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Matrix spectroscopy: Computation of interior eigenstates of large matrices using layered iteration
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The computation of a small group of interior eigenstates of a large matrix H is an important problem
in chemical physics. This general problem is approached in this study through the application of a two-
layer iteration scheme. The design of the outer loop is based upon the strategy developed by Ericsson
and Ruhe [Math. Comput. 35, 1251 (1980)]. Starting with a variable input energy E, this loop uses the
Lanczos algorithm (with no reorthogonalization) to develop a reduced tridiagonal representation of the
total Green function G(E). Diagonalization of this small matrix (denoted T) yields, through a simple
mapping, excellent approximations to the eigenvalues of H that lie near energy E. The inner iteration
loop of the algorithm computes the matrix-vector product G(E)Q~, where Qi is one of the Lanczos vec-
tors. Both direct and indirect methods may be used for this operation. The direct method uses a pertur-
bative expansion of the Green function, while the indirect method is based upon the iterative solution of
a linear algebraic system. The indirect method yields a parametrized polynomial representation of the
Green function, with the coefficients chosen variationally. The method is adaptive in the sense that these
coefficients change during the course of the Lanczos iteration. Convergence of these iterative methods is
improved significantly by developing the Green function in the partial adiabatic representation. Conver-
sion to this representation involves diagonalization of the diagonal block of H involving those states
whose zeroth-order energies surround the energy of interest. The two-layer scheme is applied to a model
Hamiltonian matrix that has a variable coupling strength within and between a number of dense bands
of states. With this scheme it is possible to accurately compute a group of eigenstates near energy E in

just a few Lanczos iteration steps ( ( 10).

PACS number(s): 02.70.—c, 02.60.Dc

I. INTRODUCTION

The study of molecular excited states is a central theme
in chemical physics. Computational approaches are nor-
mally based upon first choosing a representation of di-
mension X (such as the finite basis representation, the
discrete variable representation, the pseudospectral
method, etc.) and then constructing the matrix represen-
tation of the system Hamiltonian H. In most cases, this
matrix representation of the Hamiltonian, denoted H (as-
sumed to be real valued and symmetric), is very large,
typically of dimension & 10 . Since direct diagonaliza-
tion is out of the question, there are then a variety of
methods that can possibly be used for extracting eigen-
state information from H; some of these will be reviewed
later in this section. However, in most cases, we are not
interested in obtaining all X eigenstates, there are just too
many of them and we do not need all of this information.
Rather we want a small set of eigenstates near a test in-
put energy E. Just as the experimental spectroscopist
would do in the laboratory, we want to move around to
different regions of the spectrum and examine closely the
eigenstates near E„ then move to another region near
E2, etc. This process of computing eigenstates in selected
regions of the spectrum of a (large) Hamiltonian matrix
we term matrix spectroscopy.

Over the past 10—15 years, a number of methods have
been proposed for computing excited states. Some of the
most important of these that have been used by the quan-
tum dynamics community to calculate molecular excited

states are categorized in Table I. Later, in Sec. IV, we
will comment on several other methods that are not listed
in this table. In order to set the stage for further develop-
ments, we will comment briefly on each of these methods.

The relaxation method of Kosloff and Tal-Ezer [1] is
based upon the propagation of a wave packet in imagi-
nary time (t~r= —it). This causes excited state com-
ponents to relax at rates proportional to their eigenval-
ues, thus leaving a multiple of the ground state wave
function. If the ground state is then removed by using
the projected Hamiltonian H, =(1—Po)H(1 —Po), then
another propagation sequence will result in a wave packet
that collapses down to the first excited state wave func-
tion. The whole process can then be repeated to give the
lowest few eigenstates. This method is not designed to
give eigenstates in the dense interior region of the spec-
trum.

The spectral method involves the real time propagation
of a wave packet [2]. This information is used to com-
pute a time correlation function, such as (g(0)~g(t)).
The Fourier transform of this quantity (after weighting it
with a window function) from the time to the energy
domain gives an energy-dependent amplitude, the abso-
lute square of which peaks at the eigenvalues. The spec-
tral method may also be referred to as employing a direct
Fourier fi lter. Skodje et al. have recently used this
method to compute resonance energies in the H+H2 re-
action [3]. A severe disadvantage of this method is that
very long propagation times are necessary to resolve
small energy diff'erences. (Although quite difFerent in im-
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TABLE I. Comparison of eigenstate algorithms.

Features

Method

imaginary time
propagation
(relaxation)'

spectral
filter

diag onalization'
Davidson and

generalizations"
spectral filter

Lane zos'

Propagation
of wave packet

yes
(imaginary time)
yes
yes

no

no

Fourier
transform
(t~E)

no

yes
yes

no

no

Develop
Krylov

subspace

no

no
yes

no

yes

Matrix
diag onalization

in subspace

no

no

yes

yes

'Kosloff and Tal-Ezer, Ref. [1].
bFeit, Fleck, and Steiger, Ref. [2].
'Neuhauser, Ref. [5].
Davidson, Ref. [6];Morgan and Scott, Refs. [7—9].

'Ericsson and Ruhe, Ref. [11];Kono, Ref. [13];Webster, Rossky, and Friesner Ref. [12];present work.

plementation, a discrete fast Fourier transform algorithm
for computing eigenstates was also developed by Yau and
Lu [4].)

An improvement on the spectral method is provided by
the alter diagonali-zation method developed by Neuhauser
[5]. This method uses short-time wave packet propaga-
tion with Fourier energy filtering at a number of energies,
say X, of the product of the evolving wave packet times a
window function. The N functions so generated (after
Gram-Schmidt orthogonalization) are then used to form
the 1V XN matrix representation of the system Hamiltoni-
an. Diagonalization then yields approximations (which
can be very good) to some of the eigenvalues. This
method has recently been used [5] to compute the ener-
gies of narrow resonances in H3 and to compute
vibration-rotation energies in LiCN(J =0).

These first three methods all involve some sort of time
propagation, either real time or complex time. However,
one might naively wonder about the answer to the follow-
ing question: If the goal is to obtain eigenstate informa-
tion, which is inherently time independent, then why
launch wave packets and watch them move around? In
fact, the answer is that one does not have to do this. This
brings us to the next two methods, which are time in-
dependent, and then to the central theme of this study.

Continuing with Table I, the Davidson method [6] and
the generalized Davidson (GD) method [7—9] have been
used to compute interior eigenvalues of large matrices.
At iteration step k, the CxD method constructs the vector
vk+, =(M —BI) '(H —BI)zk, where [6,zk] is an ap-
proximate eigenpair. In the original Davidson algorithm
M=D, the diagonal of H, but in the GD algorithm, M is
a larger but easily invertible portion of H. After orthogo-
nalization of vk+& to the previous vectors, the (k+1)-
dimensional Hamiltonian matrix is constructured and di-
agonahzed. The iterative process then continues.

Closer to the theme of this study are methods that em-
ploy the Lanczos algorithm [10] (LA). Along with other

matrix iteration methods, the LA is used to repeatedly
improve an approximate solution unti1 it reaches
sufficient accuracy. Some well known advantages of ma-
trix iterative methods are that H is used only as an opera-
tor in computing matrix-vector products, the matrix-
vector product is straightforward to parallelize, and
sparse storage schemes can be used in appropriate cases.
The conventional LA begins with the Hamiltonian H (al-
though the full matrix might not be constructed in ad-
vance) and a starting vector vo and builds, step by step, a
relatively small M XM tridiagonal matrix T. Diagonali-
zation of T then yields approximations to some of the ei-
genvalues of H. These approximations are excellent for
eigenvalues on the extreme edges of the spectrum and are
frequently very good for interior eigenvalues in the sparse
region where there are relatively large gaps between the
adjacent eigenvalues. However, in the dense interior re-
gion where the gaps may be very small, the conventional
LA converges so slowly that it ceases to be a viable ap-
proach.

This somewhat pessimistic view of the LA as a pro-
cedure for tackling the interior eigenproblem changes
completely when the iteration is driven not by H itself
but with a spectral filter, a specially designed function of
H, denoted f (H). This function generates a transformed
spectrum, which we will try to compute, but what do we
desire of this new spectrum? We want the desired eigen-
values to be well separated from the others (we want to
improve the gap distribution) and it is advantageous if
these eigenvalues are at the extreme edges of the spec-
trum. Also, we should be able to invert the computed
spectrum of the filter to obtain uniquely and exactly the
desired eigenvalues of H. Before proceeding, we note
that in some respects, f (H) is related to time-
independent iterative methods in the way that the
Fourier transform is to the time-dependent wave packet
methods described earlier.

Several filters have been used with the LA in the past,
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the earliest of which was suggested by Ericsson and Ruhe
[11]. Their method, appropriately termed shift and in
vert, uses the filter f (H) =(E1&—H) . (The i' XN unit
matrix is denoted 1&.) This has the highly desirable eFect
of throwing the eigenvalues of H that lie near E to the ex-
treme edges of the spectrum. The LA shows its apprecia-
tion of this shift and invert strategy by converging these
eigenvalues very quickly. We will return to this filter
after mentioning two others. An exponential filter
f (H)=exp[ —PH] was used by Webster, Rossky, and
Friesner to extract lower eigenvalues of H in studies of
the spectroscopy of the e +H20 system [12]. Recently,
Kono suggested use of the Gaussian derivative filter
f (H)=(H —E1)exp[ 13(H E—1) ],—where E is chosen
in the rniddle of the interesting part of the spectrum and
where P controls the width of the filter [13]. The Kono
filter has recently been applied in studies of the overtone
spectroscopy [14] of CD3H and CF3H. It is also possible
to design special purpose filters to emphasize any portion
of the spectrum, for example, by taking an appropriate
combination of Chebyshev polynomials. In fact, Lanczos
described how a single Chebyshev polynomial can be
used to magnify the separation between two close eigen-
values at one edge of the spectrum [15(a)]. About the
same time, Flanders and Shortley also used a Chebyshev
filter to accelerate eigenvalue calculations [15(b)]. Several
recent texts have excellent sections on the use of these po-
lynomial accelerators [16,17].

In many respects, an excellent filter to use in the LA is
the Green function f (H)=(E1—H) '. The gap separa-
tions near energy E that result from the use of this filter
are more extreme and therefore better than those pro-
duced by the Kono filter. The result of using the Green
function filter is that the eigenvalues of H that are far
from the input value E are mapped to a cluster near the
value 0, while the desired eigenvalues near the test energy
E are mapped to very large positive or negative values.
One excellent feature of the conventional LA is that con-
vergence is improved for well separated eigenvalues and
for eigenvalues at the extreme edges of the spectrum.
The hyperbolic m.ap achieves these very desirable
features and, as demonstrated later in this study, works
extremely well for eigenstates in the dense interior region
of the spectrum.

In the present study, we will employ the Green func-
tion filter in the LA, with one major change from the
work of Ericcson and Ruhe [11]. Instead of factoring the
shifted operator, as suggested by Ericcson and Ruhe and
subsequently implemented this way in almost all applica-
tions [18—24] (more on this will come later in Sec. II), we
will emphasize iterative methods for applying f (H) to a
vector. Factorization usually requires that the matrix
and the factor, denoted L, fit in the central memory, but
we want an algorithm that will work e6'ectively on plat-
forms that have relatively modest central memory (i.e.,
typical workstations) as well as supercomputers. For this
reason, we will explore methods that do not utilize matrix
factorization.

The overall algorithm that is described in Sec. II in-
volves two iteration loops. A schematic overview of
these two loops is shown in Fig. 1. The outer I.anczos

TWO-LAYER LANCZOS-GREEN FUNCTION

ITERATION ALGORITHM

OUTER LANCZOS LOOP

Recursion operator G(E) = (El~ - H)-1

Lanczos basis: Q1, Q2, ,QM

Develop tridiagonal representation of G(E) —) T (MxM)

Diagonalize T —& eigenvalues f k;)

INNER GREEN FUNCTION LOOP

Compute G(E) Qj Vj

A. Direct method: Iterative expansion of G(E)

Reference problem -) Go(E)

Neumann polynomial, order n: Gn(E)

B. Indirect method: Solve linear algebraic system

(Elw - H ) Vj = Qj

Precondition system

Iterative algorithms: GMRES, DIIS

FIG. 1. Schematic diagram of the two loops involved in the
iteration scheme for generating internal eigenstates.

loop develops a small subspace in terms of which the filter
f(H) is tridiagonal. Direct diagonalization of the small
tridiagonal matrix yields excellent approximations for
some of the eigenvalues of f (H). Inversion of these ei-
genvalues then gives the desired eigenvalues of H. The
inner Green function loop applies the Green function to a
Lanczos vector. There are two distinct ways to do this.
In the direct method, we expand the f (H) operator and
then apply the terms in the series expansion one by one to
the "old" vector. In the indirect method, we iteratively
solve the linear algebra problem f (H) 'V„, =V,id.

There are several e6'ective ways to do this. As expected,
the direct and indirect methods are closely related, but
they do not have the same convergence characteristics.
In this study, only nondegenerate eigenvalues will be con-
sidered; the block Lanczos algorithm works very well
when there are degeneracies [24].

II. COMPUTATIONAL METHOD

A. Outer Lanczos loop

The outer recursion loop is driven with the Green
function (or resolvent matrix) G(E) replacing the tradi-
tional Hamiltonian matrix in the conventional Lanczos
algorithm. Beginning with the normalized N X 1 starting
vector Q„ the vectors Q2, Q3, . . . are generated through
application of the Lanczos three-term recurrence equa-
tions (the superscript t denotes the matrix transpose)

RJ =G(E)Q aiQJ bi, Qi —„QO=—O,

b)=(R)'Ri)'i, QJ+, =RJ lbj, a =Q~G(E)Qi .

Each recursion step develops a new Lanczos vector Q.+,
along with the quantities a and b .. These equations de-
velop a tridiagonal representation for the Green function;
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after M recursion steps, we have

Q'6(E)Q= T, (2)

where the XXM matrix Q is built by stacking the M
Lanczos vectors side by side. In addition, the M XM ma-
trix T has diagonal eleinents [a„a2, . . . , a~I and off-
diagonal elements [b „b2, . . . , bM, J . [Equation (2) has
formal significance only; the matrix Q is not actually con-
structed. What we are after is T and this is constructed
from the quantities a; and b; that are formed during each
step of the recursion. However, if the eigenvectors are
desired, then the columns of Q must be stored, possibly
on disk. ] The small tridiagonal matrix T is then diago-
nalized (the QR algorithm is efficient at doing this)
S'TS=A, to produce M eigenvalues of the Green function,
which are denoted A,;. The eigenvalues of H, the ones
that we are trying to find, are then given by
E; =E —1/X;. In Sec. III, we will show that even with
just a few recursion steps, the eigenvalues of H closest to
the test energy E are very accurate.

The Lanczos vectors Q; span an M-dimensional sub-
space denoted L~. The tridiagonal Green function T is
the restriction of Cx(E) to LM. Another way to view the
Lanczos vectors is to imagine forming the power vectors
Q„GQi, 6 Q„. . . , G 'Q„which form the basis for
the ICrylov subspace E~(Cx, Q&). Starting with the vector
Q& and orthonormalizing these vectors with the Gram-
Schmidt algorithm, we then obtain the Lanczos vectors
Q;. The power vectors themselves become increasingly
skewed in the direction of the eigenvectors having eigen-
values near E. This feature is evident if we expand the
starting vector in the (so far unknown) eigenvectors
Q, =c,Z, +c2Z2+. . . , so that

6(E) Q) =c( /(E E) ) Z)+c2—/(E Eq) Z2+—

LL'V =Q (4)

where L is a dense lower triangular )VXX matrix. Un-
fortunately, L does not take advantage of any sparse
structure in H. After de6ning the scratch vector
S =L'V, the equation LS.=Q. is then easily solved for
the vector S and then the equation SJ=L'V is solved
for the desired vector V~.

The shift-invert-factor strategy works exceedingly well
provided X is small enough that L can be computed and
then stored in central memory. In practice, this frequent-
ly means that 2V &5000. However, many eigensystems

From this equation we note that when E is near eigenval-
ue E, for example, then as m increases, the power vec-
tors becomes increasingly dominated by the eigenvectors
whose eigenvalues are near E .

In order to generate the next Lanczos vector Q + „Eq.
(1) shows that we need to form the new vector
V~ =G(E)QJ.. In one approach to this problem, follow-
ing the shift-and-invert strategy of Erickson and Ruhe
[11], the equation for V would first be rearranged and
the matrix (E lz —H) would be factored

that we would like to solve have N)&10000. For this
reason, we will abandon any attempt to factor Cx(E)
and we will now focus upon iterative methods for com-
puting Cx(E)Q~.

B. Inner Green function loop

1. Overview

As mentioned earlier, the inner Green function loop
applies the Green function to a Lanczos vector. There
are two distinct ways to do this. In the direct method, we
perturbatively expand the Green matrix and then apply
the terms in the series expansion one by one to the old
Lanczos vector. In the indirect method, we iteratively
solve the linear algebra problem G(E) 'Q„,„=Q„d.
There are several effective iterative algorithms for doing
this. As expected, the direct and indirect methods are
closely related, but they do not have the same conver-
gence characteristics.

2. Dyson expansion of G (E}

The familiar Dyson expansion of the Green function
[25] provides possibly the simplest way to act with Cx(E)
on a vector. In the X-dimensional zeroth-order basis set,
we have

Cx(E)= (E 1~ —H)

=G (E)+6 (E)VG (E)+
=[1 +6 (E)V+6 (E)VG (E)V+ . ]6 (E),

where Cx (E)=(E I& —H )
' is the diagonal "free-

particle" (in the terminology of scattering theory) Green
function and V is the off-diagonal interaction matrix. All
of these matrices are of dimension N. When this expan-
sion is truncated at the nth degree, we obtain one of the
Neumann polynomials

G„(E)=[1y+6(E)V+ +[6 (E)V]"IG (E) . (6)

The degree of the polynomial is chosen such that conver-
gence is obtained in the matrix-vector product Cx„(E)Q, .
These polynomials are sometimes used to approximate
the inverse of a matrix [26]. However, this brings up an
unfortunate aspect: the Dyson expansion may not con-
verge. One factor leading to divergence is that V may be
"too strong. " However, the Neumann polynomial expan-
sion is efficient in the weak coupling limit.

In order to set the stage for further developments, we
note that the matrix 6 (E)V has the elements

(6 V); = V, . /(E E;)—
so that if the shift E is close to the zero-order energy E, ,
then this matrix element will be very large, provided V;
is nonzero. This is the second factor that can destroy the
convergence of the Dyson expansion. In addition, we
note that the matrix 6 V is not symmetric, but this
feature is not very harmful.
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3. The partial adiabatic representation

Convergence of the iterative methods for applying
G(E) to a vector is enhanced by converting to the partial
adiabatic representation (PAR). This desirable feature
arises because the largest off-diagonal terms in Eq. (7) are
eliminated. In order to convert to the PAR, we select M
states whose energies (E; ) are near E and that are cou-
pled relatively strongly to each other. The indices in the
matrix H for these states range from n

&
to n 2. The num-

ber of these states should be as large as possible (but not
too large) and may be 1000 or more in a large problem.
These states span the P space (the "important" space);
the relatively strong couplings within the small P space
will be treated by matrix diagonalization. Coupling of
these states to the remaining basis vectors in the Q space,
as well as the Q-to-Q coupling, will then be treated itera-
tively. The practical results of this is that the algorithm
used for the inner loop has much less difBculty converg-
ing.

The nondiagonal "small" M XM Hamiltonian matrix
that is extracted from the full XXN matrix H is denoted
H, . We begin by diagonalizing this block,

H, Z=ZE, ,

where Z denotes the orthogonal eigenvector matrix and
E, denotes the diagonal eigenvalue matrix. For later use,
we note from Eq. (8) the spectral decomposition
H, =ZE, Z'. We are now ready to partition the full
Hamiltonian matrix H into the block diagonal matrix H&

and the interaction matrix H2. With D& and D2 denoting
diagonal blocks, the matrix H, has the structure

D) 0 0

H& = 0 ZE Z 0 =D&EBZE Z SD2
0 0 D2

where e denotes the direct sum. The matrix Hz, by
design, has a "hole" where H, used to reside,

We will now de6ne the transformation matrix X from the
PAR to the zeroth-order representation such that H& can
be written

X= 0 Z 0
0 0 1

(12)

The transformation matrix X is introduced for formal
purposes only; it does not need to be stored as such dur-
ing computations. In addition, the matrix H2 can be
written

H, =xvx'. (13)

In the following subsection, the coupling matrix in the
PAR will play a major role. From Eqs. (11)and (12), this
matrix is

V j1 V12Z V )3

v = Z'V2, 0 Z'V23

V3i V32Z V33

(14)

At this point, the total Hamiltonian matrix is H=XhX',
where h=c+v is the Hamiltonian matrix in the PAR.
Everything is now set up so that we may continue with
the iterative computation of G(E)Q,

4. Green function in the partial adiabatic representation

Using the above matrices, the partial Green function
(E lz —H&), which is defined in the zeroth-order basis,
can be written in terms of the Green function in the
PAR,

G, (E)=(EXX'—XEX') ' =X(E1~—E) 'X'=XgX',

H, =XIX',
where E is a diagonal matrix containing the zeroth-order
energies in positions 1, . . . , (n, —1) and ( nz +1 ), . . . , N
and the adiabatic energies in positions n„. . . , n2. The
matrix X is block diagonal,

1 0 0

H2 — V2) 0 V23

V31 V32 V33

(10)
where g is the diagonal zeroth-order Green function in
the PAR. The full Green function, using Eq. (13), is then

G(E)= IE lq —(H, +H2)] '=G, (E)+G,(E)VG)(E)+ .

=XgX'+ XgX'XvX'XgX'+

=X[g+gv+ gvgv+ ]X'=XG, (E)X', (16)

where G, (E) is the full Green function evaluated in the
PAR. The Dyson expansion of this Green function
g+gv+gvgv+ is then used to evaluate the result of
acting with G, (E) on a vector. In effect, the mth degree
Neumann polynomial in the PAR is being used. In con-
trast to G V in Eq. (7), the iteration term gv is well
behaved, in part because of the hole in v.

5. Iterative linear system solvers

VJ =G(E)Q (17)

As mentioned above, each pass through the outer
Lanczos loop requires evaluation of the matrix-vector
product
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where Q is a known Lanczos vector from the jth step.
In addition to direct expansions for the Green function,
we can proceed along a different route, referred to as the
indirect method, for computing V . Equation (17) can be
written as a linear algebraic system for the new vector V.

[El~—(H, +H2)]V~ =Q~ . (18)

Since our goal is to solve this equation iteratively for V.,
we will first convert to the PAR and then precondition
the system (it could be argued that conversion to the
PAR is the first step in a sequence of two preconditioning
operations). There are many ways to precondition and
then iteratively solve linear systems. For example, Oppe,
Joubert, and Kincaid, in a review [27], list 20 precondi-
tioners and 21 accelerators (iterative "solvers"). In this
study, we will use only point Jacobi preconditioning fol-
lowed by the application of two accelerators.

Conversion to the PAR is accomplished by substitut-
ing, in Eqs. (11)and (13),

[El~—(E+v)]X'V =X'QJ . (19)

In general, preconditioning of a linear system is accom-
plished by multiplying both sides of the equation by an
approximate inverse. In the case of Eq. (19), we will left
multiply by the diagonal matrix g=(El+ —E) '. We
then obtain

(1&—gv)S~ =gTJ, (20)

j =vo C]q&+C2q2+ ' ' ' +Cmq (21)

where vo is an initial guess (such as the normalized ver-
sion of the vector gT ), the q; are orthonormal Arnoldi
iteration vectors [29], and m is the number of iteration
steps. The vector q„which primes the Arnoldi recur-
sion, is the normalized residual associated with the start-

where, for example, S =X'V. . After solving this equa-
tion for S, we then obtain the desired solution V =XSj.
One important aspect of Eq. (20) is that even though g
and v are symmetric matrices, the product gv is not; as a
result, the left-side matrix (lz —gv) is not symmetric.
The algorithm chosen to solve Eq. (20) must be appropri-
ate for nonsymmetric systems.

There are several accelerators that may be used to
solve Eq. (20). Two of these, GMRES (generalized
minimum residual method) and DIIS (direct inversion in
the iterative subspace), were investigated in this study.
Each will be brieAy described so that the differences be-
tween them can be appreciated. An important feature of
both GMRES and DIIS is that, when applied to ihe solution
of Eq. (20), they develop an iteration-variation polynomi-
al representation of the Green function (1~—gv)
This aspect is considered further in the Appendix. In ad-
dition, the linear variational parameters in the Green
function change with each Lanczos iteration step, so that
the method is also adaptive. Now we will briefly describe
these accelerators.

(i) GMRES. In the GMRES algorithm that was
developed by Saad and Schultz [28(a)], the solution to Eq.
(20) would be written

j 0 0 1 1 2 2 m —1 m —1 (23)

The coefficients c; are again determined by minimizing
the square of the length of the residual vector, but they
are now subject to the normalization constraint

Co+C)+C2+ ' ' +Cm )
= 1 (24)

This leads to a small (m + 1)-dimensional linear algebraic
system for the expansion coefficients; this system is then
solved using a standard direct method. (The dimension is
m +1, rather than m, because of the added linear con-
straint. ) All of this sounds very similar to GMRES; how-
ever, the expansion vectors v; are not required to be
orthonormal (they are not determined by the Arnoldi al-
gorithrn). The recent work by Sidi and co-workers [31]
on accelerating the convergence of vector sequences es-
tablishes interesting mathematical properties of vector
sums, such as those in Eqs. (23) and (24).

There are several iterative methods for generating
these vectors, including the Jacobi method Af J, the
weighted Jacobi (WJ) method AiwJ, the Gauss-Seidel (GS)
method Afos, and th. e successive overrelaxation (SOR)
method JRsoa. . (These iterative methods have been de-
scribed in several excellent monographs [32,33].) If v„
denotes the current iteration vector, let v„(Jkfz) and,
v„(Atos) denote the Jacobi and Gauss-Seidel updates, re-
spectively. The new weighted Jacobi and the SOR itera-
tion vectors are then

ing vector vo. The m coefficients Ic;j are then deter-
mined by minimizing the square of the length of the re-
sidual vector, where the residual associated with the ap-
proximate solution in Eq. (20) is defined by

R=gTj —( lz —gv)(vo+c, q, + . . . +c q ) . (22)

Minimization of R'R with respect to the [c;} leads to a
small m X m linear algebraic equation of the least-squares
type. (Independent of the work of Saad and Schulz,
Schneider and Collins [28(b)] employed essentially the
same scheme in their linear algebraic approach to
electron-molecule collisions. ) GMRES is designed to gen-
erate the smallest residual over the current iteration
space. A disadvantage of the GMRES algorithm is that
storage of the m iteration vectors is required and m may
be relatively large. However, when the central memory is
limited, it may be possible to store these vectors on a
secondary device. In some applications, a restarted ver-
sion has been used. In this case, after m steps, the ap-
proximate solution vector is used to prime a new iteration
sequence. However, for the applications described later
in Sec. III, the restarted GMRES tended to stall; the resid-
ual decreased very little after restarting with the approxi-
mate solution. In contrast, the following algorithm ap-
plied to the same preconditioned linear system did not
stall and only a small number of iteration vectors needed
to be retained before restarting.

(ii) DIIs. In the DIIS algorithm developed by Pulay
[30], the solution is written in the m-dimensional iterative
subsp ace
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v~ + ) (JgwJ ) ( 1 co )v„(Jkf, wJ ) + cov „(JRJ )

n+1(~soR) n(~soR) ~ n( Gs)
(25)

T=SES'. From Eq. (2),

Q'G(E) Q =SES'

For a few well structured problems, the value of the best
relaxation parameter can be predicted (it is the one that
minimizes the spectral radius of the iteration matrix).
However, for the problems dealt with in Sec. III, a few
test cases run with different values of co quickly yielded a
good value for this parameter.

To cite one example, test calculations were run on a
300X300 matrix with random small off-diagonal ele-
ments (magnitude &0.003) and 1.0 on the diagonal. In
order to bring the length of the residual vector down to
10, 27, 8, 9, and 8 iterations were required using the
Jacobi, WJ, GS, and SOR algorithms, respectively (these
four free-standing algorithms were used independent of
Dt's). At least with respect to this application, it is clear
that the latter three algorithms provide a considerable
advantage over the simple Jacobi iteration scheme.

A significant advantage of DIIS is the capability for res-
tarting; after rn iteration steps, the approximate solution
is formed and relabeled vo. This vo then primes the next
sequence of at most m additional recursion steps. In
practice, m can be set very small, for example, in the
range 5 —10. With DIIS, there is no need to store a large
number of iteration vectors. For the applications de-
scribed in Sec. III, this restart feature worked very well.

In anticipation of another implementation of the DIIS
algorithm, the above version will be termed DIIS1. The
second version, suggested by Stanton [34] and termed
DIIS2 in this study, begins by building N iteration vec-
tors, which can be the DIIS iterates. Then, the size of the
iteration space is fixed at N ( =m) and this dimension
can be quite small (5 —10). The oldest iterate is destroyed
as the N —1 higher iterates are moved down by one in-
dex v. ~v &. The newest iterate then replaces the pre-
vious highest iteration vector and is labeled v o. In this

way, we always work with the N most recent DIIS itera-
tion vectors. As shown later in Sec. III, this "fixed-size"
version of DIIS works very well.

We close this section by mentioning that there are
methods different from those studied here for using DIIS
to solve eigenproblems [35—38].

(iii) Other methods The well k. nown conjugate gradient
algorithm is not applicable to nonsymmetric matrices,
but several other methods are [33];including Biccx (bicon-
jugate gradient), QMR (quasiminimal residual), cGs
(conjugate-gradient squared), and BicasTAB (biconjugate
gradient stabilized). The investigation of these methods
would be useful future research projects.

C. Computation of the eigenvectors

Two methods were used in this study to compute
eigenvectors. These are described below.

(a) Backtransformation ofLanczos vectors. If the Lanc-
zos vectors are saved as they are computed, then the
NXM matrix Q in Eq. (2) can be backtransformed to
yield the eigenvectors of G(E), which are also eigenvec-
tors of H. At the end of M Lanczos steps, if we diagonal-
ize the small M XM matrix T, S'TS=E (diagonal), then

or

(QS)'G(E)(QS) =E,
which shows that the N XM eigenvector matrix of G(E)
is given by Z=QS. The M XM matrix S is thus used to
form linear combinations of the Lanczos vectors in order
to construct M approximate eigenvectors of the Green
function.

(b) Inverse iteration. Once we have calculated an ei-
genvalue E close to the shift energy E, inverse iteration
[39] can be used to generate the eigenvector. This
method is just the inverse power method applied to the
matrix (E~ lz —H). If U is a starting or "source" vector
(such as a vector with random components), the eigenvec-
tor V is given by the solution to the linear equations,

(E I~ —H)V. =U . (27)

This equation is formally identical to Eq. (17), except that
the test energy has been replaced by the approximate ei-
genvalue. [Of course, Eq. (27) is singular if E if an exact
eigenvalue, so the input value should not be "too good. "]
Equation (27) may also be written V =G(E )U, which
emphasizes that the Green function projects the ap-
propriate eigenvector from the source vector. Depending
upon the nature of the potential, Eq. (27) may be solved

by any of the methods mentioned previously in Sec.
II 8 5.

III. COMPUTATIONAL RESULTS

A. The model Hamiltonian

for diagonal energies

HJ. ;~
=(i —1)h+(j—1)5 where 5 &&b,

for intraband coupling

H =C exp( —
~j—j'~ ),

and for interband coupling

H,J; J' = {C /( n, d ~i i '+ 1
~ ) ] ex—p( —

~j—j'
~ ) .

This model Hamiltonian has six parameters, but usually
only N, and the coupling strength C were varied. As irn-

In order to test the iterative methods described in Sec.
II, a flexible model Hamiltonian was developed. The sys-
tem has Nb bands of states, with N, states in each band.
For most of these studies, Nb=10 and N, was varied
from 2 to 260. The states within each band are relatively
strongly coupled, with weaker coupling between states in
different bands. The zeroth-order diagonal energies were
chosen to lie in the interval [0,1], so that the average
spacing between successive states is 1/(NbN, ). The
Hamiltonian matrix elements are specified as follows
(where i denotes the band index, i =1,2, . . . , Nb, and j
denotes the index for states in this band,

j =1,2, . . . , N, ):
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plied above, X, was used to vary the density of states.
The parameter n,~ was used to adjust the interband cou-
pling relative to the intraband coupling. For fixed
zeroth-order state densities, the rate of convergence of
the iterative methods was studied with respect to rather
large variations in the oQ'-diagonal coupling strength C.
For the studies described later, we chose 5=0.1,
5=0.0001, and (unless specified otherwise) n, ~ =5. As a
result, the bands begin at the zeroth-order energies
0.0,0. 1, . . . , 0.9.

Eigenvalues of this model Hamiltonian are shown in
Fig. 2 for two choices of parameters. The two plots in
the upper part of the figure show the eigenvalues for a
500 state system (Nb =10, N, =50, C =0.05). The blow-
up in the upper right shows the band structure near
E =0.5. The second blowup in the lower part of the
figure shows the eigenvalues between 0.48 and O.S2 for a
2000 state system (Nb =10, N, =200, C =0.1). The goal
in the following computational studies will be to accu-

0.60

0.8

rately compute a few eigenstates near E =0.5 in these
dense spectra.

B. Computational studies

Importance of the partial adiabatic representation

Before considering the convergence of the eigenvalues
with respect to the number of Lanczos iteration steps, we
will first comment on the importance of using the partial
adiabatic representation. For this purpose, the Neumann
expansion of G(E) was used in the original representation
for a set of increasing coupling strengths within the 2000
state model. It was found that the Neumann expansion
converged only in the weak coupling limit with
C &0.0015. A way to calibrate this coupling strength is
through the ratio of the coupling strength to the energy
gap between successive states near the test energy. In
this example, the coupling strength ratio is
P= 0.0015/0. 000 17=8.8 (the denominator is the separa-
tion between adjacent eigenvalues near the test energy).
It will be shown later in this section that convergence can
be obtained for much larger values of P, provided the
PAR is utilized. All of the computational results to fol-
low were thus obtained by utilizing the PAR.

2. Outer 1oop con Uergence characteristics

0.50—

0.2

0.40

0.52

0.50—

0.48

FIG. 2. Eigenvalue plots for the model Hamiltonian. The
top two figures show the eigenvalues for a 500 state system (10
bands, 50 states per band, coupling strength C=0.05). The
lower figure shows eigenvalues near E =0.5 for a 2000 state sys-
tem (10bands, 200 states per band, coupling strength C =0.1).

We will now examine the convergence of the eigenval-
ues near the test energy E =0.5, again for the 2000 state
system in which the coupling strength parameter is
C =0.04 (/3=235). In addition, the DIIsl algorithm with
the Gauss-Seidel accelerator was used to solve the linear
algebraic equations in the inner loop. For all of the itera-
tive calculations reported here, the starting Lanczos vec-
tor Q& had constant coefficients c, =N '~ . The eigenval-
ues and residues obtained with the iterative algorithm
will be compared to the corresponding exact values,
which were obtained by directly diagonalizing the Hamil-
tonian matrix. For later reference, a group of 18 of the
exact residues and eigenvalues that are closest to the test
energy are listed in Table II. The term residue denotes
the square of the projection of an eigenvector upon an in-
put test vector. For these comparisons, this normalized
test vector was chosen to have constant coefficients.

Table III shows the convergence of the eigenvalues and
residues for 4, 6, 8, 10, and 20 Lanczos iteration steps.
Column 3 in this table gives the eigenvalues of the Green
function; the extreme eigenvalues of Cx(E) have very
large magnitudes, greater than 10, and these converge in
about six Lanczos steps. Column 4 then gives the eigen-
values of H that were computed from the eigenvalues of
Cz(E). Finally, column 5 lists the residues. These resi-
dues were computed with the recursive residue genera-
tion method [40], which does not require computation of
eigenvectors. In the last two columns, the digits in the ei-
genvalues and residues that agree with the exact values in
Table II are underscored. There are now a number of ob-
servations that can be made with respect to these results.
(i) Even for four Lanczos steps, the two eigenvalues
closest to the test energy are accurate to five or six digits.
(ii) For six Lanczos steps, two eigenvalues, numbers 1 and
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TABLE II. Eigenvalues and residues near E =0.5 for the
X =2000 state system. Direct diagonalization was used. The
dashed line (E =0.5) indicates the position near which the ei-
genvalues will be computed by iterative Careen function
methods. Residue is the square of the projection of a test vector
upon each eigenvector. The test vector is a normalized vector
with constant components.

State No.

1076
1077
1078
1079
1080
1081
1082
1083
1084

Eigenvalue

0.498 570 25
0.498 741 18
0.498 91154
0.499 081 33
0.499 250 59
0.499 419 31
0.499 587 55
0.499 755 51
0.499 923 78

Residue (unit of 10 ')

0.035 717 51
0.035 937 27
0.036 213 71
0.036 322 92
0.036 909 59
0.036 262 40
0.038 628 72
0.034 546 49
0.043 835 15

1085
1086
1087
1088
1089
1090
1091
1092
1094

0.500 093 69
0.500 267 39
0.500 447 05
0.500 634 13
0.500 829 20
0.501 032 27
0.501 243 15
0.501 461 62
0.501 920 65

0.030 322 76
0.055 320 02
0.026 175 90
0.070 673 26
0.023 901 73
0.085 953 63
0.022 838 44
0.100 602 67
0.115 156 83

6, are accurate to eight digits (which is about 10 of the
average level spacing) and when NL =10, four eigenval-
ues are accurate to at least eight digits. (iii) As NL in-

creases, the accuracy of the eigenvalues and residues im-
proves in the direction from the outer edges toward the
inter region of the spectrum of G(E). (iv) When NL =20,
multiple copies of eigenvalues start to appear on both
edges of the spectrum of G(E). This characteristic by-
product of the Lanczos algorithm is actually a welcome
feature; it indicates convergence of these eigenvalues to
machine precision. However, when the Green function is
used to drive the Lanczos algorithm, it is only necessary
to use a small number of Lanczos steps, so that multiple
copies of eigenvalues will not usually appear.

Another way to summarize the data in Table III is
shown in Table IV. The number of decimal digits in the
eigenvalues listed in Table III that agree with the exact
results (Table II) are tabulated for NL ranging from 4
through 20. From this table, it is clear that the number
of eigenvalues accurate to six or more digits increases
rapidly with increasing NI . In addition, with only eight
to ten Lanczos steps, two to four very accurate eigenval-
ues are obtained; these are the nearest neighbors to the
test energy. Finally, this table shows that the number of
Lanczos steps per accurate eigenvalue (a & 5) is remark-
ably low; for four or more Lanczos steps, each additional
2.5 Lanczos steps produces an additional accurate eigen-
value.

coupling strength parameter. Table V lists the total num-
ber of inner loop iteration steps that are required for ten
outer loop iteration steps. The four methods listed here
are: the direct use of the Neumann expansion for G(E),
DIIS1 with the Jacobi and Gauss-Seidel algorithms, and
the GMRES algorithm. For the lowest coupling strength,
the direct expansion for G(E) worked very well. Howev-
er, when C was larger than 0.06, the number of iteration
steps increased rapidly such that when C =0.08, conver-
gence was not obtained in 8000 iteration steps. The DIIS1
algorithm worked very well for coupling strengths
(0.08, with the Gauss-Seidel version gaining the advan-
tage over the Jacobi version as the coupling strength pa-
rameter C was increased. For the strongest coupling
strength, GMRES required the smallest number of itera-
tion steps.

The DIIS2 algorithm was also tested over the same
range of coupling strengths that are listed in Table V.
Recall that this is the fixed-size version of the DIIS algo-
rithm. When C =0.04, 108 DIIS iteration steps were re-
quired during ten Lanczos steps; when C =0.08, 549
steps were required. These numbers are similar to the
GMRES results listed in Table V. However, DIIS2 does
have the significant advantage that fewer iteration vec-
tors need to be stored (about 50 per Lanczos step for
GMRES vs 10 for DIIS2, but fewer vectors could have been
used for the latter method).

The recommendation from this set of results would
thus be to use the Neumann expansion for G(E) when
the coupling strength is low and then switch to DIIS1,
DIIS2, or GMRES for stronger couplings. GMRES is useful
when there is enough space to store the iteration vectors,
while DIIS2 is highly recommended when the storage
space is limited.

For any of the inner loop iteration methods utilized in
this section, the CPU time scales quadratically with
respect to N, the dimension of the Hamiltonian matrix.
This is to be expected since matrix-vector multiplies dom-
inate the inner loop. To give one example, for ten Lanc-
zos steps using GMRES for the inner loop, the CPU time
on one processor of the Cray Y-Mp is given by
CPU(sec) =5. 58 X 10 N (N & 2500). (If H had the
sparse structure that was utilized in the algorithm, then
the CPU time would vary as N"+ ', where a & l. )

The final aspect of the inner loop iterative methods
that we will consider concerns the rate of convergence
with respect to the number of inner loop iteration steps.
For this purpose, Fig. 3 shows the convergence history of
the DIIS1 algorithm for Lanczos step number 4. The
abscissa shows the log of the residual plotted vs the itera-
tion step. This nearly linear plot indicates exponential
convergence with respect to the iteration step. This very
desirable feature was also observed for the other inner
loop iteration methods, except, of course, when the cou-
pling strength C was made so large that the method failed
to converge.

3. Comparison of inner loop iteration methods

We will now consider the convergence characteristics
of four inner loop iteration methods as a function of the

4. Additional convergence characteristics

In this section, convergence of the inner loop iterative
methods will be examined with respect to two parame-
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TABLE III. Eigenvalues and residues near E =0.5 for the N =2000 state system. The Lanczos-
Green function algorithm was used. The Dt's] algorithm was used to solve the algebraic equations,
with a Gauss-Seidel accelerator. The numbers in square brackets denote multiplicative powers of 10.
The underscore indicates all digits that agree with the direct diagonalization results in Table II. XL
denotes the number of Lanczos iteration steps.

State
No.

Green function
eigenvalue A, ;

—0.105[5]
—0.251[1]

0.417[2]
0.131[5]

Eigenvalue E;

0.500 095 20
0.898 253 72
0.476 005 65
0.499 923 52

Residue (units of 10 )

0.033 423 65
92 926.360 730 67

7073.526 071 28
0.044 774 40

—0.107[5]
—0.352[4]
—0.413[1]

0.247[2]
0.385[4]
0.131[5]

0.500093 70
0.500 284 09
0.742 318 56
0.459 530 20
0.499 740 21
0.499 923 78

0.030 33006
0.079 230 36

83 555.147 791 18
16444.646 840 52

0.051 971 58
0.043 836 31

—0.107[5]
—0.373[4]
—0.167[4]
—0.546[1]

0.187[2]
0.211[4]
0.408[4]
0.131[5]

0.500 093 69
0.500 267 81
0.500 597 09
0.683 10620
0.446 530 57
0.499 525 51
0.499 755 18
0.499 923 78

O. 030 322 73
0.056 294 95

0.149 761 43
74 849.853 849 94
25 149.741 613 48

0.089 208 46
0.035 11388
0.043 835 23

10 1

2
3
4
5
6
7
8

9
10

—0.107[5]—0.374[4]
—0.215[4]—0.117[4]
—0.669[1]

0.154[2]
0.132[4]
0.240[4]
0.409[4]
0.131[5]

0.500 093 69
0.500 267 39
0.500 464 41
0.500 857 33
0.649 576 78
0.435 231 40
0.499 240 13
0.499 582 72
0.499 755 51
0.499 923 78

0.030 322 73
0.055 33940

0.039 231 98
0.232 977 SO

66 999.608 565 34
32 999.765 896 74

0.145 306 37
0.043 972 09

0.034 552 63
0.043 835 23

20 1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

—0.107[5]
—0.107[5]—0.374[4]
—0.224[4]
—0.158[4]
—0.120[4]—0.949[3]
—0.610[3]—0.213[3]—0.611[1]

0.162[2]
0.388[3]
0.755[3]
0.106[4]
0.133[4]
0.172[4]
0.242[4]
0.409[4]
0.131[5]
0.131[5]

0.500 093 69
0.500 093 69
0.500 267 39
0.500 447 05
0.500 634 13
0.500 832 11
0.501 OS4 10
0.501 638 19
0.504 588 29
0.663 630 90
0.438 139 19
0.497 424 40
0.498 674 89
0.499 052 34
0.499 249 81
0.499 419 30
0.499 587 55
0.499 755 51
0.499 923 78
0.499 923 78

0.000 686 59'
0.029 636 14

0.055 32007
0.026 175 86
0.070 679 54
0.025 539 94

0.102 573 32
0.260 679 08
4.702 596 45

69 760.150075 41
30 233.668 404 37

0.541 918 67
0.122 04S 18
0.052 671 00

0.037 723 17
0.036 264 84
0.038 628 67
0.034 546 48

0.042 737 58
0.001 097 64

'Total residue 0.030 322 73 for this eigenvalue.
Total residue 0.043 835 22 for this eigenvalue.
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TABLE IV. Number of eigenvalues accurate of a decimal di-
gits for the N =2000 state system. The Lanczos-Green function
algorithm was used. The DIIS1 algorithm was used to solve the
algebraic equations, with a Gauss-Seidel accelerator. NL
denotes the number of Lanczos iteration steps.

10 20

CO

'e
IQ

C4
O

—6
0

iteration step

15

ters: the dimension of the block H, in the PAR [recall
Eq. (8)] and n, d in the Hamiltonian, which determines
the strength of the interband coupling. First, Table VI
shows the number of iteration steps (GMREs was used in
the inner loop) as a function of the dimension of H, . Re-
call that this block of the Hamiltonian matrix is centered
around the test energy. %'e note that when this dimen-
sion is & 200, a relatively large number of iteration steps
()500) is required. As the dimension is increased, the
number of iteration steps levels off' near 130—140. The
conclusion is that the dimension of H, should be as large
as possible in order to decrease the total number of itera-
tion steps.

Now we will consider the inhuence of the interband
coupling strength. Table VII lists the number of iteration
steps (when GMRFS or DIIS1 Gauss-Seidel are used in the
inner loop) with respect to n, d Recall th. at the interband
coupling strength is determined by the ratio Cln, d, so
that the interband coupling decreases as n,d increases. It
is clear from this table that the number of inner loop
iteration steps increases significantly when n, d &4 and
that in this circumstance, GMREs requires fewer iteration
steps than DIIS1.

5. Iterative computation of eigenvectors

In Sec. II C we indicated how the eigenvectors may be
generated by backtransforming the Lanczos vectors. At
least in principle, this is a straightforward procedure;
however, the following issue should be addressed: How

Method'

G(E) direct
DIIS1 Jacobi
DIIS1 Gauss-Seidel
CsMRES

0.01

58
87
65
70

0.04

97
196
129
141

0.06

189
216
143
283

0.08

diverge"
5140

864
483

'In all cases, the partial adiabatic representation was used.
"No convergence in 8000 steps.

TABLE V. Total number of iteration steps (Green function
vector multiplies) for various methods. Results for four cou-
pling strengths are shown for the N=2000 state system with

NL, = 10 Lanczos steps.

Coupling strength C

FIG. 3. Natural log of the residual vs the DIIS1 iteration step
index for Lanczos step 4. This result is for the N =2000 state
system with C =0.04.

accurate are these eigenvectors when we perform only a
few Lanczos steps? Before answering this question, we
will examine plots of several Lanczos vectors and then
one of the eigenvectors formed by taking a linear com-
bination of the Lanczos vectors. In Fig. 4 the coe%cients
in the original basis set of the three Lanczos vectors Q&,

Qs, and Q9 are plotted. These vectors are for a 500 state
model system in which the coupling strength parameter
is C =0.04. The bulge of relatively large coe%cients near
state index 280 in vector Q& is due to the preconditioning
factor g=(El& —s) ', which appears on the right-hand
side of Eq. (20). The higher Lanczos vectors have a
broadened bulge near state index 280, but they gradually
show the buildup of a band structure as more iterations
are performed. The eigenvector formed by taking the ap-
propriate linear combination of these Lanczos vectors is
shown in Fig. 5. This eigenvector corresponds to the
highest eigenvalue less than the test energy E =0.5. This
semilog plot displays induc;~ vs the state index i for
i = 1,2, . . . , 500. The structure associated with ten
bands of states is very evident.

We will now consider the accuracy of the eigenvectors
generated by backtransforming the Lanczos vectors. In

TABLE VI. Variation of the number of iteration steps with
the dimension (M) of the block H, for the N =2000 state model
problem. The number of Lanczos iteration steps is N& =10 and
the coupling strength parameter is C =0.04.

No. of iterations'

100
200
300
400
500
600

1000

& 1000
591
161
141
137
132
79

'The GMREs algorithm was used to solve the linear algebraic
equations. The number of CzMRES iteration steps was then
summed over the Lanczos iteration steps to obtain the total
number of iterations.
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order to define a measure of accuracy, we compared each
coefficient for the approximate eigenvector with the cor-
responding exact coefficient (these were obtained through
direct diagonalization of the Hamiltonian matrix). From
the error in each coefficient 5; =c;"'"—c;"'""'",the root-

1 N

g5,
i=1

' i/2

mean-square error per coefficient was computed,

Lanczos vectors
1 0 I I I ~ ~ ~ ~ ~ I I T ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ I I I ~ ~ ~ ~ ~ ~ ~ I ~ I I I ~ ~ ~ ~ ~ ~ ~

0.5—
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Ci o.o

-0.5—

a Illllt. ..„,wI
'f

Jg I
' ' ' ' I l l I

FIG. 4. Lanczos vectors for a 500 state sys-
tem (10 bands, 50 states per band, coupling
strength C =0.04). The expansion coefficients
c; of each vector in the zeroth-order basis set
are shown for three vectors Q„g„and Q9.

P a ~ s a a ~ ~ ~ ~ I I ~ ~ ~ s I ~ I a I ~ ~ I a a ~ ~ ~ ~ I ~ a ~ a ~ I s ~ a I ~ ~ I I ~ ~ a ~ ~
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0 100 200 300 400 500

0 I ~ I ~ ~ I I ~ ~
I

~ ~ '~ ~ ~ ~ ~ ~ ~
I

I I I ~ ~ I I I I
I

~ ~ ~ ~ I I ~ ~ ~
I

~ I I I \ ~ I I I

Cl oo I .. I a. . Ill I,)L . .
I 'I/1)Ii la]'

-0.5—

0 I I I I I ~ a ~ I I I ~ ~ ~ ~ I ~ ~ I I I I ~ ~ ~ ~ a I a I ~-1. a ~ I I ~ ~ ~ ~ I ~ I ~ ~ I a I

100 200 300 400 500

basis function



51 MATRIX SPECTROSCOPY: COMPUTATION OF INTERIOR. . . 3655

TABLE VII. Dependence of the total number of iteration
steps (obtained by summing the number of GMRES or DIIS1 steps
over NL =10 Lanczos steps) upon the strength of the interband
coupling, C/nod, where C =0.04 and nod is varied. Note that
the coupling becomes weaker as nod is increased.

TABLE VIII. Root-mean-square error per eigenvector
coefficient [see Eq. (28}]for one eigenvector [associated with the
largest eigenvalue below the test energy (E =0.5)] for the
N =2000 model system. The number of Lanczos steps NL and
the coupling strength in the potential are varied.

Coupling strength C

Method

GMRES
DIIS1-GS

348
910

157
134

139
114

126
109

120
102

'The Gauss-Seidel accelerator was used in the DIIS1 algorithm.

4
6

10

0.01

2X 10
1X10-'

&1X10 '

0.08

8X10
1X10-'

&1X10 '

The rms error is listed in Table VIII for the 2000 state
model system for four, six, and ten Lanczos steps, for
both weak and strong coupling strengths. Even for the
higher coupling strength, the rms error decreases rapidly
as the number of Lanczos steps was increased from four
to six. For six Lanczos steps, the eigenvector coefficients
have an extremely low rms error, about 1 X 10

IV. SUMMARY AND DISCUSSION

A. Summary of the two-layer iteration algorithm

—4
M

100 300

basis function

FIG. 5. Eigenvector coefticients for one eigenvector (with en-

ergy just below 0.5) in the X =500 state system with C =0.04.
The natural log of

~ c; ~
is plotted vs the basis function index.

The computation of a small group of interior eigen-
states of a large matrix H was approached in this study
through the application of a two-layer iteration scheme.
Starting with a test input energy E, the outer iteration
loop uses the Lanczos algorithm to develop a small
M XM tridiagonal representation of the Green function
Cx(E). Diagonalization of this matrix (denoted T) yields,
through a simple mapping, excellent approximations to
the eigenvalues of H that lie near energy E. The inner
iteration loop computes the matrix-vector product
Cx(E)Q~, where Q~ is one of the Lanczos vectors. Both
direct and indirect methods may be used for this opera-
tion. The direct method uses a perturbative expansion of
the Green function, while the indirect method is based
upon the iterative solution of a linear algebraic system.
In the latter method, a polynomial representation of the
Green function is developed with adaptive, variationally

determined linear expansion coeKcients. The GMRES,
DIIS1, and DIIS2 algorithms were found to be effective
methods for solving the linear system. If storage of the
iteration vectors is a problem, then the DIIS2 algorithm
(with a small value for the dimension of the iteration sub-
space X ) is highly recommended. Convergence of these
inner loop iterative methods was improved significantly
by developing the Green function in the partial adiabatic
representation. The two-layer iteration method was ap™
plied to a dense 2000 state model Hamiltonian matrix.
With this scheme, it was possible to accurately compute a
small group of eigenvalues and eigenvectors in the dense
interior region of the spectrum in just a few Lanczos
iteration steps (( 10).

B. Additional approaches to the matrix eigenproblem

The two-layer iteration scheme described in this study
is related to other recent studies that share the same goal:
compute a few eigenpairs in the interior of a dense spec-
trum. Recently, Dul and Arczewski [41] described a
closely related two-layer scheme that they applied to
large three-dimensional elliptic and two-dimensional
biharmonic problems. Their outer loop involves K-
dimensional subspace iteration (rather than Lanczos
iteration), while the inner loop also uses a preconditioned
linear system solver. Eigenvectors are then found by
Rayleigh quotient iteration. This method is also fully
iterative and avoids matrix factorizations. In addition,
Morgan [8] has discussed several methods for implement-
ing inverse operators in the Lanczos algorithm.

An algorithm related to those mentioned above has
been developed by Sorensen [42]. The implicitly restart-
ed Lanczos method (IRLM) develops the solution in a
K-dimensional Krylov subspace by using a low degree po-
lynomial filter in the outer loop of the Arnoldi or the
Lanczos algorithm. The filter, which can be constructed
from Chebyshev polynomials, is designed to accelerate
convergence in a spectral interval, say [E;„,E,„].This
method has been used to compute surface basis functions
for atom-diatom reactive scattering [43] and for the vi-
brational analysis of mechanical structures [44]. In addi-
tion, the subroutines sym lanczos and gen arnoldi on
the Thinking Machines CM-5 utilize the IRLM [45].

There is considerable interest in developing parallel al-
gorithms for dense matrix eigensystems. From time to
time, the Jacobi plane rotation algorithm has been used
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in parallel mode to compute all eigenvalues of real sym-
metric matrices [46,47]. As an example, the subroutine
sym~acob& eigensystem on the CM-5 uses this tech-
nique [45]. In a very different approach, the PRIsM [48]
(parallel research on invariant subspace methods) group
has emphasized the invariant subspace decomposition ap-
proach of Auslander and Tsao [49]. This approach in-
volves a treelike breakdown of the matrix into a set of
smaller matrices, which can then be directly diagonal-
ized. Another approach, based upon the IRLM, is incor-
porated in the ARPACK. software package where parallel-
ism is achieved, at least in part, through the matrix-
vector products [50].

C. Polynomial expansion of 6 (E)

An efficient way to compute the time propagator asso-
ciated with the Hamiltonian H is through the expansion
in Chebyshev polynomials [51]

exp( iHt)=—g a„(t)T„(H),
n=0

(29)

where T„(H) is the nth-order Chebyshev polynomial in
which the argument is the scaled Harniltonian matrix
(the spectral range is shifted to the interval [

—1, 1]). In
addition, the coefficient a„(t) is a multiple of the nth-
order Bessel function, J„(b,Et), where the energy half-
width is AE =(E,„E;„)/2.—The half Fourier trans-
form of Eq. (29) over the interval [t =0, ao ] then gives
the Chebyshev expansion of the Green function [a con-
vergence factor exp( —et) is first introduced in the in-
tegrand, where e & 0]

(E+1 —H) '= g a„(E+)T„(H)
n=0

(30)

in which E+=E+iE and where the a„(E) are analytic
expansion coefficients [52,53]. In some cases, such as
scanning through a set of energies, this separation of the
action of H and the energy E is advantageous [53,54].
Closely related to this is the polynomial expansion of the
spectral density operator (SDO), defined by

The real valued polynomial expansion of the SDO has
been used to evaluate spectral intensities [55]. An im-
proved version of the Chebyshev expansion of the SDO
has recently been presented [55].

The number of terms required in order to converge the
right-hand side of Eq. (29) [and Eq. (30)] can be deter-
mined by noting that when n & AEt, the Bessel function
decays exponentially. If the eventual goal is to compute
eigenvalues, then the propagation time must be
sufficiently long to resolve the energy spacings in the
spectrum. If the spacing is 6E and we want to resolve en-
ergies to the fraction f of this value, the propagation time
must be the order of t =1/(f5E). As a result, the num-
ber of Chebyshev terms must be n & b,E/(f 5E). Now,
for the model system in Sec. III, hE =0.5, 5E =0.0002,

5(E H) = lim [(E —H) ' —(E —H) '] . (31—)
2& c~o+

and let us assume that we want energy resolution to
f =

—,', of the spacing. The required number of Che-
byshev terms is then about 25 000. This number is about
10 times the total number of matrix-vector multiplies
used to compute very accurate (f = „' ) eigenvalues for
the 2000 state model system. For dense interior spectra,
this spectral method does not seem like the best way to
proceed. However, the filter-diagonalization method of
Neuhauser [5] would likely be more efficient.

The Chebyshev expansion in Eq. (30) was tested on the
model problem in Sec. III. In order to resolve the dense
interior spectrum, it was necessary to choose the imagi-
nary component of the energy c to be smaller than the lo-
cal energy gap 5E=0.0002. This small value of c,, in
turn, led to a large number of terms in the Chebyshev ex-
pansion (about 32000 terms were required for conver-
gence).

There are alternatives to the Chebyshev expansion of
the Green function. Another approach was used by Au-
erbach and Miller in their applications to reactive
scattering [56,57]. They developed a power series [57] for
G(E) by using N evenly spaced quadrature points along
the time axis to evaluate the half Fourier transform over
the finite interval [t =0, T]. We conclude by noting that
an advantage of the iteration-variation expansion (the
Appendix) in the partial adiabatic representation (Sec. II)
is that the pole structure of G(E) may be accurately built
in by including additional terms in the expansion.

APPENDIX: ITERATION-VARIATION EXPANSION
OF THE GREEN FUNCTION

An improvement over the familiar Dyson expansion
for the Green function [see Eq. (5)] is provided by the fol-
lowing approach. The problem in simplest terms is to
find the inverse of a matrix. After preconditioning, we
will write the linear system as

(1—A)x=b, (Al)

so that the usual Dyson expansion for the solution is

x=(1—A) 'b=(1+ A+ A + A + )b . (A2)

The iteration-variation approach within the DIIS formal-
isrn using the Jacobi accelerator may be initiated with the
vector x' '=y' '=b, for which the residual vector is
R' = Ab. The Jacobi update would then provide the
next iteration vector y'"=y' '+R' '=b+ Ab and the
next residual vector R~, ~= A b. At this stage, the ap-
proximate solution to Eq. (A 1) would be
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x'"=[cob+c', (b+ Ab)]=(l+c', A)b . (A3)

Continuing beyond the first iteration step, the iteration-
variation solution is

I'"=coy' '+c&y'", where the constraint co+c& = 1 is
imposed. The corresponding residual vector is then
R=coR' '+c,R'"=(1—c, ) Ab+c, A b. The variation-
al aspect then enters with the minimization of R.R with
respect to c&. This gives the "best" value for c&, denoted
c &, and then co = 1 —c &. The iteration-variation solution
would then be

x=(1+c& A+cz A +c3 A + )b . (A4)

In order to relate more closely to the Green function
analysis, we will now make a change of notation; let
x=G, A=G V, and b=G . Equation (A4) then be-
comes

G=coG +c', G VG +czG VG VG + . . . (A5)

When truncated at the nth degree in G V, the resulting
polynomial represents the parametrized incomplete in-
verse [56] of the matrix (El —H) '. Finally, we em-
phasize that the weight of each term in this polynomial is
chosen through a constrained variational procedure.
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