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Flew in the driven cavity calculated by the lattice Boltzmann method

W. Miller
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The lattice Boltzmann method with enhanced collisions and rest particles is used to calculate
the Qow in a two-dimensional lid-driven cavity. The ability of this method to compute the velocity
and the pressure of an incompressible Quid in a geometry with Dirichlet and Neumann boundary
conditions is veri6ed by calculating a test problem where the analytical solution is known. Different
parameter con6gurations have been tested for Reynolds numbers from Re=10 to Re=2000. The
vortex structure for a more generalized lid-driven cavity problem for different types of boundary
conditions has been studied for three different aspect ratios.

PACS number(s): 02.70.Ns, 47.15.Rq, 47.20.Ft, 51.10.+y

I. INTRODUCTION

Lattice gas automata (LGA) are a rather new tech-
nique in the world of fluid mechanics, but since the first
discovery of a LGA by Frisch, Hasslacher, and Pomeau
[1],which reproduces all terms of the Navier-Stokes equa-
tions, they have undergone fast development. With the
introduction of the lattice Boltzmann method (LBM) by
McNamara and Zanetti [2] the statistical noise, present in
the LGA, has been removed. Higuera, Succi, and Benzi
developed the LBM with "enhanced collisions, " where
the foremost complicated collision operator was replaced
by a much simpler one [3]. A further simplification can
be achieved if the collision term is described by a simple
relaxation. The LBM becomes then a Bhatnagar-Gross-
Krook(BGK) model (gian, D'Humieres, and Lallemand
[4]). The introduction of rest particles by Chen, Chen,
and Matthaeus [5] removed the unphysical factor in the
pressure term of the previous models and allowed the
correct calculation of the pressure.

In this paper the LBM with enhanced collisions is ex-
tended by a reservoir of rest particles and used to study
the flow and pressure distribution in a lid-driven cavity.
There exists a particular benchmark problem introduced
by Shih, Tan, and Hwang [6], where the analytical solu-
tion is known. This gives the possibility of testing the
numerical code for both Dirichlet and Neumann bound-
ary conditions and checking the inHuence of the param-
eters in the LBM on the result. Having verified that
this method reproduces the analytic solution with small
errors comparable to other numerical methods, I go be-
yond the theoretical solvable problem and study the flow
in cavities of diferent aspect ratios driven by a uniform
or nonuniform shear flow. Different vortex structures are
observed for difFerent kinds of boundary conditions, if the
aspect ratio is 10.

lattice from one node r, to the adjacent one, where they
can collide with one another. The time evolution for the
population n; for particles with speed c, is then given by
a moving step and a collision, described by the operator
0;~ (the time step is set equal to 1),

n, (r. + c, , t, + 1) = n, (r„t, ) + 0;s.

Both operations conserve mass and momentum. Denot-
ing the mean populations with N;(r„t,):—(n, (r„t,))
the density p and velocity u are given by p = P,. N; and
u = —g, N;c;, respectively.

For the right choice of the lattice the model converges
towards the Navier-Stokes equations in the continuum
limit [1—7]. Assuming that all particles have the same
speed, the equilibrium distribution for the population ¹
is given in the small Mach number limit by

N,'~= d + d —(c;u) + d g(p) [(c;u) + h2u ]
D „D(D+2)

2e4

Neq, a
t 's

+O(u ),

where

II

(D+2) f"'

f is the distribution function of the lattice gas and f' and
f" its first and second derivatives at ~u~ = 0, respectively.
The expansion coefBcient h2 can be determined by the
conservation of mass. Performing the continuum limit as
a multiscale expansion in a small parameter e

II. THE LATTICE BOLTZMANN MODEL N, = N,"+eN,""'+O(e'),

In general a lattice gas automaton in D dimensions
consists of particles moving on links (i = 1, ..., M~) of a

one arrives at the Navier-Stokes equations [1] with a pres-
sure tensor,
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2 f 1 D+2 u2')
Il.p = pc.'I 1 —~(p)D -+ h2

2 c c )

+pa(S )u-up (3)

c, = g(c2/D) is the sound speed and p the pressure. In
the LBM the statistical avarages N; are used in Eq. (1)
instead of n, and the collision operator is approximated
by

0,, = A;~(N~ —N,'. ~).

—+ — I.
3(A 2)

(5)

By introducing a reservoir of rest particles with a density
d0 the dependence of the pressure p on the velocity u can
be removed [5]. The total density of the system is then
given by

p = do+I
with the density d of moving particles per node.

In the face-centered hypercubic (FCHC) lattice ( D =
4, M; = 24, and c = 2) the equilibrium distributions can
be written as

= d+ —2(c;) u + 3(c,) (c,)pu up —u2
24

for the moving particles and

If elements o,;~. of the matrix A;~ depend only on the an-
gle between i and j, they can be expressed by the leading
eigenvalue A of the matrix. In this LBM with enhanced
collisions [3] is —

&
the relaxation time, in which the pop-

ulation N; at a node converges to its equilibrium N,
'

[8]
and the viscosity v is related to A by the following rela-
tion:

tL = ALBO l = tLBl)

respectively. If the normalized pressure p = ~ is used,
P

where p' is pressure and p the density, the normalized
pressure can be obtained. &om the variation bpLB in the
mean density pLB via

to the fact that each is the projection of four links from
the original space, four in the diagonal direction (i

2, 4, 6, tt) with c = (cos ' e, sin' e), cost one per-

pendicular to the plane, which has also a weight of four.
The tenth population is that of rest particles. Therefore,
the total density is given by p = P N; + 4 P N, .

i even i odd
The hydrodynamical system is described by the

Reynolds number Re= ' ' with the characteristic ve-
locity u0 and the number of mesh points l0 for the char-
acteristic length. The LBM used implies some restric-
tions on the velocity, where an upper limit of u = 0.2
(Mach number M = 0.28) has been found [9], and to the
viscosity where a lower limit of v = Oe14 has been ob-
served [9]. The upper limit for velocity results &om the
compressibility of the lattice gas used, because the spa-
tial change of the density describes the pressure [see Eq.
(3)]. If the velocity u becomes too large, the compress-
ibility efFect is not negligible any more. The lower limit
for the viscosity has its origin in the relaxation behavior
of the system, because —A =

6 +z is the relaxation pa-
rameter ~ and tends to two if the viscosity is decreased
towards zero. If the overrelaxation (w ) 1) is too large
the system becomes unstable. The lower limit for v men-
tioned above was derived &om the numerical experience
with the LBM without rest particles. The behavior of
the LBM with rest particles is discussed in Sec. III.

Prom now on I change the notation in the following
way: parameters in the LBM are labeled LB to distinguish
them from the values in the "real world. " I de6.ne u and
l via

2
Neq d

P
0 — 0

2
(8)

~PLB

PL B
(12)

for the rest particles. The population of the particles N0
relaxes into its equilibrium within the relaxation time of
the system, i.e. , within v„,~ ———&. Therefore, the time
evolution of the population of rest particles is given by

The relation for a body force f is

LB' (13)

Np(r. , t, + 1) = Np(r„t, ) + A(Np —Np ). In the following I will give a short description of how I
implement the boundary conditions. I impose the bound-
aries halfway between two nodes. At the left, right, and
bottom boundaries there are no-slip conditions and par-
ticles are bounced back. This takes place for all Dirichlet
boundary conditions except that for nonzero velocities
one has to add the right momentum to the particles trav-
eling on the diagonal links. Considering the top bound-
ary, the population N3 is copied into N7 without adding
an extra momentum. The population N2 is copied into
Ns and ~~~~ u~~ is subtracted. u~g is the (local) ve-
locity at the top given by the boundary condition. A
similar process occurs with the population N4, which is
converted into N8 and ~L6BuLB is added.

In the case of Neumann boundary conditions, particles

Because the rest particles are activated isotropically into
moving particles, the time evolution of the populations
of the moving particles has the following form:

In this paper I use a projection of the FCHC lattice
on two dimensions which is described in detail in [8]. In
total there are nine difFerent populations for the moving
particles, four in the axial directions (i = 1, 3, 5, 7) with

c; = cos '4 vr, sin'4 7t which have a weight of four due

N;(r. + c;, t. + 1) = N;(r„t, ) + A,, (N, —N,").
——(Np —N ).

A eq

24 0
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traveling on diagonal links undergo a specular reHection.
The required derivative at the boundary bu~g is achieved
by adding (or subtracting) the moment loss due to vis-

u = 8s(x) v'(y),
u„=—8s'(x) v(y),

(i6)
(i7)

top
reflected particles.

The use of the mean density pl, ~ for the calculation of
the boundary conditions as well as for the calculation of
N'~ instead of pL, a has no influence on the results within
the numerical errors as long as the compressibility effect
is small.

The great advantage of the LBM's is their simple and
local algorithm. Only nearest neighbors are involved
in the calculation, though phenomena of second order
in space are described such as diffusion and Neumann
boundary conditions. The algorithm consists of three
substeps per time step.

(1) The boundary conditions are set according to the
previous time step. The populations N,' are calculated
at the boundary. This step involves nearest neighbors.

(2) At every node new populations are calculated due
to the moving of their nearest neighbors. This step in-
volves nearest neighbors.

(3) At every node the collision term is calculated and
the body forces are added. This step is completely local.

For all calculations I use the zero-speed initial condi-
tion, i.e., No = do and N;:—d.

I run the code on a DEC Alpha station for lattices
up to 150 x 150 meshpoints and on a NEC SX-3-24R
for larger lattices. On the DEC about 10 ps are needed
per time step and node, on the NEC about 83 ns. On
the NEC I achieve a performance of between 2.0 and 2.4
GFlops, which has to be related to a peak performance of
6.4 GFlops. The program has not been specially adapted
for the NEC computer.

with s(x) = z —2x + x and v(y) = y —y .

If the pressure is given by

8 S(*) "'(y)+ '(*) '(y)

+64(S2(z)v(y) v" (y) —[v'(y)l')

the solution of the time-independent Navier-Stokes equa-
tions results in a body force j = (j,j„),
j =0,
j„=v x 8 24S(z) + 2s'(z) v" (y) + s'"(x)v(y)

+64 S,(x)V(y) —v(y) v'(y) S,(x) .

(19)

(20)

The above used functions are defined as follows:

5'(T) = f s(T)dT,

Si(z) = s(*)"(*) —["(z)]',

S,(T) = f 8(z)s'(T)dx,

&(y) = v(y) v"'(y) —v'(y) v" (y).

I start with a detailed study at Re = 50 to check the
inHuence of the density p~s, the (characteristic) velocity
u~~, and the lattice size on the accuracy of the results.
The difference between the theoretical and the numer-
ical results is characterized by the relative error of the
velocity and the pressure

E(u* —u. )'+ (u~ —u, )'

E(u. )'+ (u„)'
(21)

III. TEST PKOHLEM and

u. (z) = 16(x' —2x'+ x'). (14)

The maximum speed of 1 m/s is chosen as the charac-
teristic velocity and, therefore, the Reynolds number be-
comes

1m'
Re =—

V 8

Assuming a time-independent solution of the Navier-
Stokes equations, which is true for small Reynolds num-
bers (Re( 1000), the steady state velocity u
(u, u„)is set to

To test the LBM with the previous described bound-
ary conditions I choose a benchmark problem originally
proposed by Shih, Tan, and Hwang [6]. The geometry of
the problem is a square box of 1 x 1 m (z~, = 1 rn and
y&,„=1m) with no-slip boundaries conditions at the left,
right, and bottom boundaries and a shear flow at the top
with the velocity profile

(22)

respectively. I do not find an influence of the density p~~
or the relation do jd on the results. In Fig. 1 the depen-
dence of the errors for both velocity and pressure on the
parameters l„and u~~ are shown. The most important
message of Fig. 1 is that there exists a minimum in the
errors at around a certain viscosity v~~. For the pressure
this viscosity is about a factor of 2 larger than for the
velocity. Furthermore, there exists a lower limit for vr. a.
Beyond this value the solution becomes wrong. As an
example, the results of a calculation for v» ——2.5 x 10
and l& ——50 for Re = 100 are shown in Fig. 2(a). Though
the error of the pressure Held is rather small (see Table
I), some abnormal behavior of the pressure is observed.
On the contrary, the velocity field exhibits no unusual
features. Using the original LBM without rest particles
the origin of the vortex is shifted [see Fig. 2(b)] and the
calculation loses its validity. For larger values of the vis-
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cosity I do not find any diR'erence between the two kinds
of methods within the numerical errors. This means that
the reservoir of rest particles stabilizes the system for
short relaxation times. The use of a small value for v~~
is of interest for reaching high Reynolds numbers. With
the lattice BGK (LBGK) method including rest parti-

cles, Hou et a. reac a, H t L,. ch a lower limit of the viscosity of
= 2.56 x 10 [10]. For their calculations with

a uncouniform shear velocity at t e top o ul. ~ = . e
used a 256 x 256 lattice for all Reynolds numbers sors so that
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TABLE I. Parameters and errors for the test problem with the Dirichlet boundary condition at
the top. At is the time step of the calculation in terms of the real world. The total time indicates
the time in which the system has been converged into its steady state within the numerical errors
except for Re = 5000 where the calculation is extremely time consuming. The CPU time shows
the consumed computer time on a DEC-Alpha station (a) or a NEC SX-3-42R (SX-3). Not all
calculations for Re = 50 are listed.

Re
10

+LB jty &LB
0.04 50 0.2
0.004 50 0.02

50 0 02 50 0 02
0.01 100 0.02

100 0.04 50 0.02
0.005 50 0.0025
0.02 100 0.02
0.02 150 0.03

500 0.1 100 0.02
0.04 250 0.02

1000 0 0787 254 0 02
2000 0.08 500 0.02
5000 0.05 2000 0.02

bt [s]
8 x 10
8 x 10
4 x 10
1 x 10
8 x 10
1x10 4

2x10 4

1.33 x 10 4

1 x 10
1.6 x 10

3.098 x 10
1.6 x 10
25x10

Total time [s]
2
2
10
10
20
20
20
20
100
100
124
80

12.5

CPU time [min]
1 (n)
11 (n)
ll (n)

167 (n)
11 (n)
64 (n)
167 (n)
563 (n)
167 (n)

55 (SX-3)
42 (SX-3)
167 (SX-3)

2770 (SX-3)

Au
2.1 x 10
1.1 x 10
1.7 x 10
4.1 x 10
4.7 x 10
2.8 x 10
1.2 x 10
76x10
3.4 x 10
5.4 x 10
2.8 x 10
5.4 x 10
7.7 x 10

Ap
58x10
68x10
3.9 x 10
84x10
5.0 x 10
9.7 x 10
1.3 x 10
8.4 x 10
3.3 x 10
55x10
28x10
5.1 x 10
12x10

10

10

velocity ~

pressure

10

pressure

10 =

lattice size

10

10

mann bc

50 x 50

100 x 100

150 x 150

10

10
I

10

time Is]

15 20
10

0.0
I

0.5
I

1.0

time [s]

1.5 2.0

a) Re=100 b) Re =10

FIG. 3. Relative errors for velocity and pressure according to the definition of Eqs. (21) and (22) versus the time in the real
world for Re = 100 (left) and Re=10 (right). Lines with points in its style belong to the pressure, the others to the velocity.
For Re = 100 all results as listed in Table I are plotted except the case with the viscosity v = 0.0025. Also the result with the
Neumann boundary condition is plotted (compare Table II). For Re = 10 the results for u» ——0.04 (solid line for velocity and
pointed line for pressure) and uL, s ——0.004 (dashed line for velocity and dashed pointed for pressure) are shown. The line with
the stars as markers is the result of a finite element calculation [11].
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TABI E II. Parameters and errors for the test problem with the Neumann boundary condition at
the top. At is the time step of the calculation in terms of the real world. The total time indicates
the time in which the system has been converged into its steady state within the numerical errors.
The CPU time shows the consumed computer time on a DEC-Alpha station (o.) or a NEC SX-3-42R
(SX-3).

Re ur, n l„vt.n ht [s]
50 0.02 50 0.02 4 x 10
100 0.04 50 0.02 8 x 10
1000 0.0787 254 0.02 3.098 x 10

Total time [s] CPU time [min]
10 11 (cr)
20 (o)
124 42 (SX-3)

Au
1.7 x 10
3.8 x 10
4.5 x 10

Ap
2.8 x 10
39x10
4.0 x 10-'

with other numerical calculations, nor did they publish a
comparison of the pressure field with diferent values for
the viscosity by changing the lattice size.

The behavior of the errors in time is shown in Fig. 3
for the Reynolds numbers Re = 100 (left) and Re = 10
(right). Some oscillatory behavior of the errors is ob-
served for Re = 10. It can be reduced by decreasing both
the velocity u~~ and the viscosity v~~ while keeping the
lattice size fixed. The reason for the oscillatory behavior
might be the long relaxation time (high viscosity) and
the large time step (high velocity), which may result in
diKculty relaxing the system into its local equilibrium in
every time step. In Fig. 3(b) the errors of my calculations
are compared with those of a finite element calculation
with a fractional step 0 scheme where the lattice size was
64 x 64 [11].

I go beyond the Reynolds number of 100 and perform
calculations for Re = 500, 1000, 2000, and 5000. For Re
= 5000 computation becomes extremely time consuming
because of the large lattice size. For smaller lattice the
compressibility error becomes too large. From the calcu-
lations with the 2000 x 2000 mesh I observe a diminishing

Bu (x, y)
Og y=l

I test this boundary condition for Reynolds numbers Re
= 50, Re = 100, and Re = 1000. The results are listed
in Table II, which shows that the Dirichlet and the Neu-
mann boundary conditions give results of nearly the same
accuracy. The convergence rate for the errors of the cal-

of the vorticity with time but it is not yet clear if the
system will converge towards a steady-state-like solution
with only small perturbations in time, or if the center of
the main vortex will oscillate and some extra vorticities
will remain. I have to stress that this case is beyond the
validation capability of the analytical solution and the
behavior of the system is not yet known.

Instead of applying the Dirichlet boundary condition
at the top one can force the Bow by the Neumann bound-
ary condition

TABLE III. Parameters and results for the extended driven cavity problem. Re is the Reynolds
number, A the aspect ratio, bc denotes the boundary condition (D: Dirichlet, N: Neumann, n:
nonuniform, u: uniform), r are the coordinates of the origin of a vortex.

0.10
0.02
0.02
0.02
0.02
0.02
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001

10
50
50
50
29
57

295
580
1000
1000
1000
1016
1016
295
580
830
880
630

10
1.0
10
50
1.0
10
1.0
10
1.0
10
50
1
10
1.0
10
10
50
10

b.
[

D,u
D,n
D,n
D,n
N, n

N, n

D,n

D,n
D,n
D,h
D,n
D,u
D,u
N, n
N, n
N, n
N, n

N, u

mesh size

500 x 50
100 x 100

1000 x 100
10000 x 100

100 x 100
1000 x 100
254 x 254

2540 x 254
254 x 254

2540 x 254
25400 x 254

254 x 254
2540 x 254
254 x 254
2540 x 254
2540 x 254

25400 x 254
2500 x 250

0.05
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02

r" of 1.vortex
]

(9.15, O.63) m
(0.56, 0.76) m

(0.57, 0.78) m

(0.60, 0.64) m
(8.07, 0.55) m
(O.54, O.57) m
(8.34, 0.52) m

(O.53, O.56) m
(9.16, 0.57) m
(0.60, 0.64) m
(9.16, 0.54) m
(9.35, 0.55) m

(9.34, 0.56) m

r' of 2.vortex
~

(7.83, 0.59) m

(7.59, 0.63) m
(7.81,0.77) m

(7.57, 0.63) m]
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FIG. 4. Streamlines for Re = 1000, aspect ratio A = 10, and the uniform Dirichlet boundary condition at the top.
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culation for Re = 100 can be seen in Fig. 3(a). It is of
the same order as for the Dirichlet boundary condition.

B~ (~,y)
By

= 80(x' —2x'+ x'). (25)

IV. EXTENDED DRIVEN CAVITY PROBLEM

In the preceding section I have verified that the LBM
with enhanced collisions and rest particles reproduces the
flow in a lid-driven cavity very nicely. Now I study the
flow in a cavity with four difI'erent types of boundary
conditions (uniform and nonuniform Dirichlet, uniform
and nonuniform Neumann) and perform runs for diferent
aspect ratios A:= '" (A = 1, 10, 50). The calculations
are listed in Table III. The shear flow at the top for the
nonuniform cases is de6ned in the same manner as in
the test case. Explicitly, they are given as follows: the y
axis is fixed to length 1 for all calculations (yi,„=lm).
DefIning a new variable x = A x, with 0 & x & 1, the
Dirichlet boundary condition is written as

u. (x, 1) = 16(*-' —2*-' + x')

and the Neumann boundary condition as

The difference between nonuniform and uniform shear
flow is the strong curvature of the streamlines in the cor-
ners of the latter. This fact has only a marginal influence
on the main stream if the aspect ratio is A = 1 (see Table
III), but for an aspect ratio of A = 10 the strong curva-
ture causes a small vortex on the right-hand side even
for Re = 10. In the case of the nonuniform shear How
and a small Reynolds number (Re = 50) the streamlines
are stretched with increasing aspect ratio and the inflec-
tion line between forward and back flow lies very near
the theoretical value (y = 2/3 yi, ) for an infinitely long
cavity with a constant How (constant top velocity).

For the Reynolds number Re = 1000 a difFerent be-
havior of the flow is observed for A = 10. By applying
a uniform shear flow at the top two strong vortices are
formed on the right-hand side (Fig. 4). The case with
the nonuniform shear flow exhibits only one strong vor-
tex (Fig. 5), because a high pressure zone at the end of
the cavity is built up (see Fig. 6).

The difference between the Dirichlet and the Neumann
boundary conditions is best seen from the velocity pro-
Gle at the top, which is shown in Fig. 7 for three difFer-
ent Reynolds numbers for the nonuniform case and one

) 0 —,.-.-,:,,...
I ~NNe"

ee

e eCSBII

e e I IRx

e

0.8—

0.6—

0.4—

0.2—

$8 IK"..

. :4I I i&

, 'lr i i i=
'i i Ik

WI lg,
II &."'

IU

:$ Sme&

IIII&

.f/&
~ I I

xiii e

0.0 —-

0
t

7
1

8 10

xm

pressure tm'is j

1.604x10
1.086x10
9.519x10
5.107x10

-4.686x10
-2.350x10
-5.482x10
-1.024x10

v='==g feA)

FIG. 6. Pressure and velocity profile for Re = 1000, aspect ratio A = 10, and the nonuniform Dirichlet boundary condition
at the top.
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Reynolds number for the uniform case. The main dif-
ference between the uniform and nonuniform boundary
conditions is the more pronounced second vortex for the
uniform case (compare Fig. 8 and Fig. 9). It would be of
interest to go beyond an aspect ratio of A = 10, but since
the lattice Boltzmann model at the present stage needs a
uniform mesh, the calculations will consume a lot of com-
puter time. For this purpose a new model is under devel-
opment which allows one to use a regular but nonuniform
mesh. Therefore, only two runs for the nonuniform shear
Bow at the top has been performed, showing that the
vortex on the right-hand side disappears completely.

V. CONCLUSION

In this paper I have shown that the lattice Boltzmann
method with enhanced collisions and rest particles is a

fast and accurate method for calculating the velocity and
the pressure in a driven cavity by comparing the numeri-
cal results with the analytical solution of the problem.
Using the Dirichlet or the Neumann boundary condi-
tion for the forced How at the top makes no difFerence in
the convergence behavior of the numerical results. This
is a very striking observation because the implementa-
tion of the Neumann boundary condition in the LBM
is extremely easy and involves only nearest neighbors.
It is possible to decrease the viscosity beyond the value
v~~ = 0.014, which was found to be the lower limit for
the LBM without rest particles. The pressure is more
sensitive to relaxation problems than the velocity.

In the second part of this paper I have presented the
results for a driven cavity problem with a uniform or non-
uniform shear How at the top and aspect ratios greater
than one. The results of the calculations with the Dirich-
let boundary condition are compared with those of the
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Neumann boundary condition. For an aspect ratio of
A = I the type of boundary condition has only a small
inHuence on the vortex structure. For an aspect ratio of
A = 10 significant diR'erences have been found for the
various boundary conditions. A further improvement of
the lattice Boltzmann model would make it possible to
perform runs with very large aspect ratios, which appear
in the problem of the flow in shallow water.
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