenient for
practical reasons: computer memory is limited, and one
does not want the population size to vanish. Thus it is
common procedure to implement a kind of renormaliza-
tion [9,17-19,26] to keep the number of walkers in some
convenient range. The notion of exactly what constitutes
a renormalization is not part of the standard lore and
sometimes renormalization is referred to as “population
control” [23]. The simplest explanation of this proce-
dure follows from the history of the GFMC and DMC
methods. First, in order to avoid large fluctuations in
the total weight or number of walkers, it is convenient
to replicate using a time dependent V. A simple choice
is V(® = W) /N where W(™) is the total population
weight at step n. This choice ensures that the population
size stays near its target value A/. [In the notation used in
the Introduction, this corresponds to evolving according
to A/A(n) with A(n) = V(®). It is also equivalent to ad-
justing the trial energy Er during the DMC simulation.]
Second, in the early days of the DMC method, the main
energy estimator used was the naive normalization (or
growth) estimator [Eq. (11)]. If one applies this estima-
tor using the ratio of the total population weight at the
beginning and at the end of each At evolution (during
which there is no replication), the target weight value V
does not enter, so it does not really matter whether or not
one rescales the weights by V' after replication. Thus it
became common practice to simply skip the phase where
the weights are multiplied by V(™). In view of this, we
hereby define renormalization (or, equivalently, popula-
tion control) as the process of maintaining the population
size near its target and omitting to rescale the weights by
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V(") after replication. As a consequence, all the weights
are equal to 1 after replication with renormalization.

With the introduction of renormalization, the Markov
process that evolves the random walkers has a station-
ary distribution. This process describes the dynamics
of a population of N(®) walkers of coordinates {rgn)},
withi=1,..., N, We now wish to make sense of the
common claim that this distribution gives a sample of
the exact ground state |p). Thus we need to “project”
the (population) stationary distribution to extract a wave
function of a single configuration r. However, such a pro-
jection is ambiguous because N(™) varies with n. Perhaps
the simplest definition of a stationary wave function |¢*)
is to say that the r; are generated with a relative fre-
quency ¥*(r;), allowing for the simple definition

P*(r) =E[6(r —r;)] . (16)

The average, denoted by E [ ], is over all the r; that could
be generated along the run. Alternatively, one may con-
sider the other natural definition of |*): at each time
step, one has a sample of |¢*), which means that one
should take all the walkers at a given time and weight
them with 1/N(*). This interpretation leads to the fol-
lowing definition:

N

$*r) =E | Y o —rM)/N®| . (17)

=1

Note that these two interpretations are identical if N (™)
is independent of n, which is the case in our model calcu-
lation of Sec. III. Our point in this paper is that neither
definition of |¢*) gives the ground state distribution |¢g).
The stationary distribution of the Markov process cannot
be interpreted as being proportional to the ground state;
there is a bias which we will show decreases as 1/N. This
bias on the wave function survives asymptotically, even
after the trivial bias due to the initial condition (i.e.,
|¢) # |¥o)) has disappeared.

Given the result |¢*) # |t0), it is clear that all the
standard energy estimators will also be biased. Interest-
ingly, almost from the very beginnings of the GFMC and
DMC methods, it was realized that the naive normal-
ization (or growth) estimator was biased [19,20]. It was
considered that the bias came from the correlation be-
tween the numerator and the denominator. Thus it was
suggested that one takes averages first before ratios [20].
This improves the situation, but does not eliminate the
bias precisely because the stationary distribution is still
not the ground state. Alternatively, one can regard the
feedback of the number of walkers (or the total weight)
into Er (which is adjusted along the random walk) as the
origin of the bias, called therefore the population con-
trol bias in Ref. [23]. Another procedure for reducing
the bias was proposed by Reynolds et al. [9], whereby
the renormalization (or population control) was applied
as infrequently as possible. We will discuss this in Sec.
VD. Qualitatively, one can understand which way the
bias goes: the throwing away of the absolute weight in
the renormalization (neglecting to rescale the weights by

V() after replication) tends to oversample the classically
forbidden regions; the energy thus found is too large com-
pared to the exact ground state value. The conclusion is
that all simple-minded estimators (cf. Sec. VD) will be
biased because the stationary wave function |¢*) is.

In the next section, we propose a simple model of repli-
cation and renormalization that enables us to derive the
form of the bias. The case of the standard replication
and renormalization will be considered in Secs. IV and

V.

III. SYSTEMATIC ERROR
DUE TO RENORMALIZATION
IN A SIMPLE MODEL

A. Evolution equation for the wave function

In the DMC method, there is usually a residual time-
step error due to the use of an approximate infinitesimal
propagator. Thus computer runs are traditionally re-
peated with different At¢’s in order to extrapolate to the
At = 0 limit. This error is not our concern in this paper;
we will assume that the time step is small enough to make
this error negligible, making the DMC method analogous
to the GFMC method. Then, in both methods, the ran-
dom process converges to a stationary distribution |¢*)
that is supposed to be equal to the exact ground state.
However, we will show that the finite size of the popula-
tion of random walkers introduces a bias in the method.
Because of the use of renormalization (population con-
trol), |*) and |¢o) differ by on the order of 1/N, the
typical number of walkers. This will be shown in the
DMC method, but the conclusion is valid for the GFMC
method as long as population control is also used.

For the sake of simplicity, we analyze here the case of
a particle in a one-dimensional potential governed by the
Hamiltonian H = p?/2m + V(z). This example illus-
trates the origin of the bias, but our results hold for the
multidimensional case (as well as for problems in other
representations or basis sets). We follow the time evolu-
tion with replication and renormalization of an ensemble
of N points {z;} chosen from an arbitrary initial dis-
tribution ¢ (z). Our aim is to show that the evolved
distribution will asymptotically lead to a wave function
that is not the ground state solution o(z) of the time-
independent Schrédinger equation

— 5 + V(@) — Bolto(e) = 0, (18)

where Ej is the ground state energy. We take the wave
function (not its square) to be a probability distribution,
so that [¢(z) de = 1. We evolve the N points using
the infinitesimal imaginary time evolution operator. Its
matrix elements (with Z =1 and Er = 0) are given by

Uae(z',z) = (z'|e™2t H|z) = P(2/, z)w(z) + O(AE?),
(19)

where w(z) = et V(®) is the weight associated to the
point z and P(z',z) is a Gaussian distribution in &’ with
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mean z and variance At/m. Note that the normaliza-
tion condition for the probability distribution P(z’,z)
imposes that w(z) = [ Uas(a’, z) dz’, implying that both
w(z) and P(z', z) always have an implicit dependence on
At, for any choice of breakup of H. After evolution by
At, we replicate in the following way. The weights after
evolution are normalized in order to yield a probability
distribution for the position after evolution. Then we av-
erage over all the possible realizations (according to the
initial wave function), thus giving a continuous proba-
bility distribution which yields the wave function after
evolution. This leads to an evolution equation for the
wave function as a function of imaginary time.

We will apply estimators acting on both the initial en-
semble of points {x;} and the corresponding ensemble of
points {z}} after the evolution for a time At. Consider
the random variables

1 N
W= N ;zl w(x;), (20)

1 X
F@)=5 E w(w;)8(2 — ;). (21)

W is an estimator for the average weight of the popula-
tion of points after time evolution, from which the stan-

dard normalization (or growth) estimate for the energy
Ey can be deduced:

1
Eny = —— In(E[W 2
w = — 2z In(E[W]) (22)
with E[ ] denoting the expectation value. Also, the ran-
dom variable Fn(Z) = F(&)/W is an estimator of the
normalized wave function ¢(Z) after time evolution, that
is,

¥(2) = E[Fn(Z)] (23)

with obviously [ ¥(%) di = 1.

We are thus interested in determining the expectation
value of both estimators W and Fiy. As we are only con-
cerned with the At — 0 limit, the calculation is carried
out by expanding E[W] and E[Fn] in powers of At, keep-
ing only the leading terms. This is done in Appendix A,
along with a determination of the covariance cov[F, W].
In our simple model, the points z; are independent, lead-
ing to a feasable calculation of this covariance. The draw-
back of our choice of replication is that it cannot be read-
ily implemented in practice. For more general choices,
the correlations induced by the replication and renor-
malization process modify the stationary state from the
calculated one, but the scaling in N remains the same.
Note that the degree of correlation between the walkers is
dependent on the details of the replication algorithm, so
that we have not been able to calculate exactly the sta-
tionary state for replication procedures other than the
one used here. On the other hand, it is assumed in this
model that population control is continuously achieved
(i.e., at each time step in the limit At — 0), in contrast
with more refined Monte Carlo procedures [9]. However,

NICOLAS CERF AND OLIVIER C. MARTIN 51

as we will explain in Sec. VD, this does not change our
conclusions.

Given the above estimators and population control
method, the distribution of Z after time evolution by At
is well defined. As shown in Appendix A, one has

$(&) = BlFw(2)] = $(2) + 29" (@)

At (1 - %) [V (&) — Eolb(#)

+At (1 - %) b (@) /dxd)(z)
x[V(z) — Eo] + O(At?). (24)

Letting At tend to zero, one obtains the continuous time
evolution equation for the wave function:

OY(E,8) . (&) — P(F)
ot Alir—nm At

— 5@~ (1= 5 ) V@)~ Eol(@)
+ (1 - %) ¥(@) [ dalV (@) - Balu(a) . (25)

Except for the scaiec factor (1 — 1/N) in the energies,
this is exactly the evolution equation for the normalized
wave function ¢(z)/ [ ¢(z') dz’, with ¢(z) obeying the
standard imaginary time Schrédinger equation. Thus the
third term on the right-hand side of (25) simply keeps the
norm of ¥ (z) constant. The correction in 1/N originates
from the correlation between F' and W in the expression
of this (normalized) wave function.

B. Stationary distribution

The stationary distribution of our stochastic procedure
is a solution of the time-independent equation

_L_y(z) + [V (2) — Bolt(x)

- 2m*
— () / do’ [V(2') — Eolp(a’) =0 (26)

with the effective mass m* defined as

m* =m (1 - _le) . (27)

Note that by integrating over z the time-independent
Schrodinger equation (18) for the ground state wave func-
tion, one gets the identity

Bo = / de V(2)po() , (28)

where Ej is the true (i.e., with N — oo) ground state
energy and ¥o(z) is the exact ground state wave function.
This expression corresponds to our mixed estimate for
the ground state energy Fy, in view of the normalization
of Yo(z). As a consequence of (28), ¥o(z) is also solution



of the equation
1
—z—m"/’(’)’ + [V(z) — Eo]to(x)

— $o() / da' [V(2') — Bolwo(a’) = 0, (29)

equivalent to our Eq. (26) except for the correction in
1/N. Now we define ¥*(z) as the solution of the standard
Schrédinger equation for a particle of mass m*,

1 * * *
— 5" + V(@) - B*lg*(2) = 0, (30)
m
where E* stands for the perturbed ground state energy.
Integration as before over z yields

B = / dz V(2)y* (2) (31)

and, then, taking ¥(z) = v¥*(z), expression (26) be-
comes an identity. Therefore, ¥*(x) is also a solution
of our time-independent equation [Eq. (26))]; it thus cor-
responds to the stationary solution of our evolution equa-
tion (25), associated with an energy E™.

In summary, we have shown that the sampling proce-
dure leads to a stationary state that is equal to the so-
lution of a modified problem with an effective mass m*.
Since the effective mass is always lower than the real mass
m, the resulting wave function penetrates deeper in the
classically forbidden regions and alternatively decreases
in the classically allowed regions. As a consequence, the
mixed energy estimate E* [i.e., Eq. (31)] is clearly larger
than the exact value Ey. This tendency is in qualitative
agreement with what was noticed by several authors (see,
e.g., [16,23]). It was shown, e.g., in Ref. [23] that if a fluc-
tuation increases the fraction of walkers in a region where
V(z) < Ey, the population size should increase, but the
population control will moderate this trend. The conse-
quence is that the equilibrium distribution ¥*(z) is too
small for low V' (z) and too high for high V(z). However,
this somewhat qualitative result has never been related
to an effective mass of the particle. Here we have devised
a method to understand and quantitatively estimate the
bias in the wave function and observables. Note that, for
N =1, the effective mass is zero or, alternatively, there is
no potential, so that the particle undergoes free diffusion
as expected.

One may also calculate the normalization (or growth)
energy estimate [see Eq. (22)] by use of the expression
of E[W] derived in Appendix A [see Eq. (A2)], to find

En =Ey— iln[l —-At/dm P*(z)
x[V(z) — Eo] + O(Atz)]

— Bo+ / dz v*(@)[V(2) - Bo] + O(AY),  (32)

similar to Eq. (31), given the normalization convention
for ¥*(z). Thus the normalization energy estimate will
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also be biased (with the same bias as the mixed energy
estimate). Now, in order to estimate this energy bias
(due to a finite V), we make use of a simple perturbation
calculation (expansion in 1/N). The derivation of the
biased wave function ¥*(z) is reported in Appendix B.
With Egs. (27) and (30), the Hamiltonian of the modified
problem can be written as H = Ho + AH, where Hy =
T + V is the Hamiltonian of the original problem, and
AH = T/N is the perturbation. Thus the energy bias
can be written as

AE = E* — Eo = (Yo|AH|o) = (T)o/N ,  (33)

where (T')o stands for the expectation value of the ki-
netic energy in the unperturbed ground state. In the case
of guided random walks (Sec. II A), the operator T is to
be replaced by H — EL(r). This expression proves quite
naturally that the energy bias is always positive and of
order 1/N, as already mentioned. It has been already
noticed in Refs. [16,23] that the MC estimator tends to
overestimate the ground state energy and that the bias
scales like O(N 1), but its exact form was not known. It
is worth noticing that, although the factor 1/NN suggests
that the bias will rapidly become small with increasing
population sizes (e.g., N ~ 100), this is not necessar-
ily the case because the factor (T')o may be large, as we
observe for our problem in discrete space (see Sec. IV).
Equation (33) is also checked in Appendix B for the sim-
ple case of an harmonic oscillator. It is shown that the
perturbed ground state wave function can be written as

. 1
¥ (z) = Yo(2) + g7 W2(2) — Yo()], (34)

where v2(z) stands for the second excited state wave
function (normalized with our convention). The resulting
estimate for the ground state energy is then given by

1 1
E*=E0+‘J]\—}‘<T>0=w(§+zﬁ) (35)
Our result is general and applies also for many-
dimensional problems as well as problems in discrete
space (see Sec. IV). The only condition is that the time
evolution operator exp(—H At) can be divided into a dif-
fusion part exp(—7TAt) and a weight exp(—V At). The
diffusion operator must be such that (1| exp(—TAt)|x) =
1 for all z, with (1| = [ dz(z|, which amounts to saying
that the associated matrix must be stochastic. One can
also extend our result to the case of stochastic iteration
of matrices (cf. [16]). In this case, following the notation
of Sec. I, we can see that the random walk tends to a
stationary state that is the dominant eigenvector of the
modified matrix

A:j = Mij’lUjl_l/N, (36)

differing from the exact one by a 1/N correction. When
N =1, one has trivially A}; = M;;, as already pointed
out in Sec. L

The major hypotheses used to obtain Egs. (26), (27),
and (33) are (i) a very small time step At, (ii) popu-
lation control at each time step, and (iii) statistical in-
dependence between the random walkers. This last hy-
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pothesis is the most stringent one; it was valid in our
idealized replication and renormalization process, but we
cannot hope to get better than the order of magnitude
of the bias in other replication and renormalization pro-
cedures. Nevertheless, in many cases, it will be pos-
sible to calculate the scaling of the bias with different
parameters of the problem (see, e.g., Sec. IV). The
other hypotheses are much less stringent. For (i), it is
sufficient to use reasonably small values for At. More-
over, it is possible to improve the convergence in At
by using a symmetric form for the breakup (see [27]):
e HAL — o—VAt/2o-TAte=VAL/2 4 O(At3). With this
breakup, extrapolation to small At’s can be unnecessary
and assumption (i) is satisfied. Note also that there is
no time-step error at all in the GFMC method since the
propagator is exactly simulated. Finally, for (ii), per-
forming a renormalization at each time step in our model
is not essential. Indeed, we could have done otherwise,
the stationary distribution |%*) not being very sensitive
to the renormalization period. Suppose, for instance,
that renormalization is done every k time steps; when
At is small, the finite limit for |[¢*) as At tends to zero
implies that the result is relatively insensitive to k. Thus
the above model analysis should be applicable to cases
such as that in Ref. [9], where renormalization is rather
infrequent. In fact, we will see in Sec. VD that another
replication and renormalization procedure has |*) per-
fectly independent of the renormalization period for any

At.

IV. EXAMPLE IN A DISCRETE SPACE:
PAIRING HAMILTONIAN

The purpose of this section is to show that the previ-
ously described bias can be important and indeed scales
as 1/N for the standard replication and renormalization
procedure. We consider the so-called pairing Hamilto-
nian that describes the residual interaction between nu-
cleons in nuclei. This many-body system is described by
the Hamiltonian

Q Q
H = Z ek(azak + a%a;) -G Z aL,a%,aEak, (37)
k=1 kk'=1

where k and k are time-reversed conjugate states (with
energies €), 2 is the total number of conjugate state
pairs, and G (> 0) stands for the strength of the pairing
force. One is interested in calculating the exact ground
state energy Fy for a system of n pairs of particles by a
diffusion Monte Carlo procedure. We define the breakup
H =V 4+ T, with

Q
V = ex( Lak + a%ag) — Eqen,
k=1

T

Q
FEeer, — G Z aL,a%,aEak s (38)
k=1

where Eser, = n(2 —n + 1)G is the seniority energy, that

is, the ground state energy Ep in the case where all the
single-particle levels are degenerate (i.e., ¢, = 0 for all k).
The operator exp(—TAt) is then a diffusion operator, as
can be seen by checking that Y . (C'|T*|C) = 0 for all
integers ! > 0 and for any configuration C. The diffusion
follows a Poisson law (see [28,29]) and exp(—V At) can
be used as a weight since it is diagonal in C space. In
analogy to Eq. (28), the ground state energy is given by

Bo= 3" V(C)4o(0), (39)
C

where 9o(C) is the component of C in the exact ground
state, V(C) = (C|V|C), and we normalize |¢o) so
(1|90} = 1. Then a MC mixed estimator for Fy is given
by

1 N
Bn = 3 2V, (40)

where the {C;} are the configurations generated by the
(unguided) MC run. As mentioned previously, this esti-
mator is biased because the {C;} ensemble is not dis-
tributed as [¢o). The same conclusion holds for the
growth estimators for Fj.

In Fig. 1 we give the dependence of the computed
ground state energy for a typical model system with
n = 12 pairs of particles in Q = 24 equispaced doubly
degenerate levels, with a pairing strength G = 0.5 (ex-

T T T 1
- [ o k=0
9 F ¢ k=20 _
i m k=50 )
A k=100 1
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L | + k=150 o *
> | |
3 |
g1 ]
Ll L o, i
-12 _— ° x —_
3 (o) A
3 :
BEN S .
| | _
14 I T T T .
0 0.002 0.004 0.006 0.008 0.01
1/N

FIG. 1. Growth estimator for the ground state energy as
a function of 1/N, with N being the size of the population
of random walkers. The data fit to a line corresponds to the
simple estimator (i.e., kK = 0). The corrected estimators (as
discussed in Sec. V D) for k = 20, 50,100,150 are also shown.
The model consists of n = 12 pairs of particles placed in
Q0 = 24 equispaced doubly degenerate levels and interacting
through a pairing force of strength G = 0.5 (see [28,29]). The
exact value of the energy is 13.096 (expressed in units of the
level spacing).
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pressed in units of the level spacing). The data points of
interest to us here (i.e., with £ = 0, as explained in Sec.
V D) have been fitted to a linear law in 1/V; one sees that
the fit is very good. To get 1% accuracy without extrapo-
lation, it is necessary to take N > 3000. The data shown
are for the mixed estimator E,,, but the other estimators
(such as the growth estimator with different interpreta-
tions for |¢*) and ways to take the ratios) give almost
identical results. We have also considered observables
other than the energy. In general, their estimators have
still larger biases, so that it is necessary to go to larger
values of N before being able to extrapolate in 1/N.

It is of interest to understand how this bias depends
on the model parameters. When G = 0 (i.e., no pair-
ing), we have T' = 0, in which case the bias disappears.
For degenerate states (i.e., ¢, = 0 for all k), we have
V = Ey = —FEjen, so that (T') = 0 and again the bias
is zero. Thus the bias vanishes for both limiting cases
and tends to a maximum somewhere in between as we
have confirmed numerically [29]. Furthermore, when the
model space dimension ) increases, with G varying such
that the ground state energy is approximately indepen-
dent of 2, it is easy to show that (T') is approximately
proportional to Ege,. Then the bias for the energy scales
as Q%/N, which explains why it becomes important for
large model spaces (see [29]).

V. SOLUTIONS TO SUPPRESS THE BIAS

Section III showed how to estimate the magnitude of
the bias both for the wave function and for observables
such as the energy. If the bias is comparable to or larger
than the statistical error, it is necessary to remove it
or at least reduce it. The simplest procedure consists
in extrapolating to the N — oo limit. Other possibilities
include changing the evolution or replication or renormal-
ization procedure so that the bias on the wave function is
smaller. We discuss these three choices successively and
illustrate them on simple model Hamiltonians. Finally,
we consider modifications of the estimator itself that re-
move most of the bias whether or not |¢*) is close to

[%0).

A. Extrapolation in N

We saw in Sec. IV that an energy estimator extrapo-
lates well with a 1/N scaling for large N. For a different
observable or a different problem, the onset of the 1/N
scaling will occur at smaller or larger values of N. Here
we quantify the convergence of |¢*) to |io) as N — oo.
To do this, we measure how various moments of the dis-
tribution |¢*) converge to their N = oo limit, using both
|*) definitions. We consider the observables [see Eq.

(16)]
N
— * k| * ;( l)
He = /_ zYP*(r)de ~ “——r (41)

1

i
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for a one-dimensional anharmonic oscillator to check the
convergence. The potential was taken to be V(z) =
z% — 22 + z/2, with A = m = 1. If we choose the other
definition [see Eq. (17)] for |¢*), the observables become

N

> @)

NG

This last estimator corresponds to the Kalos prescrip-
tion [17], i.e., the ratio is taken at each time step and
then averaged over iterations. In the Ceperley-Kalos pre-
scription [19,20], corresponding to the first estimator [Eq.
(41)], the numerator and denominator are averaged sep-
arately before taking ratios, with the expectation that
this will reduce the bias.

Figure 2 shows the convergence of the first four mo-
ments for the Ceperley-Kalos prescription using the
standard replication [18]. Interestingly, although the
Ceperley-Kalos prescription is better justified theoreti-
cally, its bias is nearly identical for that of the Kalos pre-
scriptions (not shown). From the figure, we see that it
is possible to use the 1/N extrapolation from very small
values of N. However, for more realistic problems such
as the one described in Sec. IV, much larger values of N
are necessary before the linear dependence sets in.

Doing an extrapolation in N is inconvenient for two
reasons. First, it is necessary to check that the values
of N considered are in the 1/N scaling regime. Thus at
least three values of N have to be used. Second, the ex-
trapolation to N = oo magnifies the statistical errors.
For instance, if the data points at N and 2NN are used in
a linear extrapolation and if each data point has a statis-
tical error of o, the extrapolated value has a statistical
error of v/50. If it were possible to eliminate the bias, the
computer time could be used entirely for the data point
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FIG. 2. Four first reduced moments (ur/pi >, with

k = 1,...,4) as a function of 1/N, with N being the size
of the population of random walkers. The system is a
one-dimensional anharmonic potential V(z) = z* — 2% + z/2.
(The time step used is At = 0.05.)
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at N, leading to a statistical error of o/v/2. The ratio
of the statistical errors in the two cases is then equal to
V10, which corresponds to a factor of 10 of computer
time. This provides strong motivation for searching for
bias-free methods.

B. Modifying the evolution operator

It is well known that if the evolution is done using a
guided random walk (also sometimes called importance
sampling or the generalized Feynman-Kac method), the
variance of estimators is reduced. In fact, if the guiding
function used (cf. Sec. II) is equal to 1), the weights
have no variance, no replication is needed, and the en-
ergy estimators are exact. A natural question is whether
there exists a guiding function or equivalently a modi-
fied evolution operator that leads to |¢)*) = |t) in the
presence of replication. Since it is difficult to analyze the
effects induced by almost all replication procedures, we
consider here the less ambitious goal of finding an evo-
lution procedure for which |¢*) converges towards |ig)
faster than 1/N.

Our approach is empirical, numerical, but motivated
by the perturbative calculation of Sec. III. There we saw
that, for a particular choice of replication and renormal-
ization, |¢*) was the solution of a Schrodinger equation
with a perturbed mass. This suggests that by using a
different value of the mass in the evolution operator, it
may be possible to reduce or eliminate the 1/N bias. Un-
fortunately, as previously remarked, the replication and
renormalization used in the theoretical analysis is not
readily implemented in practice. For other replication or
renormalization, the analysis is not feasible because the
random walkers become correlated, so that the effective
ensemble size Neg is less than the number of walkers.
Nevertheless, the analytic calculations are suggestive, so
we consider rescaling the time step appearing in the dif-
fusion operator using

At — At(1—1/N.g) , (43)

while leaving the weight factors unchanged. This is
equivalent to increasing the effective mass m* by a factor
(1 —1/N.g)~!. Here, N.g is something like the number
of independent configurations, but in practice it is a free
parameter which we set so that the first moment has no
bias. Then we determine numerically the convergence of
the other moments of |[¢*) (cf. the study in Sec. V A)
to their N — oo limit. Though we did find that the
correction improved the results, they were erratic in the
sense that there was no unique value of N.g that gave
the correct value for all the moments. Also, the scaling
of the biases remained proportional to 1/N. We checked
this within the two interpretations of observables (tak-
ing average of ratios or ratios of averages) and using the
standard replication. No doubt the failure to find a 1/N2
convergence arises because the theoretical calculations
assumed a specific replication and renormalization pro-
cedure, whereas this numerical study used the standard
procedure. A different kind of replication and renormal-
ization was studied by Hetherington [16]; he estimated

the form of the bias neglecting correlations within walk-
ers. His analysis suggests that the 1/N term of the bias
might be removed by the modification of the weights (cf.
the matrix notation in Sec. I):

wj = w;(1+ w;/Neg) , (44)

which is equivalent (to the order 1/N) to the modifica-
tion resulting from our analysis [see Eq. (36)]. Thus,
roughly speaking, the weights must be enhanced in order
to compensate for the factor wjl-_l/N in Eq. (36). We
have numerically checked that one obtains the same neg-
ative result using his prescription as with the first one.
Thus our conclusion is negative: we have not been able
to find a way to remove the leading term of the bias.
Nevertheless, we think this question is worth pursuing.

C. Modifying the replication or renormalization
procedure

Above we considered possible modifications of the time
evolution operator to remove the 1/N bias in |¢*). It is
also possible to affect the bias by modifying the repli-
cation or renormalization procedure. Since there is no
analytic work here to guide us, we will simply compare
the magnitude of the bias for three often used replication
and renormalization methods: the “standard” method
[9,17-19], a method due to Hetherington [16], and an
“improved” method due to Nightingale and Blote [21].
For completeness, we first describe these three methods
and then summarize in Fig. 3 their influences on the
bias.

05 — 77—
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FIG. 3. Estimator of the energy as a function of 1/N, for
the three different types of replication procedures (with the
same time step At = 0.05). Std., standard method; N-B,
Nightingale-Blote method; H-I, Hetherington method. The
At dependence of the Hetherington replication is also illus-
trated by the dashed line at At = 0.025 (H-II). The system is
a one-dimensional anharmonic potential V(z) = z*—z%+z/2.
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The standard replication procedure, exposed in Sec.
II B, can also be presented in a continuous time formalism
[18]. Starting with Eq. (5), we see that the potential
term gives a probability per unit time to either annihilate
or to multiply. Thus for each time step At, [V(z) —
E,) At gives the decrease or the increase in the population
at that point in =z and for that time interval. If it is
negative, a configuration at that z is to be duplicated
with that probability; if it is positive, the configuration
has a “death” probability. In practice, this birth and
death process is implemented [17,18] by picking a random
number £ between 0 and 1 and duplicating (or “killing”)
whenever £ < |[V(z) — Eo]At|.

Another replication was proposed by Hetherington
[16]. First, the N weights of the configurations after
evolution by At are rescaled to give a probability dis-
tribution; then N new configurations are chosen at ran-
dom from this probability distribution and each is given
weight 1. Although it is rarely used, this method has
the advantage of keeping IV fixed, enabling Hetherington
to estimate the scaling of the bias (neglecting correlation
effects).

The third replication discussed here is that of Nightin-
gale and Blote [21]; it can be motivated as follows. Imag-
ine using the standard replication method and calculat-
ing the naive growth estimator at time step n from

N

E w; (n+1)
—AtE, . i=1 _ <N n > (
e o~ = — , (45)
< ™ >before ™ after

where N(®) is the number of configurations at time step
n and the average is over time steps. The first estimator

is evaluated after evolution but before replication. In the
. . .. ()
second estimator, obtained after replication, ) gvzl w;

is replaced by N(*+t1) which is simply a random vari-

able whose average is Efvz(; ) w;. We see therefore that
measuring observables after replication introduces un-
necessary noise. Nightingale and Blote realized that it
was possible to perform a different replication that intro-
duced no noise at all into the total population weight,
so that the growth estimator was exactly the same be-
fore and after replication in their method. The idea is to
keep weighted configurations at all times, and to do the
birth and death processes only when the weights have
varied significantly from 1. Their replication is defined
as follows. First, for a birth process, one duplicates each
walker with a large weight (e.g., larger than 2): it is re-
placed by two identical new walkers, each with a weight
equal to half of the old weight. This part is deterministic,
no noise is introduced. Second, for a death process, given
two walkers with low weights w; and w; (e.g., smaller
than 1/2), one selects one of them with a probability
given by its weight relative to w; + w;. The other one
is killed, while the first is maintained and given the new
weight w; +w;. The remaining walkers are unchanged by
the replication (i.e., they keep their weights). This pro-
cedure has the appealing feature that it preserves exactly
the total weight of the population during replication and
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preserves all other averages, just as the standard replica-
tion does.

How do these replication and renormalization proce-
dures influence the bias |[¢*) — |1)? Not surprisingly,
the three methods lead to biases that scale with 1/N, but
with different coefficients. In addition, the Hetherington
method gives rise to an exceptionally large bias because
its scaling parameter is 1/(INAt). This extra factor of
At shows that as At — 0, Hetherington’s replication and
renormalization is no longer effective. Indeed, in that
limit, it is no longer affected by the potential and all
the configurations become identical to within A¢. The
effective number of random walkers N.g is then equal
to 1 and there is no guiding at all. To keep the bias
constant as At — 0 with this method, NV must scale as
1/At. In contrast, the two other methods both have fi-
nite At — 0 limits and have very similar biases. In Fig.
3 we show the dependence on 1/N of the energy esti-
mators for the anharmonic oscillator used in Sec. V A.
Note that, as expected, the different replications all lead
to a linear dependence at large IN. Also, there is no
improvement in this case when going from the standard
to the Nightingale-Blote replication. Probably the main
advantage of the Nightingale-Blote replication is that it
always maintains a finite population; on the contrary, the
standard replication can lead (with a low probability) to
an empty population, so its large time behavior leads to
difficulties.

D. Modifying the estimator

Once it is accepted that |¢*) is inevitably different
from |to), it is natural to modify the estimators so as to
remove the bias. The idea is to use matrix elements be-
tween |1*) and any given trial wave function [47), while
inserting projection operators so that only the ground
state component contributes. For instance, the ratio of
matrix elements

(k1) AtH |
<¢(ﬂ;|e—:;t;|¢!:p) ) _ o~ AtE [1 +O(e—kAt(E1—Eg))]
(46)

is a growth estimator that is unbiased in the £ — oo limit.
The numerator and the denominator can be estimated
simultaneously within one Monte Carlo run. It is most
convenient to choose the definition of Eq. (16) for |¢*)
and to consider configurations only after replication. For
instance, if we take the standard replication where all
weights become unity, the denominator can be estimated
using

N(ntk)

@rle ™ 8 H gy > 3 g («F) I L (47)
=1

In this expression, n is the time-step number at which
|1p*) is sampled and ~ means up to a multiplicative con-
stant that is related to the normalization of |[¢*). (It is
thus the same for both the numerator and the denomina-
tor.) Finally, I{™ = I!="+*~17 (1) and n(l) is the factor
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by which the weights are divided before the replication
or renormalization number [/, aiming at maintaining the
population size around some average value. (This factor
was called V® in our discussion on replication; see Sec.
IIB.) Nightingale and Blote [21] introduced the same es-
timators, which they motivated by “undoing” the renor-
malization process. It seems to us that the natural way
to define estimators is to start with the notion of a bi-
ased stationary distribution |¢*) and then to express any
desired quantity in terms of matrix elements.

Given the above estimator as a function of k, the exact
answer (up to statistical errors) is obtained by extract-
ing the k — oo limit, with an exponential convergence.
However, it is important to note that, in this limit, the
variance of the estimators for both the numerator and the
denominator grow exponentially, so one must in practice
extract the limiting behavior from small values of k. One
has thus to choose a compromise between accuracy (bias
reduction) and statistical error. We choose to illustrate
this compromise in a realistic model—the pairing Hamil-
tonian described in Sec. IV. We saw previously that the
bias was large in that system and had a 1/N scaling. In
Fig. 1 we show the results using the modified estimators
[Eq. (46)] along with the simple estimator of Sec. IV,
which corresponds to k = 0 using the same statistics. We
see that when the error in the & = 0 estimator is large
(I is too small), the extrapolation in k greatly improves
things. However, when the bias of the £ = 0 estimator
is already small, increasing k rapidly leads to noise levels
where there is no improvement.

More generally, it is possible to introduce unbiased (up
to exponentially small corrections) estimators for local
operators. Let O be a general (local) observable; if we
assume that |[¢*) = |¢o), an estimator for the ground
state expectation value is obtained from

(olOlo) _ ($rle~" Olgho)
(tolbo) (Yrle="H|po)
where 7 should be taken large enough to eliminate contri-

butions from excited states. Since we know that in fact
|¥*) # |1o), a computable observable is

(48)

(1/1T|e—THOe_kAtHI1/J*)
<1/)T|e—(f+kAt)Hl¢*> )

for which there is an obvious numerical estimator. This
estimator should then be extrapolated to the 7,k — oo
limit. (With finite statistics, the numerator and the
denominator fluctuate, so taking the ratio introduces a
small bias; this bias can be made arbitrarily small by
extending the length of the run.)

Prior to Nightingale and Blote, Reynolds et al. intro-
duced a procedure to reduce the bias by doing population
control as infrequently as possible [9]. More precisely,
their runs are divided into blocks and renormalization is
done only at the end of the blocks (e.g., every k time
steps, if k is the block size or renormalization period).
Inside each block, the walkers are evolved using a time-
independent Er and replicated. The population then has
a size that fluctuates more than when renormalization is
performed, but the correct weightings are kept during the

(49)

time of a block. Thus, for instance, the growth estimator

(n+1)
En = Br — éln (%) (50)

with averages over runs or blocks at fixed n, has a bias
that decreases exponentially with n, the time evolved
since the last renormalization. On the other hand, this
bias reduction is accompanied by a significant increase
in statistical noise: the variance of the statistical error
increases exponentially with n. To improve statistics, it
is tempting to extend the averaging to all n values within
each block; however, the resulting bias will then only de-
crease as the inverse of the renormalization period k (or
block size). If a small systematic error is required, it is
preferable to skip the first time steps of a block in the
average to keep only the tail of the negative exponen-
tial. Essentially, this method is closely related to the
Nightingale-Blote method for improving estimators, the
moving average being replaced by a block average. There
is therefore the same compromise between bias reduction
and minimization of the statistical error.

Another interesting point is the dependence of the
wave function [¢*) on the renormalization period k. Here
|#*) is the stationary distribution obtained just after
renormalization (i.e., every k time steps). In our ideal-
ized model of replication and renormalization (Sec. III),
we have seen that |¢*) tends to a finite limit when At
tends to zero. This suggests that the wave function |¢*)
is not very sensitive to the renormalization frequency k.
It turns out that, in the generalized replication defined
in Sec. IIB using V() = W(®) /A and with renormal-
ization implemented only every k time steps (i.e., not
rescaling the weights by V(?) after replication every k
time steps), the wave function |*) is totally independent
of k. Indeed, since renormalization is achieved by throw-
ing away the normalization factor after replication, it is
easy to see that this procedure leaves the the actual ran-
dom walk (evolution and replication) unchanged, so that
[#*) is not affected by k. This shows that our effective
mass calculation is also relevant when population con-
trol is achieved periodically or in blocks (not constantly
along the evolution), even if some bias reduction is ob-
tained through the observables in that case.

VI. CONCLUSION

We have shown how projection MC methods for cal-
culating ground state properties are affected by a bias
related to the finite size of the population of random
walkers. The source of this bias is the renormalization
that is introduced to avoid large fluctuations in the pop-
ulation size or weight. This difficulty occurs whenever the
propagator differs from a diffusion operator (i.e., >, A;;
varies with j in matrix notation). The renormalization
enables the population of walkers to converge to a sta-
tionary distribution which we call |*), that is not equal
to the exact ground state |¢o). Our analytic calculation
shows that, for a particular replication and renormaliza-
tion procedure, |$*) corresponds to the ground state of
a modified Schrédinger equation in which the mass m is



51 FINITE POPULATION-SIZE EFFECTS IN PROJECTION . .. 3691

replaced by an effective mass m* = m(1—1/N) for a pop-
ulation of walkers of size N. As a consequence, the bias
on any observable scales as 1/N. In particular, the bias
for the energy estimator is proportional to the expecta-
tion value of the kinetic energy in the exact ground state
|0). Nevertheless, for the replication or renormalization
procedures used in practice, we have not been able to
obtain the exact form of the correction, so this is still
an open problem. Finally, we have considered different
strategies to reduce the bias, namely, extrapolation in NV,
modifications of the evolution or replication procedure,
or the introduction of new observables. This latter ap-
proach proves to be the most efficient as it can deal with

any |9*) # [to)-
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APPENDIX A: DERIVATION
OF THE MOMENTS OF W, F, AND Fy

Here we calculate the various moments of W, F', and
Fpn. [The calculation requires keeping first-order terms
in At in the expansion of w(z) and P(z’,z).] In order
to calculate the expectation value of Fy, we expand in
powers of At the expression for Fiy, leading to

E[F] [ _ cov[F,W] | var[W]

BN = 5wy |1~ BF B T BVR

] +O(At?)

(A1)

where cov[ | and var[ ] stand for the covariance and the
variance of the arguments, respectively. We are inter-
ested first in calculating the expectation value of the es-
timators W and F. Using the evolution operator e A%,
we obtain

E[W] = E[w(z)] = e~ 4t Fo {1 — At
< / dz ¥(z)[V(z) — Eo]
+O(At2)] , (A2)

where we have made use of the normalization of P(2’, x)
and we have kept only the contribution of first-order
terms in At in the expansion of w(z). The expectation
value is calculated by use of

E[X] = / / dz dz' P(a,a)p(@) X (z,a) . (A3)

For the expectation value of F(&), we have

E[F(%)] = E[w(z)é(z — z')]
= P (3)w(E) + 2—% [%(z)w(@)],_s

sy s By

—At [V(2) — Eoly(2) + O(At?) |,  (A4)

where we have kept the second-order term in the Gaus-
sian random walk expansion, yielding a term in At. Note
that all the derivatives of w(x) are neglected because they

give one supplementary order in At. The ratio of the ex-

pectation values of both estimators is then expressed as
B[F(@)

Bl —via) + DL y(@) - At [V(@) - Bolb(@)

+At ¥(3) / dz $(@)[V (z) — Bo) + O(A?)
(A5)

after neglecting second- (and higher-) order terms in At.
Since in our model the points z; are independent, we get,
for the covariance of F' and W,

It

1 N N
NE Z z covlw(z;)8(& — z7), w(z;)]

i=1 j=1

cov[F (&), W]

= L [E[?(2)5(@ — o')] — E[F(&)] E[W)].

(A6)

2|

It is worth noting that this independence is a crucial
point of the calculation, as explained in Sec. III. We
also have

Bw?(@)8(& — o')] = $(@w’(@) + oo [b@)w? @)1,
— e—ZAt Eo |:’ll)(.’;3) + _Z_ATnt_,l/)//(j)
—2At [V (Z) — Eol¢(%)

+O(At2)] . (A7)
In addition, we can express the covariance of F' and W
as

1

cov[F (&), W] = —x-e™24¢ Fo [At [V(Z) — Eolv(&)

-t 9(@) [ d V(@) - Boli(a)

+O(At2)] . (A8)
Finally, it is easy to see that the contribution of the third
term on the right-hand side of Eq. (A1) is of the order
At? and thus the variance of W can be neglected. Then,
using (A1), (A2), (A4), (A5), and (A8), we obtain, for
the expectation value of Fy,
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BlFy(#)] = $(@) + 5" (&)

~at(1- 5 ) V@) - Balu(@)

A (1 - %) ¥@ [ do @)V - B

+O0(AE) . (A9)

APPENDIX B: BIAS IN THE WAVE FUNCTION

We are now searching for an expression of the biased
wave function ¢*(z). Using Eq. (31), the energy bias is
written as

AE = E* — Fo = /dac V(e)w* (@) — vo(a)].  (B1)
Let us write
¥ (@) = $o(@) + /(@) (B2)

since it is clear that the sampling introduces a perturba-
tion of the order 1/N (via the effective mass). Note that
the normalization of ¥*(z) imposes the condition

/f(m) dz =0 . (B3)

As a consequence of (B1), it is evident that the energy
bias will also be of order 1/N, but we are interested here
in an absolute value, not just the scaling with N. Insert-
ing (B2) into Eq. (26) and keeping only the first-order
term in the expansion in 1/N leads to the equation for

f(z):

— L4 V(@) ~ Eolf(z) — V() — Eolyo(x)

2m

— o) / de V(z) f(z) =0, (B4)

where we have made use of Egs. (18) and (28). It is
apparent from Eq. (B1) that the fourth term can be
written ¥o(z) N AE and thus this equation can also be
used to deduce AE. Let us expand f(z) in terms of the
eigenfunctions of the unperturbed Schrodinger equation:

f(z) = Zan Yn(z)

with — 2%1/;;; + [V(2) = Bnlthn(c) =0 . (BS5)

Note that the eigenfunctions v, (z) have an arbitrary nor-
malization here, that is, [,(z) dz = I,, so that Eq.
(B3) imposes that > > ja,l, = 0. Inserting into Eq.
(B4) yields

> an(EBn — Eo)$n(z) = [V(z) — Eo + N AE]¢o() ,

(B6)

which must be valid for all z. Thus, in order to determine
the coefficients a,, the right-hand side of Eq. (B6) has
to be expanded in a series of the ¥, (z). First, we can
calculate the energy bias AE by writing the equation
corresponding to n = 0:

/|1/;0(:c)|2 [V(z) — Eo+ N AE] dz=0. (B7)
Thus we have
AE =+ [Hy— (V)o] = L0 (B8)
where
[tin(a) V@) da
(VYo (B9)

) [to(a) da

stands for the expectation value of the potential energy
in the unperturbed ground state, while (T")¢ is the anal-
ogous expression for the kinetic energy. Note that this
expression is of course equivalent to Eq. (33). The other
terms (n # 0) of the expansion along with the obtained
value for AF can be used in order to evaluate the a,’s.
Then ao is obtained using (B3), leading to the determi-
nation of f(z).

Let us check our results in the simple case of an har-
monic oscillator, with a potential

V(z) = %mwzmz . (B10)

The normalized (with our convention) ground state wave
function is given by

2
po(z) = 4/ g—ﬂ e with o? = T}—; . (B11)
Our estimate for the ground state energy is thén
hw
Fo = /V(:c)z/zo(ac) do =", (B12)

It can be checked that the bias of the wave function can
be simply written in this case as
F(z) = aovo(x) + aztpa(z), (B13)

where 1,(z) is the normalized wave function of the sec-
ond excited state, that is,

a? 2 o _ a2
Pa(z) = o (2a”z* —1)e™ 2

Then, Egs. (B3) and (B4) are verified on the condition

(B14)
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that a; = —ao = 1/8, so that f(z) is exactly given by

o= 1 (aran e

Finally, the estimate for the energy bias can be calculated
as

(B15)

AE = —]1\7 /d:c V(z)[aoto(z) + azthz(x)]

A EE-A ] e

Using the virial theorem for the harmonic oscillator,
(V) = (T') = Ey/2, and replacing it into Eq. (B8), one
indeed finds this same expression for the bias.
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