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We investigate thermodynaxnic properties of neural networks de6ned on a finite-dimensional
lattice designed to store and retrieve patterns with structure. Our aim is to draw phase diagrams
with axes of temperature and a parameter controlling the structure of patterns. Gauge symmetry
is used to derive various exact or rigorous results on the properties of the system. These results
put strong constraints on the possible phase diagrams. We also use Peierls arguments to prove the
existence of a ferromagnetic phase and of a phase with finite overlap order in certain regions of
the phase diagram. Our conclusion on the phase diagram is that, erst, if the number of embedded
patterns is smaller than a critical value, the system has in general three phases: a paramagnetic
phase, a retrieval phase, and a ferromagnetic phase accompanied by 6.nite overlap order. For larger
numbers of embedded patterns, a ferromagnetic phase without overlap order appears in addition.
The retrieval phase without ferromagnetic order may be replaced by a spin glass phase for large
numbers of embedded patterns.

PACS number(s): 87.10.+e, 05.50.+q

I. INTRODUCTION

Neural networks represent a rich many-body system
with a number of interesting features associated with
a multiplicity of nonequivalent dynamical at tractors,
some related fairly straightforwardly to stored global
microstates, others quasirandom, and with phase tran-
sitions between attractor types. Those with detailed
balance yield asymptotic Boltzmann-like microstate dis-
tributions and thus have been a target of statistical-
mechanical analysis for almost a decade [1—4]. An impor-
tant prototypical model is the Hopfield model [1] whose
features include binary-state neurons, represented by
Ising spins, interacting through infini. te-range synapses,
equivalent to exchange interactions in the Ising formu-
lation. The exchange interactions code the efr'ect of
embedded random patterns via the Hebb rule J,~

(,. (", where the i label the neurons, the y, the
patterns, and (" take the quenched values +1. These
features enabled detailed statistical-mechanical analysis
of the system [2—4].

It is sometimes useful and interesting to modify or gen-
eralize some of the special characteristics of the Hop6eld
model. Although there are many possibilities of gener-
alization (see, for example [3]), let us consider in par-
ticular the effects of nonrandomness in patterns embed-
ded in the network. Schliiter and Wagner [5] considered
the problem of embedding patterns with spatial struc-
ture generated stochastically according to the Boltzmann
factor of the nearest-neighbor Ising model. They used
the conventional Hebb rule for the synaptic efficacies, an
infinite-range interaction in the space of the network it-
self, and calculated the storage capacity. They also pro-
posed a modification of the Hebb rule to increase the
capacity. Monasson [6] analyzed the same problem in
the limit of weak spatial correlations. The dynamics of

networks storing patterns with structure has been dis-
cussed by Coolen [7] for certain special cases. The issue
of learning such structured patterns in perceptron-type
networks has also been discussed by Monasson [6] and by
Tarkowski and Lewenstein [8].

It is also of interest to consider the finiteness of spa-
tial dimensionality not only of the patterns but also of
the network itself, because spatial correlations inherent
in pat terns w ith structure make sense mainly in finite-
dimensional systems with finite-range interactions. We
are thus led to consider the problem of patterns, corre-
sponding to snapshots of Monte Carlo simulations of a
finite-dimensional Ising model with short-range interac-
tions at finite temperature, embedded in a finite-range
Ising model with the same range of interactions on the
same finite-dimensional lattice.

The aim of the present paper is to provide statistical-
mechanical treatments of such finite-dimensional neural
networks embedded with structured patterns. We clas-
sify possible thermodynamic phases and draw the phase
diagram as precisely as possible using rigorous analytical
methods.

This paper is organized as follows. We give the precise
definition of the system in Sec. II. General expectations
on its behavior are then discussed, such as the phase
diagram and the possible number of patterns to be suc-
cessfully stored in such a system. A few limiting cases are
investigated in some detail. Section III describes exact
solutions and rigorous inequalities on various thermody-
namic quantities. The results include exact expressions
for the internal energy and the overlap order parameter
on a special line in the phase diagram. Gauge symmetry
is shown to play crucial roles in the calculations. The
existence of ordered phases is proved in Sec. IV. The
Peierls argument, modified appropriately to take account
of quenched randomness, is used to show the existence
of the ferromagnetic and finite-overlap states in certain
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regions of the phase diagram. We analyze the limit of
infinite-range interactions in Sec. V. This infinite-range
model corresponds to a generalization of the conventional
Hopfield model to the case with an additional parameter
controlling the randomness of patterns. The final sec-
tion, Sec. VI, is devoted to discussions on possible phase
diagrams with the results in previous sections taken into
account.

II. PRELIMINARY ANALYSIS

A. De6nition of the system

The Hamiltonian to be treated in this paper is

P(jg,")) = c, exp
~ )

)
(2)

The parameter Jp controls the degree of order (structure)
within each pattern, but there is no explicit correlation
between patterns. The normalization factor c is given by
(Zp( Jp/i/p)) ",where Zp is the partition function of the
ferromagnetic Ising model defined on the same lattice as
in (1):

( Jp ) Jp(

Equations (1) and (2) may be interpreted that patterns
are taken &om snapshots of equilibrium Monte Carlo sim-
ulations of the ferromagnetic Ising model with nearest-
neighbor exchange interactions and the inverse tempera-
ture in the ratio Jp/~p, and those patterns are embedded
in the network following the "short-range" Hebb rule

for the nearest-neighbor pair (ij) and J,i = 0 otherwise.
The factor 1/~p in (1) and (2) is useful in considering
the limit p —+ oo, as will be explained later. .

where the S, , (~ are variables of the Ising type taking
values +1, the S; being the usual variables, the (,"= +1
quenched randomly according to a probability distribu-
tion specified below. The summation (ij) in (1) extends
over nearest neighbors on hypercubic lattices, although
the results of Sec. III are valid without this restriction.
The number of patterns p is taken to be finite throughout
this paper.

Let us follow Schliiter and Wagner [5] in choosing the
probability distribution of the quenched random vari-
ables

B. General expectations on the phase diagram

Embedded patterns are completely random if Jo ——0.
This case can be considered a short-range version of the
Hopfield model. Such a system may be able to store and
retrieve embedded patterns if their number is not too
large and if the level of stochastic agitation, the temper-
ature in the usual statistical-mechanical sense, is not too
high; when Jo ——0, a retrieval of pattern p is considered
to occur if the overlap m~ = K P, (~(S,), where ()
represents a thermodynamic average, is of O(1) for only
one p, [9]. For sufficiently large p, the retrieval phase
will not exist and a spin glass phase may instead ap-
pear. This conjecture comes partly from experience in
the infinite-range Hopfield model in which the system
cannot retrieve embedded patterns if their number per
spin a = p/N exceeds a threshold a, [2—4]. In the present
finite-dimensional model, the critical number of patterns
to be successfully stored is likely to be finite, p„rather
than being proportional to the number of neurons ¹

This finiteness of p is anticipated from a consideration
of networks with randomly diluted synapses, in which p
is proportional to the average connectivity per neuron, a
finite number [10]. The following argument also predicts
the finiteness of p .

Naively, the capacity p, is expected to be much lower
than in the infinite-range counterpart; the total number
of exchange interactions, where information is stored, is
proportional to K (the number of neurons or spins) as
compared to N in the case of the infinite-range model,
while each pattern requires O(K) bits of information.
More specifically, suppose that the number of possible
values of a given exchange interaction J;~ is a finite num-
ber a. Then the possible number of configurations of
bond values connected to a given single site is bounded
from above by a, where z is the coordination number
and hence the maximum information content per site is
zlna. This shows that the amount of information to be
stored and retrieved is proportional to the coordination
number, which is finite in finite-dimensional lattices. For
the Hebb rule under discussion, a increases with p but
is bounded by 2J), leaving intact the conclusion that p
is finite for finite z. Therefore the maximum number of
patterns to be successfully stored p, will be finite.

In the opposite limit of Jo —+ ao, fluctuations in the
pattern randomness are completely suppressed, the (~
becoming all +1 or all —1, and the exchange interaction
J;i of (3) is simply given as ~p. The network system is
then a pure ferromagnetic Ising model and there exists
a ferromagnetic phase at low temperatures if the spatial
dimensionality is larger than unity.

The phase diagram is therefore expected to be given
generally as in Fig. 1, categorizing the phases into para-
magnetic, ferromagnetic, and retrieval (or spin glass, de-
pending upon whether p is less or greater than p ). There
are several other possibilities within these simple catego-
rizations, such as the mixed phase (a ferromagnetic phase
with spin glass characteristics), absence of the retrieval
or spin glass phase near Jp —0 (which may be the case
in low dimensions), and a ferromagnetic phase with finite
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FIG. 2. Configurations of (a) two exchange interactions Ji2
and J2s and (b) a closed loop for which the covariances are
calculated.

FIG. 1. Generic qualitative phase diagram of our network
embedding patterns with structures. There are in general
three phases: paramagnetic, ferromagnetic, and retrieval (or
spin glass) phases. There are possibilities of a mixed phase
state and of a Gnite-overlap state within the ferromagnetic
phase.

values of the overlap order parameter. The last possibil-
ity will be discussed in detail in the following sections.

C. Large-p limit

In the limit of large p, the present system is likely to re-
duce to the Edwards-Anderson model of spin glasses [11]
with a Gaussian distribution of exchange interactions.
The first step of the argument is to note that the ex-
change interaction (3) is composed of independent terms,
the number of which grows with p. The central limit the-
orem thus applies and the distribution of J;~ approaches
Gaussian. The average and variance are easily calculated
and the results are [J;~] = ~pci(Jo/~p) and [(4J,~)2] =
1 —ci(Jo/~p), where the square brackets denote the av-
erage over the distribution (2) and ci(Jp/~p) represents
the correlation function between nearest-neighbor sites
of the ferromagnetic Ising model with (2) as the Boltz-
mann factor. In the limit p ~ oo, only the leading term
of the high-temperature expansion is important in eval-
uating ci(Jo/~p) because Jo/~p (( 1. Thus we have

[J~] ~ptanh( Jo/~p) Jo and [(4J,z)2] 1. This
means that J;~ becomes a Gaussian variable with mean
Jo and variance unity.

It is further necessary to show the independence of J;~
from other exchange interactions to complete the argu-
ment for reduction to the spin glass model of Edwards
and Anderson. We have obtained evidence for such a
reduction by showing that the covariance of neighboring
interactions vanishes in the large-p limit. For example,
the covariance of exchange interactions in Fig. 2(a) is
found to be

(Jp') C Job'
[b,Ji2a J2s] = c2

I I
ci

tv~) &v~r
as p —+ oo, where c2 is the correlation between sites j.
and 3 in Fig. 2(a). Similarly, the three-body covariance
of the closed-loop configuration in Fig. 2(b) (which is
present on the triangular lattice, for example) is given as

These results indicate the independence of J,~ in the
large-p limit.

I3. Two patterns embedded

The special case of p = 2 with Jo ——0 is equivalent
to the site-diluted ferromagnetic Ising model with dilu-
tion probability —.The proof consists of a simple gauge
transformation

Z = ) exp ( ) (g,'g,'+ (2(2)S,S, )
S ('i )

= ) exp ( ) (1+g, g~)S, S~

(ij)

where P is the inverse temperature and q; = (, (, . Since

g, is +1, some of the interactions (1+q;q~. )/~2 are van-

ishing in (4) while others have the strength ~2. If we

classify the sites into two groups, one (group A) with
rh = 1 and the other (group B) with g, = —1, then there
are no interactions between A sites and B sites. Inter-
actions within a group are uniform and ferromagnetic.
Hence spins on B sites can be completely ignored for the
spin summation over A sites and vice versa,

Z —ZQ Zgj ~

The free energy averaged over the quenched distribution
(2) with Jo ——0 is then written as

PI"' = [lnZ] = [lnZ—~] + [inly] = 2[lnZA].

The last equation stems &om equivalence of A and B
groups on average. It should now be clear that [lnZ~]
is the Bee energy of the site-diluted ferromagnetic Ising
model with dilution probability 2.

The overlap order parameter in the original represen-
tation of variables mi ——N P, ((; S;) is gauge trans-
formed to the spontaneous magnetization of the site-
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diluted ferromagnet. Hence, if the dilution model has
a ferromagnetic phase at low temperatures, the original
system has a retrieval phase for the same parameters.
Critical concentrations of the site-dilution problem are
known Rom series expansions. In two dimensions, they
are either equal to 2 (triangular lattice) or larger than

(other lattices) [12]. In three dimensions, any regu-
lar lattice has a critical concentration lower than 2 [13].
Therefore we conclude that two-dimensional systems do
not have a retrieval phase, while the three-dimensional
(and probably higher dimensional) counterparts have re-
trieval phases at finite temperatures when Jo ——0.

The existence of a retrieval phase in three (and higher)
dimensions will hold also for Jo —0 because expansions
of thermodynamic quantities around Jo ——0 resemble
high-temperature expansions, as seen &om the form of
the probability distribution (2). High-temperature ex-
pansions generally have finite ranges of convergence, im-
plying a smooth continuation of properties of the Jo ——0
case to finite (but small) Jo situations.

mal average (5) are all invariant under the gauge trans-
formation (7). The average internal energy then acquires
a new expression

which is independent of (o;j. Summation over (cr;) and
division by 2 does not change the value, so

[(E)1= 2") lirp) BP i~p) i~p)

If Jo is equal to P, this expression simplifies considerably,

III. EXACT RESULTS BY THE METHOD
OF GAUGE TRANSFORMATION

We now turn to symmetry arguments leading to a num-
ber of exact or rigorous results on thermodynamic quan-
tities of the present system. The essential idea is the
same as that for the spin glass problem [14]. All the re-
sults in this section hold for any lattice with arbitrary
interaction ranges.

A. Internal energy

The calculation of the internal energy provides a good
example of the method. We therefore describe this in
some detail. The internal energy, or the thermal average
of the Hamiltonian, for a given ((,". ) is expressed as

8 (pi (p)
~v~)

'

where Eo(P/~p) is the internal energy of the ferromag-
netic Ising model corresponding to the partition func-
tion Zo(P/~p). This expression is exact and applies to
any lattice and any interaction range (ij), including the
infinite-range model.

The internal energy of the ferromagnetic Ising model in
(9) generally has a singularity at some critical point when
the spatial dimensionality exceeds one. Let us suppose
that Eo(K) is singular at K = K, . Then (9) means that
the average internal energy of our neural network has
the same singularity at P/~p = K, or Jo ——P = ~@K
(Fig. 3). This of course implies a phase transition at this
point. The line Jo = P should cross a phase boundary

where Z is the partition function

Z
i i

= ) exp ) ) (,". (".S,g'~ (6)

Its configurational average is given by

[(E)] = c) exp - ) ) (,"(" (E).(~ ('i) ~ )
We consider the application to this expression of a gauge
transformation

7,/v'p—

I

K,4p

S; -+ S;cr;, (," -+ (,"a.„ (7)

where 0, is arbitrarily fixed. to 1 or —1 at each site. The
Hamiltonian (1), the partition function (6), and the ther-

FIG. 3. The line Jo ——P in the phase diagram {shown
dashed) on which the internal en.ergy is obtained exactly.
There is a singularity in the internal energy at the point
Jo ——P = ~pK, indicated on the line, implying a phase tran-
sition.
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there. One may often expect a multicritical point there,
as discussed below.

There is a geometrical reason for the existence of this
singularity. The embedded patterns ((,. }undergo a sud-
den change of state at Jp ——~pK, because the patterns
are generated according to the Boltzmann factor (2).
More explicitly, [(,".

] g 0 for Jp ) ~pK, and [(, ] = 0
if Jp & ~pK, under appropriate boundary conditions
(all boundary variables are +1, for example). The pat-
terns develop long-range order for large Jo. Thus the
singularity in the average internal energy at Jp ——i/pK,
is caused by this sudden change of embedded patterns.

The absence of other singularities in Ep(K) does not
mean that the point Jp ——~@K, is the only location
where the line Jp ——P goes across phase boundaries. It
is in fact explicitly proved in Sec. IV that a boundary
between ferromagnetic and nonferromagnetic phases is
located somewhere in the region Jp & ~@K, if p is large.
However, this phase transition at Jp & ~pK, does not
show up as a singularity in the average internal energy.
The same situation was encountered in the spin glass
problem [14]. It may be useful to recall here that the
present model reduces to the Edwards-Anderson model
of spin glasses in the p —+ oo limit, as d.iscussed in Sec.
II C.

B. Specific heat

r pl
&R,r = cp

where co „ is the correlation function of the ferromagnetic
Ising model. This indicates that there is a long-range
correlation in the overlap ordering if Jp ——p ) ~pK,
while there is no finite long-range overlap ord.ering for
Jp ——P & ~pK, . It is clear f'rom the discussion in Sec.
IIIA that this long-range order is caused by the long-
range ferromagnetic order in the embedded patterns.

The ferromagnetic correlation function (SpS ) is not
gauge invariant. However, the gauge transformation (7)
gives a useful new expression for the configurational av-
erage of this quantity

„:—[(sos )] = [(s,s„),&s s, ) ], (12)

where (SpS„)g, is thermal average for a given randomness
((~}with the effective coupling Jp/~p. The other quan-
tity &SpS &p has the same meaning, only with Jp replaced
by the usual P as in (6) and in the middle expression of
(12) (where it is not explicitly written). Unlike gauge in-
variant quantities, it is not possible to d.erive an explicit
closed expression for this correlation function even under
the condition Jp ——P. However, we can develop useful ar-
guments concerning the possible phase boundaries using
the above relation (12).

I.et us first consider the case of Jp —P in (12):

It is not possible to calculate the specific heat

& = P'[(E') —(E)'] (10)

explicitly like the internal energy. The reason is that
the partition function Z(P/~p) appears squared in the
denominator of the second term on the right-hand side of
(10), which prevents the cancellation of the denominator
and numerator as in (8) and (9) under the condition Jp ——

P. We can nevertheless estimate an upper bound on the
line Jo ——P as I[&Sos.)~]l & [I&Sos.&~. l

1&sos.&~l]

& [I&Sos.&~. l) (14)

[(sps &p]
= [(sos )p].

In the long-distance limit r ~ oo, this relation yields
mR = Q, where mR is the ferromagnetic order parame-
ter and Q is the Edwards-Anderson spin glass order pa-
rameter. This readily leads to the conclusion that there
is no retrieval or spin glass phase (with m~ = 0, Q ) 0)
on the line Jp ——P (see Fig. 4).

Another restriction on the phase diagram comes from
the following inequality derived from (12):

where Cp(P/~p) is the specific heat corresponding to the
internal energy Ep(P/~p). Equation (11) shows that the
specific heat does not diverge on the line Jp ——P, except
possibly at Jp ——P = ~@K .

C. Correlation functions

The two-point correlation function representing the
overlap of the network state with one of the embedded
patterns, the first pattern, for example, is defined by

&R,.—:
I &&o So4 S-)1.

This quantity is gauge invariant and can be calculated
explicitly by the same method as for the internal energy.
The answer under the condition Jp ——P is

In the limit r ~ oo, the left-hand side reduces to m&
at a given point (Jp, P) in the phase diagram and the
last expression becomes an order parameter measured at
(Jp, Jp) located on the line Jp ——P. Whatever the physi-
cal meaning of this latter order parameter is, this quan-
tity should vanish if the point (Jp, Jp) is in the paramag-
netic phase. The left-hand side then vanishes, implying
the absence of a ferromagnetic phase at any inverse tem-
perature P for such Jp. The situation is explained in Fig.
4, which shows various possible phase diagrams.

Both Figs. 4(a) and 4(b) are compatible with the
above-mentioned constraints. However, experience in the
spin glass case [15] and the mean-field analysis in Sec.V
suggests that the multicritical point is in general located
on the line Jp ——P as in Fig. 4(a).

Another consequence of a gauge transformation ap-
plied. to the ferromagnetic correlation function is a proof
of absence of ferromagnetic order in a finite region near
Jp —0. Following Horiguchi and Morita [16], we can
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derive a slightly different version of (12) under boundary
conditions of all spins up,

The right-hand side is bounded from above by the spon-
taneous magnetization of the ferromagnetic Ising model
corresponding to Zo(~p Jp) [16]:

[(~o)~] & ~~(V»o)~~(V ~P).

Therefore there is no spontaneous magnetization in the
original model if ~pJo ( K, .

D. Dynamical correlation functions

Ozeki [17] recently applied the method of gauge trans-
formation to dynamical correlation functions of the Ising
spin glass. We show here that his idea is useful also in
our neural network. Calculations will be shown in some
detail for completeness.

His argument starts with the observation of gauge in-
variance of the transition probability appearing in the
master equation for the microstate distribution at time
t, p, (S),

where S and S' represent sets of spin states. To show the
gauge invariance of TVss, we write this quantity as

~SS~
g ~ - ~8~~8

(15)

where p, is the normalized equilibrium distribution (the
Boltzmann factor divided by the partition function) with
the effective coupling P/~p as employed in (6). The ex-
plicit form of mss depends upon the type of dynamics.
Glauber dynamics for a system controlled by the inter-
action (3) at temperature P has

(16)

whereas Metropolis dynamics is defined. by

~ss =~o~~(S S)p.(S)" "'"p.(S)" ' ' ". (»)
Here ~0 is a constant, bq is a single-spin flip operator

6t(S, S') = b 1, —) (1 —S,S,')

FIG. 4. (a) and (b) Phase diagrams compatible with the
constraints derived from gauge transform3, tions. The topol-
ogy of (c) is forbidden by (13) and (d) is also forbidden by
(14).

A[S, S'] is the energy change H(S) —II(S'), and &(2:)
represents the step function 8(2:) = 1 if 2: ) O and 0
otherwise. It is clear from (15)—(17) that the transition
probability TVss is invariant under

S, mS;o.;,
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With this gauge invariance in mind, we rewrite the auto-
correlation function and uniform magnetization to prove
the equivalence of these two quantities under certain ini-
tial conditions.

The autocorrelation function of the system having
an initial condition of being at equilibrium with effec-
tive coupling Jo/~p but evolving with effective coupling

P/~p is written as

(S,(t)S;(0))~ = ) S, (
' )„,p. (S', Z, /~S)S',

S,S'

(19)

where the transition probability W is understood to have
the effective coupling P/~p. The expression inside the
square brackets on the right-hand side of (19) is gauge
invariant. We apply the gauge transformation (18), sum
over the gauge variables (a;}, and divide the result by
2 . By using the explicit form of the normalized equi-
librium distribution p, (S, Jo/~p), we obtain a new ex-
pression

S. t S. 0
1

( '( ) '(o)& '

x) ) SS,'(e' )„,
S,S'

x exp ) ) (,"("+,'+~ . (20)

Next, the uniform magnetization is assumed to be
time-evolved starting &om the perfectly ferromagnetic
state, denoted E, at t = 0:

probability VUU'e = e . Thus the configurational
average (21) becomes

( P
(Vl

x ) (e'~) S;o.;.

) ~gage

)
(22)

A comparison of (20) and (22) shows their equivalence

(~'(t)~*(0)) = (~'(')) (23)

(; (~'(t)) ' = (, (~*(t))

This result (23) is the same as in the spin glass case [17j
and can thus be interpreted in the same way, as follows.

The left-hand side is the autocorrelation function for
a system prepared in equilibrium at a point on the line
Jo ——P and quenched at t = 0 to an arbitrary point in the
phase diagram (Fig. 5, from the tail to the head of arrow
a). The right-hand side represents the remanent mag-
netization prepared as the perfect ferromagnetic state,
quenched at t = 0 to the same point as the left-hand side
(Fig. 5, &om the tail to the head of arrow 6). Equa-
tion (23) means that relaxations of autocorrelation and
magnetization are equivalent to each other, on average,
under the above initial conditions.

A similar argument proves the following relation be-
tween overlap order parameters with different initial con-
ditions:

S
(21)

The overlap order parameter has the same value at any
time, on average, for the two types of quenching shown
as arrows a and 6 in Fig. 5.

Let us write each part of the gauge transformation as
follows:

U: S,. —+ S,o.„
U': S,'. -+ S,'o-;,

V ("m ("o.

Then the quantity inside the large square brackets of (21)
is transformed as

p

) (e' ), S ~ V) (U(e' ), }(VS,}
S S

= ) (VU (e' ), }S,~,
S

= ) (U'(e' ), }S,~,
S

)~( tR)

where we have used the gauge invariance of the transition

FIG. 5. The system is quenched to an arbitrary point from
an equilibrium state on the line Jo ——P, as indicated by arrow
a, or brought to the same point from the perfectly ferromag-
netic state, as indicated by arrow b.
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IV. EXISTENCE OF ORDERED PHASES

The existence of ferromagnetic states has been proved
by the Peierls argument for the nonrandom Ising model in
finite dimensions [18,19]. The application of this method
to spin glasses has been discussed by one of the present
authors [20] and by Horiguchi and Morita [16]: the ex-
istence of ferromagnetic states has been shown for spin
glasses with sufFiciently large mean values of the exchange
interactions. In this section, we use the same methods
to show the existence of ferromagnetic and finite-overlap
phases for our finite-dimensional neural network with
nearest-neighbor interactions under certain conditions.

Zg = ) exp ) cijsisj
8 ( (qj)

(27)

~(,)
')

=) exp

where c;j = 1 —2P/ Jo () 0) if the bond (ij) is on the
Peierls contour c in (26) and e,~

= 1 otherwise. The
denominator may then be reexpressed as

A. Ferromagnetic phase

Under the boundary condition that all spins are up,
the positiveness of magnetization is written as

[m~] =1 — &0,
2 [(N )] (24)

oo oo ( d[(+ )] ( y ~ y ~ li/(d 1)32l. 1

lg ——i /a=i (i=i

where N is the number of down spins. To prove that
(24) actually holds in certain regions of the phase di-
agram, it is necessary to demonstrate a positive lower
bound of the right-hand side of the equality in (24). An
upper bound on [(N )] is estimated as [19,16]

(2P
exp s~ s~ Zb )'). '

where the angular brackets with the subscript 6 denote
the average with respect to the Boltzmann factor cor-
responding to the partition function Zb. Since all cou-
plings in (27) are non-negative, all correlation functions
(S; . SI, ) b are also non-negative [18]. Therefore,

exp s;s~

( 2P . 2PI
~

cosh + s;sj sinh
~u

' p)

( 2P) ( 2Pi
osh ~, I

1+s;sj tanh
v~)

x exp —2P ) J;j (25) ( 2P)
(28)

1 (Jo) exp~
(23)

p).(,"(,"
I

~»
(26)

is given as follows for Jo & 2P. The numerator on the
right-hand side of (26) can be regarded as a partition
function if it is written as

where d is the spatial dimensionality and the summation
over t, 's represents a summation of contributions from
various Peierls contours (polyhedrons separating down
spins immediately inside and up spins immediately out-
side) with 2l; as the number of faces orthogonal to the
ith coordinate axis. The summation P, in the exponent
runs over the bonds orthogonal to the faces of a con-
tour with given (l;). From (24), a sufficient condition for
[m~] & 0 is that the right-hand side of (25) is less than
1
2

An upper bound on the configurational average of the
exponential function in (25)

where I = P,. 2l, . From (26)—(28), we have

—2pl d

) l i&(d —i)32' —i ~( 2' (29)

which is clearly satisfied by sufficiently large P if d ) 1.
There are special simpli6cations in two dimensions

[16], leading to the following sufficient condition yielding
a larger region in which the existence of ferromagnetic
order is proved:

). b3' ~ p — ).).g,"g," ~

b—4,6, c p

) b3
i

cosh
1 . , ( 2P)

72 g p)
u2(2 —u) 1

36(1 —u)'

under the condition Jo ) 2P. The sufficient condition
(24) with (25) then reads
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where

u = 9
i

cosh
pj

The relation (30) is satisfied if u ( 0.7944 for positive
u, thereby proving a (p-dependent) limit on P and Jo
(& 2P) for which a ferromagnetic state is demonstrated
to exist by this analysis.

Another sufhcient condition for a ferromagnetic phase
plays a complementary role in determining the region
with ferromagnetic order under the opposite condition
on Jo and P, 2P & Jo. The suKcient condition (24) with
(25) for ferromagnetic order can be replaced by [16]

)
oo oo ( d

~i)((d —i)32~,
2

l1——1 /g —1 i =1

2&ii
'i

x 0(v) exp
~

—
~

+ 0(—v) ( —, (31)

OO —2pl d

) $i/(" —i)32&—i
~ 4

(35)

This result is valid for 2P & Jp the opposite of the in-
equality Jo & 2P in the first sufEcient condition (29) for
the ferromagnetic phase. Equation (35) is satisfied by
suKciently large Jo.

Again, in the case of the two-dimensional square lat-
tice, a more compact formula can be derived [16]. Cor-
responding to (30), we have

bound to hold. The best result, or the smallest value on
the right-hand side of (34), is obtained when 2a takes its
largest possible value Jo. Then a comparison of (33) and
(34) shows that an upper bound on the second term on
the left-hand side of (31) reduces to the same expression
as that for the erst term. Our Anal sufBcient condition
thus reads

where v = P, P„(,"( . The step function 0(v) is
bounded from above by exp(av/~p) for an arbitrary non-
negative constant a. The erst term in the square brackets
of the left-hand side of (31) is thus bounded by with

u'(2 —u) 1

36(1 —u)' 4
(36)

( 2P —a&

Then the same argument as before leads us to the upper
bound on the first term on the left-hand side of (31)

OG —2pl d

)- ('/(~ —')3s —' h (
~u ) (32)

1.16—

under the condition Jo & 2P —a. The parameter a is
arbitrary as long as it is non-negative. We choose a =
2P —Jp because (32) assumes the smallest value for this
a. With this a, (32) reads

1.72 1.76

(
oo J 2Pl-d

y. (i((a—i)»r —i
~ v~)

(33)

with the condition 2P & Jo, which comes from a & 0.
The second term in the square brackets of the left-hand

side of (31) is bounded from above as

2av )
[0(—v)] & exp /—

ii p)
1,27—

, J0=2P

where a is again a non-negative constant. The same es-
timation as above yields a bound

OO —
g

—2pl) t' &'-')3 ' osh

(34)

The parameter a should satisfy Jo & 2a for this upper

I

1.58 1.61

FIG. 6. Regions in the phase diagram where the existence
of ferromagnetic order is proved for (a) p = 2 and (b) p = 16.
The sufficient condition (30) is satisfied in A and (36) is sat-
is6ed in B'.
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Jp )
u = 9( cosh

as a sufFicient condition for ferromagnetic order in the
region 2P ) Jo.

We show the regions in the phase diagram where either
the first sufficient condition (30) (Fig. 6, region A) or the
second (36) (Fig. 6, region B) is satisfied for the square
lattice. A similar figure can be drawn for any hypercubic
lattice.

B. Finite-overlap phase

The overlap order parameter was calculated explicitly
in Sec. IIC on the line Jo ——P. It was shown that this
order parameter is fiiiite for Jo ) ~pK, . We now use
the Peierls argument to prove the existence of the overlap
order in a finite region, not only on the line Jo ——P, with
sufficiently large Jo and P. The overlap order parameter
can be expressed as a spontaneous magnetization by a
simple gauge transformation:

[m,~] =
p),xp p/~p) ) (,"g,"s,s,

(").= )

) s„t,iexp p/~~) ) (,"(gs;s,
1 ) 8 ( (ij) y, =l )

lN

) Sg exp & P/~p) ~ I+ )
(ij )

):exp& p/V~). ~ '+) &."&."&'~'-
8 (ij) 5 v=2 )

All boundary spins are supposed to be up in the last expression. A sufficient condition for [mR] & 0 is, similarly to
(24) and (25),

OO ao d

) l i/(d —i) 32',

lg =i lg=l (i=i
(37)

The first step of our evaluation of the configurational average appearing in (37), denoted Ri below, is to decouple the
first pattern variables from the rest:

) i+) g,". g,"g,'(,' ~ )

) exp J ) (;( /~p —2P) (,4(i(i/~p
(j) C

&o(Jo/~p)
(3S)

where L = +,. 2l, . To obtain an upper bound on the
quantity in the curly brackets ( }of (38), to be denoted
R2, we regard the exponential function in the numerator
of B2 as a Boltzmann factor and represent the average
with this factor as ()~i (note that ( is fixed in the cal-
culation of R2). Then B2 is bounded from above, using
the convexity of the exponential function,

(2P
B2 —— exp ~

t

Hence

(39)

The final step of upper bound evaluation is to regard the
exponential function in (39) as a Boltzmann factor and
to denote the average with this Boltzmann factor by ()j.
The above (39) is then rewritten as
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If Jo & 2P(p —1), the system corresponding to the average

()y is a ferromagnetic Ising model. We thus find

—1

( 2PL/—~P h ~(P ) (( ( )

—2PL / ~p

A sufhcient condition for the existence of a finite-overlap
phase is therefore

p = 16 ~ The region where these conditions are satisfied
in Fig. 6(a) and 6(b) are included in the regions marked
B in the figures. For p = 2, the present region almost
coincides with B, while when p = 16, the present region
is deep inside B. Qualitatively the same results apply to
any hypercubic lattice.

In general, as p becomes larger, the region where we
can prove finite overlap order shrinks while the region in
which we can prove ferromagnetic order remains roughly
unchanged. This is not necessarily a consequence of tech-
nical diKculties in the proof of the existence of a finite-
overlap phase. Rather, the phase with finite overlap ac-
tually shrinks as p grows, as will be discussed in

Sec�.

VI.

d

) tip(d —i)32&—i xp
~

P l
p r

(4O) V. INFINITE-RANGE MODEL

u'(2 —u) 1

36(l —u) 2 2
(41)

and Jo must satisfy Jo & 2P(p —1). This inequality is
satisfied by sufficiently large P.

The two-dimensional version of the sufBcient condition
turns out to be

The ferromagnetic Ising model with nearest-neighbor
interactions on a d-dimensional hypercubic lattice re-
duces to the infinite-range model in the limit d ~ oo.
Analogously, the infinite-range version of the present
model (1) is expected to give useful hints on the behavior
of the system with short-range interactions in high spatial
dimensions. For this reason, we consider the Hamiltonian

where u = 9e 4~~~i' and Jo must satisfy Jo & 2P(p —1).
The inequality (41) is equivalent to T & 1.648/~p. For
p = 2, the region where the above inequalities (T (
1.165, Jo & 2P) are satisfied almost coincides with (but
included in) region A in Fig. 6(a), where the ferromag-
netic order has been proved to exist. If p = 16, the region
satisfying the inequality above lies deep inside region A
of Fig. 6(b).

Another suKcient condition for finite overlap is given
similarly to the second condition for the ferromagnetic
order given earlier. The quantity in the square brackets
of (37) is replaced by

0(v) exp
~

—
~
+ 0(-v)r 2Pv

(43)

where

p

P (((,". )) = c
( J,

exp )(2X * ') (44)

The number of patterns p is finite. The probability dis-
tribution of patterns is given as

as in (31). 8(v) is bounded from above by an exponential
function. The problem then reduces to an estimation of
the configurational average as in the previous sufBcient
condition. The same argument as before leads to

where c is the normalization factor.
The free energy can be calculated in the same man-

ner as in the case of perfectly random patterns [2] corre-
sp onding to Jo ——0 and the result is

E

d

) t ~ld l32 exp
~

( ( (42)~p(p- 1)r 4

There is a constraint Jo & 2P(p —1). There exists suffi-
ciently large Jo satisfying the inequality (42). The two-
dimensional version of (42) is

w here the overlap
m = (mi, m2, . . . , mz) satisfies

order

m„= [("tanh (Pm. g)] .

f = —m —T [ln2 cosh (Pm ()],
1 2 (45)

parameter

(46)

u2 (2 —u) 1

36(1 —u)'

where u = ge 2 ' / ~P(P ~ This inequality reads, in con-
crete numbers, Jo & 1.26~p(p —1), or Jo & 1.78 and
Jo & 2p for p = 2, and Jo & 75 5 and Jo & 3op for

The site index i for g = ((, . . . , (") was omitted in (46)
because of the self-averaging property: The configura-
tional average of a function [g(g;)], appearing in (45) and
(46), is independent of i It is proved in the Appen. dix
that the probability distribution (44) is equivalent to the
site-independent distribution
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P((~, )) =
y, s& =+1

1 1f = —Tln2+ —(1 —p) ) m„— p—m~+ ) m„m„
p, =» PW~

(47) —:—Tln2 + —) f~„m~m„. (50)

mM p = tanh (JpmM~) . (48)

in the calculation of the average [g(g;)]. The parame-
ter mM~() 0) is the magnetization of the infinite-range
ferromagnetic Ising model satisfying the self-consistent
equation

The eigenvalues of the matrix J'„, Ai

p (].+ (p —l)mM~) and A2 = 1 —p(l —mM~), deter-
mine the stability of the paramagnetic phase. As the
temperature is lowered, A» first becomes negative, signal-
ing instability, at the critical point T, = 1+ (p —1)AM&.

The ferromagnetic order parameter is given by the for-
mula

When Jo ( 1, the only solution of this equation is
mMp ——0. This means that the probability distribu-
tion (47) represents perfectly random patterns. Thus the
properties of the system are independent of Jo as long as
this parameter is less than 1: The retrieval phase exists
below the critical point T = 1 and various dynamically
stable mixed states appear at lower temperatures [2].

Nontrivial results emerge when Jo & 1. The parameter
m~p becomes finite, the il" symmetry in (47) is macro-
scopically broken, effectively freezing the system into one
of the possible choices (il" = kl), and the equation of
state (46) has solutions with nonvanishing values of m„.
In particular, all components of m. are nonvanishing. To
prove this statement, we first assume that m„g 0 for
p, = 1, . . . , A: (( p), with sgnm„= q~, where (ill'j is the
chosen symmetry-broken state for the g') and m„= 0
for p = A: + 1, . . . , p. Then, (46) for p = A: + 1 reads

~,+, —g"+'tanhP(m, ('+ . . +m.g"), „,
= [g"+' tanh p (m, g'+ . + m.("),„„,p 0,

where []f„~& denotes that the average is taken with the
particular choice of (rI") rather than the full sum of (47).
By considering first k = 1 and then iteratively higher
values it follows that the assumption sgnm„= g" is con-
sistent but the assumption that some m„= 0 is not.

A "uniform" solution with m„= g'"m satisfies

m~ = tanhp(mig ( + . +mph(")
= tanhP (m, ('+ . + m, P), „„, (51)

which is nonvanishing for rn g 0. Thus the phase below
T is ferromagnetic.

The final phase diagram is depicted in Fig. 7. There
are three phases: paramagnetic (P), retrieval (B), and
ferromagnetic (E') phases. The ferromagnetic phase is
indicated with a prime (F') because the ferromagnetism
in the present model is induced by the overlap ordering
rather than appearing spontaneously, as implied in (51).

VI. DISCUSSIONS

Let us now summarize our results. We discussed the
problem of neural networks with nearest-neighbor inter-
actions on a finite-dimensional hypercubic lattice. Pat-
terns to be embedded were generated according to the
Boltzmann factor of the nearest-neighbor ferromagnetic
Ising model on the same hypercubic lattice with a finite
efI'ective temperature.

This system has a gauge symmetry, which leads to the
exact values of the internal energy and the overlap order
parameter along a line defined by Jp ——P in the phase
diagram. The overlap order parameter was found to be
vanishing in the range Jp & ~pK, on this line and finite
for Jp ) ~pK, .

m = ii'(' tanh Pm (ii'(' +.. . + g"P) l „l
= [t»h Pm (1+&'&'g'g'+ . . + ~'~g'P), „,,

(49)

which has a nonvanishing solution for large P. The crit-
ical point of this uniform-overlap state is obtained by
expanding the right-hand side of (49):

m = Pm (1+ (p —1)mM~),

yielding T, = 1+ (p —1)mM2&. Above this T, which was
obtained from the analysis of the uniform solution, there
is no solution with finite m„ including nonuniform over-
lap solutions (~m„~ g ~m

~

for some p and v). This can
be verified by expanding the free energy (45) to second
order of m„:

FIG. 7. The phase diagram of the infinite-range model with
a finite number of patterns embedded. The line Jp = P goes
across the multicritical point. The ferromagnetic phase I"'
has a finite overlap with all patterns (m„) 0 for all p).
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We proved the existence of ferromagnetic order in the
large-J0, large-P region in the phase diagram by using
the Peierls argument. The overlap order was also proved
to exist in a region inside the ferromagnetic phase.

The infinite-range model was solved explicitly. The
paramagnetic, retrieval, and ferromagnetic (plus finite-
overlap) phases were identified in appropriate regions of
the phase diagram.

These exact or rigorous results form the basis of our
conjecture about the plausible structure of the phase dia-
gram depending upon the number of embedded patterns
p. We first consider the case of small p, taking the p = 2
model on the square lattice as an example [Fig. 8(a)].
The overlap order parameter is finite on the line J0 ——P
in the range J0 & ~pK, = 0.62, whereas the ferromag-
netic order is proved to exist for Jo ) 1.76 at small tem-
peratures. We conjecture that the ferromagnetic order
coexists with the overlap order for small temperatures in
the range J0 & ~pK, = 0.62 for the following reason.
The critical paint J0 = ~pK, marks the onset of fer-
romagnetic order in the embedded patterns ((~). This
means that the exchange interaction (3) is essentially fer-
romagnetic for J0 & ~pKc 1 leading to a ferromagnetic
phase in this region.

We next discuss the large-p case. Figure 8(b) shows the
results of our analysis in the previous sections for p = 16
on the square lattice. The ferromagnetic phase is proved
to exist in the low-temperature region for Jo ) 1.61,
while the overlap order vanishes in the range Jo ( 1.76
an the line J0 ——P. Thus these twa types af order co-
exist in the large- J0 region (J0 & 1.76), whereas only
the ferromagnetic order exists in the intermediate region
1.61 ( Jo ( ~pK, = 1.76. The value of the lower limit

0 ( ) Kdp

'No FLROI
h%%%%%%%3

0.3 1 0.62 1.76 J
Ca)

0 (b) z,v'p

0
No

FLRO

0. 1 1

Cb)
1.61 1.76

FIG. 8. Summary of constraints on the phase diagram in
the case of the square lattice with (a) p = 2 and (b) p = 16.
The existence of ferromagnetic long-range order (FLRO) and
finite-overlap order is proved in the lower right-hand part.
The absence of ferromagnetic order is proved near Jo ——0. On
the line JII ——p, the overlap order parameter mn is given ex-
plicitly in terms of the spontaneous magnetization of the fer-
romagnetic Ising model. mR is finite on the lower right-hand
side (solid part) and is vanishing on the other part (dashed
part).

FIG. 9. Plausible phase diagrams. (a) For p small, three
phases (paramagnetic P, retrieval R, and ferromagnetic with
finite overlap E') meet at a multicritical point located on the
line J0 ——P. (b) For large p, there appears a ferromagnetic
phase without retrieval order (P) at intermediate values of
Jo. This ferromagnetic phase keeps its existence in the limit
p -+ oo (c) where the system reduces to the spin glass model.
The retrieval phase in the small-p case (a) is replaced by the
spin glass phase if p is large (b) and (c). There may exist a
mixed phase (a ferromagnetic phase with spin glass charac-
teristics) and other variations.
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1.61 here reflects the technical details in the Peierls argu-
ment and the ferromagnetic phase without overlap order
is likely to continue to exist for smaller Jp. The upper
bound ~pK, = 1.76, on the other hand, is the exact
lower limit of the existence of the overlap order. There-
fore, for the p = 16 model on the square lattice, there
is a ferromagnetic phase without overlap order for inter-
mediate values of Jo at least on the line Jo ——P (but
probably also in a finite region for this range of Jo). This
is true also for p ) 16 on the same square lattice because
the bound 1.61 remains approximately unchanged as p
increases whereas ~pK, increases indefinitely. We there-
fore expect that there exists a critical number of patterns
p, below which (p ( p, ) the ferromagnetic phase coexists
with the overlap order [denoted I"' in Fig. 9(a)], while
for p ) p, the ferromagnetic phase is separated into two
parts, with and without overlap order [denoted I'" and E
in Fig. 9(b), respectively].

In the region Jp 0, the retrieval phase would exist
for small p as discussed in Sec. II B. This is actually the
case for p = 2 in three dimensions (but not in two di-
mensions) as shown in Sec. IID. When p is small, this
retrieval phase around Jp 0 will probably extend to
Jo ——~pK, where the ferromagnetic phase with overlap
order takes over. The retrieval phase around Jp = 0 dis-
appears for large p as discussed in Secs. IIB and IID.
The overlap order also ceases to exist in the intermedi-
ate Jo for large p as discussed above (separation of F
and P') It is uiil. ikely that the overlap order is flnite for
Jp 0 when this order is vanishing in the intermediate
values of Jo because smaller Jo (= 0) means more random
embedded patterns, harder to be stored and retrieved by
the Hebb rule (3). Hence, as soon as the ferromagnetic
phase splits into two regions (with and without overlap
order) as p exceeds p„ the retrieval phase near Jp = 0
disappears. (Note that the overlap order can be identi-
fied with the retrieval order for Jo = 0.) This implies
that the critical number of patterns p for the disappear-
ance of the retrieval phase near Jp ——0 and that for the
splitting of the ferromagnetic phase into two regions co-
incide. The ordered phase near Jp ——0 for p )p„ if any,
would be spin-glass-like in the sense that the Edwards-
Anderson order parameter [(S;) ] is finite with vanishing
overlap and ferromagnetic order parameters. These con-
jectures are summarized in Figs. 9(a) and 9(b). In the
limit p -+ oo (after the thermodynamic limit), the model
reduces to the Edwards-Anderson spin glass as discussed
in Sec. II C. The ferromagnetic phase with overlap order
disappears in this limit and the phase diagram looks like
Fig. 9(c).

The phase diagram of the infinite-range model (Fig.

7) is consistent with these conjectures: The critical num-
ber of patterns p is infinite for the infinite-range model
as suggested &om the argument of Sec. IIB about the
dependence of p, on the coordination number (which is
infinite for the infinite-range model). This means that
the phase diagram for any finite p should have the struc-
ture of Fig. 9(a), which is actually the case as seen in
Fig. 7.

In conclusion, the system has three phases: param-
agnetic, retrieval, and ferromagnetic accompanied by fi-
nite overlap phases if p & p . For p larger than p, the
ferromagnetic phase separates into two parts, with and
without overlap order for large Jp and intermediate Jp,
respectively. The ordered phase near Jp ——0, if any,
would be a retrieval phase (p ( p, ) or a spin glass phase

(» &p.)

APPENDIX

We show that the distribution function (44) for the
infinite-range model is equivalent to the single-site dis-
tribution (47) when one calculates the average of a func-
tion of single-site variables [g(g&)]. Ignoring the trivial
normalization factor, we have

[g(41.)] ~ ).exp &~ ).).&,"&," g(&i)
)

( Jm
oc dx„exp ~

— ) x„
2

x ) exp Jo) ) x„(,"
igk

x ) g(g„) exp Jo )
&a=+i i

The extremum of the integral over x~ gives the self-
consistent equation (48) with x~ = rl~mMy, rI~ = +1.
Spontaneous symmetry breaking leads to an arbitrary
choice among the values of rI+ in the case that mMp g 0.
In any such symmetry broken state (rl")

[g(kk)]i,-l ~ ) g(C~) exp (Jogn"mMs),

which implies that any average is independent under the
replacement of the distribution of (44) by that of (47).
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