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Using simple information theoretic inequalities, a lower bound to the Vapnik-Chervonenkis (VC) com-
plexity of neural networks is investigated. This bound is expressed by the average entropy used in the
statistical mechanics approach to the network’s generalization problem. Within the annealed theory, ex-
act bounds to the VC dimension or the storage capacity can be calculated explicitly, without using the
replica method. For the parity machine, the estimates of capacities match known upper bounds asymp-
totically, when the number of hidden units grows large.
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I. INTRODUCTION

Understanding the complexity of a learning process in
artificial neural networks has become a fascinating topic
in both computer science and statistical physics.
Theoretically, supervised learning of a task is often
modeled by a teacher network, which implements the
concept to be learned and provides ideally classified train-
ing examples. During the learning process, a perfect
response to the examples is achieved by the adjustment of
the student network’s weights. The complexity of a
learning task manifests itself in the number of training
examples that are necessary for the student to generalize
from the learned examples, i.e., to give the correct
response to unknown inputs with high probability. Using
methods from statistical mechanics, exact calculations of
learning curves, which display the average generalization
error as a function of the size of the training set, were ob-
tained in recent years for a variety of network models (for
a review, see [1-3]). These results are believed to
represent a typical learning behavior rather than the
worst case. In fact, most of the derivations are based on
the assumption of specific, natural input distributions and
on averages over ensembles of learning networks [4].

A different approach to machine learning, based on
uniform convergence results of mathematical statistics
[5,6], is favored in theoretical computer science. Here ex-
act bounds for the probability of correct generalization
were obtained [7,8]. These hold for arbitrary input distri-
butions and arbitrary networks which are consistent with
the training data. The bounds are formulated in terms of
a general complexity measure for the teacher networks
that implement the rule. This is the so called Vapnik-
Chervonenkis (VC) dimension [5,6], 2 quantity which is
related to the teacher network’s capacity. In the worst
case, rules with a higher VC dimension are harder to
learn than those with a lower VC dimension.

Is there a similar connection between capacity and gen-
eralization in the average case learning scenario treated
by statistical mechanics? In a previous paper [9], I inves-
tigated this question for a special type of two-layer net-
work, the parity machine. This work, like most statisti-
cal mechanics approaches to network learning, relied on
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the application and validity of the replica method. For
multilayer networks, replica calculations become rather
involved and less transparent. In particular, the estima-
tion of capacities is a nontrivial task by the strong effects
of broken replica symmetry.

In this paper I will study the aforementioned question
using a technically simpler, but nevertheless exact ap-
proach. Combining information theoretic ideas
developed by Hausler, Kearns, and Schapire [10] with
well known mean field methods of statistical mechanics,
exact lower bounds to the VC complexity can be obtained
from the annealed entropy of the generalization problem.

As a result, for parity networks, exact lower bounds to
their capacities are found, which asymptotically match
known upper bounds. In such cases, the correct scaling
of capacities, previously calculated by a replica symmetry
breaking ansatz, is obtained in a much simpler, transpar-
ent way.

The paper is organized as follows: In Sec. II, the VC
dimension and a corresponding entropy is introduced.
Section III gives a lower bound to the VC entropy which
is related to the generalization problem of the network.
The simpler annealed theory is discussed in Sec. IV and
applied to the estimation of VC dimensions or capacities
of feedforward networks in Sec. V. Finally, Sec. VI con-
tains a discussion of the results.

II. VC COMPLEXITY

As the simplest scenario of network learning, I consid-
er the classification of a random input x (usually being a
vector of features which is fed into the net) into two
classes labeled by oe{ —1,+1}. For any set of m inputs
xm={x,...,X,,}, maximally 2™ classifications
o"={oy...,0,} are possible. However, if m is
sufficiently large, then a network of given architecture
will realize only a much smaller number NM(x™)<<2™ of
classifications upon varying its weights. Networks which
have a larger variety of outputs seem to implement more
complex rules, which are harder to learn, than those real-
izing a smaller V. In fact, based on results of Vapnik and
Chervonenkis [5,6], Blumer ez al. [8] showed that, in the
worst case, nontrivial generalization can be achieved only
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if the number of training examples is comparable to the
size dyc of the largest set of inputs for which all 2" ¢
classifications can be realized by the teacher net. dy is
the Vapnik-Chervonenkis (VC) dimension. For a per-
ceptron, in the thermodynamic limit, this fact has been
demonstrated explicitly in [11]. For a discussion of the
VC approach in the statistical mechanics context, also see
[12].

A remarkable combinatorial theorem, often called
Sauer’s lemma, bounds the growth of M(x™) in terms of
dyc. This theorem, which was proved by Vapnik in the
early 60s, [5,6], states that

dVC
Nx™=<S

i=0

m
(1)

i

if m 2dyc. Specializing to the thermodynamic limit,
where the number N of network parameters is large, the
scaling m, N, dyc—©, keeping a=m/N and
ayc=dyc /N fixed, seems natural. In this limit, the sum
(1) can be simplified to give a bound for the VC entropy:

aln(2) for a=2ayc

1
S =—1 )< a a
vela)= NG ve, |ave +[1_
a
This function shows an interesting threshold

phenomenon (see Fig. 1). If a>2ayc, then only an ex-
ponentially small fraction of all 2%V classifications can be
realized. With a probability approaching 1 in the ther-
modynamic limit, a random choice of output labels can-
not be implemented by the net, when a > 2ayc. This re-
sult relates the storage capacity a, of the network, via
a, Z2ayc, to its VC dimension. As is well known, the
thermodynamic limit bound (2) is saturated [13] for the
case of the single layer perceptron, independent of the set
of inputs x™ [14]. In this case dyc =N, ayc=1, and the
capacity equals a, equals 2.

III. ALOWER BOUND TO THE VC ENTROPY

A lower bound to dy can be found from lower bound-
ing Syc. Such a bound is constructed by interpreting

8

as the entropy for a discrete probability distribution
P(o™) of the output labels, where each realizable com-
bination of outputs o™ has equal probability
P(oc™)=1/N(x™). Thus NSy is the maximum entropy
over all distributions on realizable ¢™. Any other such
distribution will have an entropy that is a lower bound to
Sve.

I will now consider a class of distributions P(o™), that
naturally appears in the statistical mechanics of the gen-
eralization problem.

Let V(o™, x™) be the phase space volume [4] of all net-
works, that implement the set of m input-output pairs
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FIG. 1. VC entropy Syc/a (solid line) and annealed entropy
Sann 7/a (dashed line) for the single layer perceptron with con-
tinuous weights.
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(xy,0p) correctly. Further, let the indicator function
6, (o;x;) be 1 if, for given (vector of) network weights
w, the correct output is o,. If o, is the wrong output,
then 8,(0;x; )=0. Then one can write

for a>2ayc .

P(a'")=V(cr'",x"’)=fdwp(w)H 0,(0k;x) . (3)
k=1

p (@) denotes a prior measure in the space of network pa-
rameters, with fp(w)dw= 1. Obviously, V(o™ x™)=0
if the classification o™ cannot be realized by the net. For
a single layer perceptron with weight vector w and input
vector X, 8,(0;x;) equals the Heaviside step function
®(o,w-x;). Since V is non-negative and normalized to
zamV(a’”,x’")= 1, it defines a probability. One con-
cludes that the inequality

—~11\?2 V(U"‘,x"’)an(a'"'x'")S—lﬁln./\/(x’")=Svc 4)

is valid for any prior distribution on the couplings and
any set of inputs. The entropy (4) has a natural interpre-
tation in the context of information theory [15].
—In(V(0™,x™))=—In(P(c™)) is the information that is
gained from observing the labels o™. Thus the entropy
equals just the average gain of information. This fact has
been utilized by Haussler, Kearns, and Schapire [10] in
order to bound the cumulative information gain during
learning by means of the VC entropy. In a related con-
text, this bound was used in [16].

The entropy of the discrete random variable o™ in (4)
has a second important interpretation in the statistical
mechanics of generalization. Assume that a teacher net-
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work with weights w is chosen at random from the prior
distribution p (w). Then the probability P(o™) that the
classification labels o™ are the actual outputs of the
teacher net is just V(o™,x™). Assume next that a stu-
dent network is chosen at random from the so called ver-
sion space, the space of all networks which correctly
learn the training set (0™,x™). This is precisely the
Bayesian learning scenario discussed in [10,17]. The
probability density for the random choice of the student
is simply

—plw) for w inside the version space
Vie™x™)

0 for w outside the version space.

m(®)=
P (5)

The (differential) relative entropy for this probability den-
sity is then

D (W)

p(w)

Thus —NS=ZamV(a'",x’")an(a'",x’") is equal to the
differential entropy, averaged over the teachers, for an

ensemble of student networks that learn ideally classified
examples perfectly. Note the minus sign in the relation

=InV(c™x™) .

- fdwpm(a))ln

J
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between discrete and differential entropies. Following
Gardner’s pioneering work, all order parameters which
characterize a typical student in the thermodynamic limit
can be calculated from the average of InV(o™,x™) over
the examples. Thus, by performing the quenched average
of —S over the distribution of inputs, we obtain a solu-
tion to the generalization problem.

IV. ANNEALED ENTROPY

Entropies for the generalization problem have fre-
quently been calculated using the replica method of sta-
tistical mechanics. In the thermodynamic limit, for a set
of inputs that are drawn independently from the same
distribution, the typical value of the entropy is given by
the quenched average S, of (4) over the input distribu-
tion. To avoid the difficulties of the replica method, I
will use a further lower bound to (4), which is technically
simpler. This bound is given by the annealed approxima-
tion [1] to S;, which probably was applied for the first
time to the generalization problem by Gardner and Der-
rida in [18]. Applying Jensen’s inequality to the convex
function —In( ), and using (3), we find

1
(Svc) 28, 28gm="" fdw(”p(w(”)lnfdwmp(wm)<§ 9w(1>(0;x)0w(2)(0;x)>”'

(1) 4,2y

__1 (¢, (1) (2), ¢, (2)y,min[1—e(w
= —ﬁfdw p(w )lnfdw p(w?)emInl , (6)

where the brackets { ) denote the expectation over the
distribution of inputs and

E(w(”’w(z))zz<6w(1)(0;x)9w(2)(_0;x)> (7)

is the probability that network w'" and network w‘®
disagree on a random input. This is just the generaliza-
tion error for network w'?, learning a task that is defined
by network w'!. Equation (6) is the main result of this
paper. It directly relates the VC entropy, measuring the
complexity of a network, to the annealed approximation,
which is a simple tool to describe a network’s ability to
generalize from learned examples.

V. APPLICATIONS

For many network problems, the high dimensional in-
tegrals in the annealed entropy (6) can be evaluated in the
thermodynamic limit by the saddle-point method.

Of current interest are large networks with one layer of
N input units and a second layer of K hidden units. For
simplicity, I restrict myself to an architecture with nono-
verlapping receptive fields that receive inputs abbreviated
by the vectors x;,j=1,...,K. For a picture, see [19].
Then the network consists of K subperceptrons with

weight vectors w; each having N/K couplings. Thus a

f

hidden neuron computes an individual output given by
sgn(wj “X; ). In addition, I assume that in the last layer,
the output neuron computes a prewired Boolean function
of the hidden outputs. A variety of examples for such
networks can be found in [20]. This class of networks
also includes the single layer perceptron for K =1 as a
special case.

As is well known [21], for a spherical distribution of in-
puts and a flat prior distribution of coupling vectors wy,
the order parameter g=(K/N )wﬁ”'w?), completely
determines the annealed entropy and generalization error
(7). q measures the overlap between the subperceptrons
of the networks 1 and 2 at the same hidden unit j, which,
by symmetry, does not depend on j. The annealed entro-
py can then be written as

S,nn =minf(q) ®
q
where
fl@)=—1n(1—g*)—aln[1—e(q)] ©)

if the network weights are continuous, or



3616
f(q)=ln(2)+—1_—q1n ']
2 2
+1—J2”i1n 1—;—‘1 —aln[1—¢(g)] (10)

for the case of binary weights, i.e., wje{ —1,+1 }N/K.

Before evaluating these expressions for specific models,
let me briefly discuss a general strategy for obtaining
bounds on the VC dimension when the networks have
discrete weights which allow for totally M different net-
work states. In such case, there is a critical number of
examples a,, above which only a single network, the
teacher, gives the correct classifications to all training ex-
amples. Hence for the typical phase volume we have
Vip=1/M, m=ZNa,. Thus the quenched entropy
freezes into the maximal value S, =In/Ml when a=a,.
Thus a lower bound to the VC dimension is obtained by
solving the equation

Svclag)=InM ,

with respect to ayc. For a perceptron with N binary cou-
plings, one has M =2", Using the replica trick, the
quenched result a, =1.24 was obtained in [22], giving the
bound ay-=0.306. The simpler annealed entropy
[18,22] which predicts the larger value a, =1.44 leads to
the worse bound of ay-=0.268. The exact storage capa-
city of a, =0.83 obtained from a one step replica symme-
try breaking (RSB) ansatz [23] yields the better bound
ayc=a,./2=0.415.

For continuous couplings we must use another type of
argument. For such networks, the solution of the
saddle-point equation (8) often yields a smooth behavior
of S,., as a function of a. In the limit a— o, the an-
nealed theory usually leads to the scaling € ~c¢ /a and, us-
ing 8S,,, /0a=¢ the corresponding scaling S,,, ~c¢ In(a)
for the annealed entropy is obtained. Here ¢ is a model
dependent numerical constant. Comparing with (2), the
asymptotic behavior Syc =~aycln(a) yields the bound

ayc=c .

Applying this result to the single layer perceptron, i.e.,
K =1, the order parameter equation (8) and (9) has to be
solved using e(g)=(1/m)arccos(q). The asymptotic
behavior [1] gives ¢ =1, so that the bound ayc=1 is ob-
tained. Thus, for the perceptron, the bound is actually
tight.

Let us next consider E(he committee machine, defined

by the output o =sgn[3;_;sgn(w;-x;)]. Here I will only
discuss the limit K — o, for which a nice expression for
the generalization error was derived in [21]. It has the
form e,,,(q)=¢[(2/m)arcsin(q)]. Here [21] found that
£~2/a within the annealed theory. Hence ¢ =2, which
implies the bound ayc=2. This result seems to underes-
timate the VC dimension drastically. The storage capaci-
ty obtained from a RSB calculation [24] was found to
diverge for K — o, thereby leading to a diverging VC di-
mension.

A third type of estimate for the complexity can be ob-

MANFRED OPPER 51

tained for networks which show memorization without
generalization when the size of the training set is lower
than a certain critical value. In this case, our results
seem to be more promising. We study the so called pari-
ty malghine [25,9], which is defined by the output

o =]I;=1sgn(w;'x;). Two parity machines produce
different outputs to a given input only when both disagree
at an odd number of subperceptrons. Since the probabili-
ty for disagreement on a single perceptron is ggy,,(q), one
finds the expression

K—n

n | Eting(@)[ 1~ Eqing(q)]
=L{1—[1—2e45(q)1¥)
K

l—larccos(q) (11
o

for the generalization error. Using (9) with (11) we find
that ¢ =0 is always a locally stable minimum (see Fig. 2)
of f(q) for all @ when K = 3. For K =2, this holds when
a<m?/8. This fact has a simple physical explanation
[25]: The output of the parity machine is invariant
against the symmetry operation which transforms w; into
—w, for an even number of subperceptrons /. As long as,
for fixed teacher network w'Y, all student nets w®,
which are related by this transformation, belong to the
same ergodic component, then one has obviously
g=(K/N)wW\V-w{¥=0 as the globally stable state. This
leads to the network’s inability to generalize, i.e., €, = 3.
When the correlation between network 1 and network 2
vanishes, both annealed and quenched entropies become
equal and assume the value S,=S,,, =alIn(2). A com-
parison with the VC entropy (2) shows that in this case
all possible classifications can be realized by the machine.
When a exceeds a critical value ap a second local
minimum (see Fig. 2) of f(gq) becomes the global

0.75
0.74—.
0.73—-
O.72—-
0.71—:

0.704

f(q)/«

0.69
0.68+
0.674

0.66+

0.65 T T T T T T T N
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2. f(q)/a [Eq. (9)] for the parity machine with K =3
hidden units and a=3.0 (lower curve), a=ay=2.67 (middle
curve), and a=2.5 (upper curve). The dashed line gives the
value In(2).
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minimum, leading to a first order transition to ¢ >0, if
K =3. Then, for the entropy, we have S,,, <aln(2).
Hence a gives an exact lower bound to the capacity a,
of the parity machine, i.e.,

ap=a,=2ayc -

This result holds in general: The number of examples,
below which there is no correlation between learning net-
works (implying the inability to generalize), is always a
lower bound to the capacity. Note that, for this result,
no use of Sauer’s lemma was made.

Solving the saddle-point equation for the parity
machine yields ay(K), as in the lower curve of Fig. 3.
The second curve from below is an approximation to the
exact quenched result for a;, which was found in [9], Eq.
(9). The third curve yields the storage capacity as ob-
tained in [19] from a first step RSB. Finally, the upper
curve is an exact upper bound to the capacity derived by
Mitchison and Durbin [26]. All curves display the same
asymptotic scaling ay(K)=In(K)/In(2), for K large. For
the annealed lower bound, these asymptotics can be un-
derstood as follows. Large K also implies large a,, where
q jumps to a value close to 1. Expanding (11) for g —1
yields

szgarccos(q)zK\/.Z—/ﬂ-\/l—q .

By solving the saddle-point equation using these asymp-
totics, we find S, ~In(K)+In(a). At a=a, this has to
match with qgln(2), from which we obtain the correct
slope of the curves in Fig. 3.

Both upper and lower curves represent exact results
which do not rely on the application of the replica-
technique. Hence, we have found an independent proof
that the replica estimate of a, obtained from RSB gives
the correct scaling for the capacity. A different way of
obtaining a lower bound to a, was given in [27]. There
the capacity was estimated for an explicit construction al-

10.04 e

T T T

v v T -
1.0 2.0 3.0 4.0 5.0

In(K)/In(2)

FIG. 3. Estimates for the capacity of a parity machine. The
curves are from below: Exact lower bound from the annealed
theory, lower bound from the quenched theory [9], result of the
first step RSB calculation of [19], and exact upper bound of [26].
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gorithm for the parity machine.

A similar analysis is possible for the parity machine
with binary weights. In that case, from (10), ¢ =0 is al-
ways a local minimum of f(q) with f(¢=0)=aln(2).
There is only one second minimum for g=1, with
f(g=1)=In(2). Thus the annealed theory predicts that,
for all K, a transition from trivial generalization e=1 to
perfect generalization € =0 takes place at ay=1. Hence a
lower bound to the capacity is always given by a=1. On
the other hand, a=1 is also an upper bound, which may
be seen from simple information theoretic arguments, or
by calculating the annealed average of the phase space
volume of weight vectors that store a set of random
input-output pairs correctly. In agreement with the re-
plica result of [28], we conclude that, for all K, the capa-
cityisa, =1.

As the final example of a model which shows memori-
zation without generalization, let me mention the so
called reversed wedge perceptron [29], which is defined
by the output o=sgn[h(h—k)h+k)], with
h=(1/V'N )w-x. As has been shown in [30], for the case
of binary weights and the special value k=V"21n2, the
state ¢ =0 is the global minimum of the annealed entropy
up to a=1. This again yields a, =1, in agreement with
the replica theory of [30].

VI. DISCUSSION

The simple bounds discussed in this paper relate the
VC entropy, which measures the number of possible out-
put configurations realizable by a network, and the an-
nealed entropy of the average case generalization prob-
lem. It is interesting that the quality of the bounds differs
drastically between various network models. For net-
works, like the parity machine, where a sharp transition
from generalization inability to nontrivial generalization
takes place, the estimated capacities are close to the
values calculated from the replica theory. In such cases,
it is true that ‘“‘generalization begins, when learning ends”
[31]. On the other hand, for networks like the committee
machine, the learning curves remain smooth even when
the number of hidden units grows arbitrary large. In
such a case, the lower bound to the VC dimension
remains finite. In contrast, the RSB estimates for the
committee machine predict a capacity and dimension
that diverge with K. From a mathematical viewpoint,
both inequalities in (6) may not be very tight. However,
for learnable problems, the transition from the quenched
to the annealed average does not destroy the qualitative
features of the learning curves for both parity and com-
mittee machines [21,9]. Thus we can expect that the
large deviation between the estimates of capacities results
from the first inequality in (6). For the VC entropy, all
realizable output combinations are treated as equally
probable. On the other hand, the phase space volumes (3)
defined in Gardner’s approach to learning usually will
fluctuate over many orders of magnitude. The typical
phase space volume calculated by the quenched entropy
can then be very different from the VC estimate. Thus,
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provided the RSB results for capacities are correct, we
must conclude that the connection between VC dimen-
sion and the ability to generalize may be, at least in some
average case setting, rather weak.
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