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Stationary solitonlike pulses in birefringent optical fibers
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We study pulse propagation in birefringent fibers when differences in both phase velocities and group
velocities between the two components are taken into account. We have found that both slow and fast
linearly polarized solitons are unstable when the group velocity difference is high enough, and that a
two-parameter family of coupled soliton states appears in this regime.

PACS number(s): 42.81.Dp, 42.81.Gs

I. INTRODUCTION

Propagation of solitonlike pulses in birefringent non-
linear fibers has attracted much attention in recent years
[1—14]. The equations that describe pulse propagation in
these fibers have been derived by Menyuk [1]. These
equations are quite complicated and can be solved only in
an approximate way for certain specific cases. Two main
cases have been studied in depth: high and low
birefringent fibers, for which two separate approxima-
tions have been developed. The case of high
birefringence has been studied in detail in [1—5]. In this
regime, one considers that the two linearly polarized
components of the field have different phase velocities
and different group velocities. Due to the nonlinearity,
the pulses in these two components can capture each oth-
er, but their central frequencies become different [5] to
make their group velocities equal. As a result of averag-
ing, the fast oscillatory terms which relate the phases of
the two components can be ignored and usually only
trapping effects are considered in this approach [4,5].

On the other hand, the approximation of low
birefringence takes into account the difference in phase
velocities between the two linearly polarized components,
but neglects their difference in group velocities, as this is
assumed to be a higher-order effect. The two components
of the soliton travel with the same group velocity and
phase locking of these two components can occur. This
approach has been considered numerically by Blow,
Doran, and Wood [7]. In particular, polarization insta-
bilities were first found in [7] and studied in more detail
by Wright, Stegeman, and Wabnitz [9]. The full polariza-
tion dynamics of solitons in polarization-preserving
fibers, in the approximation of low birefringement, has
been considered in [14).

It is interesting to know what happens if both effects,
viz. , pulse trapping and phase locking, act together. In
this paper we make a first step in trying to solve this
problem. In particular, we are extending the results of
[14], but now are taking into account the difference be-
tween the group velocities of the components.

Specifically, we study numerically the stationary soliton
states in a birefringent fiber, considering simultaneously
the differences in phase and in group velocities between
the components. In doing this we are not averaging over
the fast oscillatory terms, which was done in [1]. More-
over, we show that, in certain regimes of propagation,
these terms play an essential role in producing stationary
solutions, e.g. , coupled soliton states.

Stationary solutions play an essential role in the propa-
gation dynamics of nonlinear pulses in optical fibers. In
Hamiltonian dynamical systems, they determine, to some
extent, the overall dynamics of solitonlike pulses. In the
low birefringence approximation, it has been shown that
two different regimes of propagation of solitonlike pulses
exist [14]. They are related to the linearly polarized slow
and fast soliton states and also to the elliptically polar-
ized soliton states which bifurcate from the fast soliton
branch. When taking into account the different group ve-
locities of each component, we see that even the station-
ary solutions become different. However, the propaga-
tion dynamics changes greatly only at quite high values
of the difference in group velocities.

In this work we study numerically, and using the Poin-
care sphere formalism, the stationary solitonlike solutions
when polarization group velocity dispersion is taken into
account. We find that when the difference between the
group velocities is small, stationary solutions are similar
to those in the approximation of low birefringence, i.e.,
they consist of slow and fast solitons. When the
difference in group velocities becomes high, the slow soli-
ton splits into two other solutions. We find that in many
aspects, these solutions possess the same features as the
gap solitons considered by Aceves and Wabnitz [15] and
Christodoulides and Joseph [16]. In particular, the veloc-
ity of the soliton depends on the relative amplitudes of
the two components.

The remainder of this paper is organized as follows. In
Sec. II we formulate the problem, recalling some well-
known solutions, viz. , the so-called "slow" and "fast"
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modes. In Sec. III, we study the stability of these solu-
tions when the group velocity difference is taken into ac-
count. In Sec. IV we present and study a family of cou-
pled soliton states. Finally, Sec. V contains our con-
clusions.

II. STATEMENT OF THE PROBLEM

M=i f (UU,* —U*U, + VV,* —V*V,)dr,

and the Hamiltonian
T

H= . —,
' U, '+ V, '

(3)

( U*U, —UU,* —V*V,+ VV,* )

—p( I
UI' —

I
vI'}—

—,'( I
UI'+

I
vl'}—~

I
UI'I vI'

——'(1—A)(U V +U* V ) dr . '
(4)

Equations (1) can then be written in the canonical form in
terms of variational derivatives [17]

6H . 5H
gym

(5)

Equations (4) and (5) define a Hamiltonian dynamical sys-
tem on an infinite-dimensional phase space of two com-
plex functions U and V, which decrease to zero at infinity
and can be analyzed on the basis of the theory of Hamil-
tonian systems. This means that the behavior of the solu-
tions is defined, to a large extent, by the singular points of
the system [stationary solutions of Eqs. (1)] and depends

Pulse propagation in a birefringent optical fiber can be
described in terms of two coupled nonlinear Schrodinger
equations (NI.SEs). In a reference frame traveling along
the g axis with the average group velocity, this set of
equations takes the form [2]

iU~+i5U, +PU+ —,
' U„

+(I Ul'+ ~
I
VI'}U+(1—» V'U'=0,

1
(1)

i V i 5V——PV+ —V
2

+(~ IUI'+ IVI'}V+(1—~}U'V*=o,
where U and V are the slowly varying envelopes of the
two linearly polarized components of the field along the x
and y axes, respectively, 5 is the inverse group velocity
difFerence, p is half the diff'erence between the propaga-
tion constants, A is the normalized ratio of the nonlinear
susceptibilities, g is the normalized longitudinal coordi-
nate, ~ is the normalized retarded time, and the asterisk
denotes complex conjugation.

The set of equations (1}has at least three integrals: the
action (total energy of the pulse)

Q= f" (IUI2+IvI }d. , (2)

the momentum

&2(q —P)
cosh[/2(q —P)(r —5g') ]

and linearly polarized soliton waves along the fast axis

u=0, v= 2 q+P
cosh[&2(q+P)(r+ @']

(8)

It is remarkable that each of these solutions has zero
momentum (M =0), in spite of the fact that they are
moving in our frame of reference. That is, these solutions
show that the value of the momentum is not necessarily
related to the motion of the peak amplitude of the solu-
tion.

At 6=0 there is also a one-parameter family of ellipti-
cally polarized soliton states [14]. They appear at values
of q higher than that of the point of bifurcation
q„/P=(3&33 —5)/8=1. 529, Q„='}/3(&33+1)P
=4.498&P (A =—', ) and are analogous to the asymmetric
soliton states in nonlinear directional couplers [21]. In
the absence of linear birefringence (p=O, 5=0) and non-
linear birefringence (A = 1},the pulses (8) and (9) reduce
to a soliton of a single NLSE, i.e.,

&u'+ v'= 2
cosh(&2q r)

(10)

This solution can be linearly polarized along any direc-
tion in the (x,y) plane.

Without any loss of generality, we shall take p= 1 in
the rest of the paper. Any other value of p can be
transformed to this one by a proper normalization of the
variables. In particular, we would then have q/p instead
of q after normalization, Q/&p instead of Q [14], and
5/&P instead of 5.

III. LINEAR STABILITY ANALYSIS

The solutions (8) and (9) can be conveniently represent-
ed on the energy-dispersion diagram [see Fig. 1(a)]. The
energy Q in this diagram is given by Eq. (2). The energy

on the nature of these points (as determined by their sta-
bility). Hence the first step to make must entail finding
the stationary solutions of Eqs. (1).

We are interested in pulselike solutions of (1) that are
close to the soliton solutions of a single NLSE. By
representing the field components in the form

U=u(g, r, q)e'~~, V=v(g, r, q)e'~~,

Eqs. (1) become

iud+i 5u, (q——p)u + —,'u„
+(IuI +A IvI )u+(1 —A)v u'=0,

(7)
iv& i5v—, (q—+p)v+ —,'v„

+(AIuI +IvI )v+(1 —A)u v*=0,
where q is the soliton parameter, the soliton period de-
pends inversely on q, and the energy of a soliton is pro-
portional to v q.

Equations (7) have two simple stationary solutions,
viz. , linearly polarized soliton waves along the slow axis
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FIG. 1. (a) Energy-dispersion diagram for the fast and slow
linearly polarized solitons and coupled soliton states (upper and
lower solid lines, respectively). The dashed line is for a single
linearly polarized soliton in the absence of birefringence. The
dot-dashed line is for elliptically polarized soliton states at 5=0.
(b) Perturbation growth rates for the fast and slow linearly po-
larized solitons for 5=2. The solid line shows the growth rate
for the fast soliton, while dotted line is for the slow soliton.

of the NLSE soliton (10), Q versus q, is also shown in Fig.
1(a) (by the dashed line). It is well known [7,9,14] that,
when 6=0, the slow soliton is stable, whereas the fast sol-
iton in unstable for most of the allowed range of q [14].
The reason for this is the appearance of stationary ellipti-
cally polarized solitons above the point of bifurcation and
the interaction of the soliton with radiation below the
point of bifurcation.

If 6 is nonzero, the stability of these two types of sta-
tionary solutions must be studied again. In fact, these
states are strictly stationary solutions in certain moving
frames of reference, where the stability analysis must be
done. For this reason, it is convenient to make a change
of coordinates to obtain a frame of reference where these
solutions remain fixed:

r =r'+5/,

Equations (7) then become

iu~+i25u~ —(q P)u+ —,'u—q~

+(iud +Rivi )u+(1 —A)v2u'=0,
(12)

i v
& (q +p) v +—,

'—v ++
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FICx. 2. Instability growth rates for the slow mode versus 5
for three values of q: q =6 (solid line), q = 10 (dashed line), and

q = 100 (dot-dashed line).

iu( —(q —p)u+ —,'uq, .

+(iud +Rivi )u+(1 —A)v u*=O,
(13)

iv& i2—5v z —(q+P)v + —,
' v+z

+(& iud + ivy )v+(1 —A)u v'=0 .

We have studied the stability of the slow and fast soli-
tons, by using a standard technique (see [18]), based on
Eqs. (12) and (13), respectively. In this way we have cal-
culated the perturbation growth rates at the practical
value of A =—', . We have found that, for small 6, namely,
5 (1, the results are similar to those obtained in [14] for
5=0: slow solitons are stable and fast solitons are unsta-
ble. Moreover, the fast mode is unstable in two different
ranges: one of them is related to the symmetry breaking
instability and the other one is related to radiative insta-
bility [14].

The new feature is that both of these ranges are shifted
to higher values of q. In particular, the beginning of the
curve for the growth rate related to the symmetry break-
ing instability has moved to the right in Fig. 1(b) (and
now starts at q = 14.8). Note that the point of bifurca-
tion of the elliptically polarized solitons from the fast
modes q=q„ is lower. This would indicate that the
point of bifurcation at which the elliptically polarized sol-
itons bifurcate from the fast modes changes from the
value q„/p=1. 529 to higher values of q/p as 5 in-
creases.

On increasing 6 further, the slow solitons also become
unstable. The instability growth rate for the slow modes,
as a function of 5, is shown in Fig. 2 for q =6 (solid line),
q =10 (dashed line), and q =100 (dot-dashed line). This
figure illustrates that the slow mode becomes unstable
only at certain threshold values of 6=1.1. These curves
consist of two well-differentiated parts, separated by a
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0 1.2

FIT&. 4. Stable propagation of the coupled soliton state with

vg,
' =0 and q =24.37, for 5=4.

fact, a two-parameter family of solutions. At each q they
can have different values of the inverse group velocity rel-
ative to our frame of reference, v, ', within the range
—5 ~ U, ' ~5. The ratio between the two components of
the soliton depends on vs, '. The corresponding Q values
are, however, very similar, if not identical, for the family
of solutions with fixed q. As can be seen from Figs. 3 and
4, the ratio of component amplitudes is not equal to unity
for solitons which propagate straight (U, ' =0). Howev-
er, in the two limiting cases, when U, coincides with —6
or +5 (slow and fast modes, respectively), one of the two
components is zero. For a given q, the energy g of the
coupled states could be lower than the corresponding en-
ergy of the slow soliton. We may assume that the state
with the lowest energy is stable. The energy-dispersion
diagram for these states, found numerically, is given in
Fig. 1(a) for 5=2 and 4 (dotted lines). Note that these
curves are located below the curve for the slow linearly
polarized soliton. As 5 increases, the "coupled state"
curve in this diagram moves down. It is also noteworthy
that the first coupled states (those with smallest energy)
that we obtain appear at those q values where both fast
and slow modes are unstable according to the linear sta-
bility analysis.

The peak amplitude of each component is located at
the same point to(g). The two components have the same
phase at this point. They could be also m rad out of
phase because, due to the symmetry of the propagation
equations, if (U, V) is a solution, then (U, —V) is also a
solution. Hence we can conclude that the soliton is
linearly polarized, at least at its peak value. The direc-
tion of polarization moves from the slow principal axis to
the fast principal axis when U, ' changes from —6 to +5.

An example of convergence to a stationary solution
with U, =0 is given in Fig. 4. We used an input pulse
with the following components:

U =3.0 sech(6. 2r)exp( —i 3 1.1r),
V= 5.4 sech(6. 2r)exp(i3. 11') .

(14)

The figure shows that both components oscillate with a
small amplitude around a stationary state, which there-
fore must be stable —it happens to have a fixed value of
q =24.37. Note that the input amplitudes of the two
components are different. The initial ratio of the com-
ponents, 3.0:5.4, produces a change in the direction of
propagation (Us, 'WO) which is compensated for by fre-
quency shifts of the two components which are initially
+3.11.

A convenient way to analyze the polarization state of
the solutions is to represent them on the Poincare sphere
[19,20]. In the case of solitonlike pulses, the Stokes pa-
rameters can be defined for the point of maximal ampli-
tude of the soliton or, alternatively, as integrated Stokes
parameters for the soliton as a whole. Due to results ob-
tained in [2] (i.e. , that the polarization state of the soliton
is the same across the whole soliton), these two
definitions give qualitatively the same results. We have
to remember, however, that the two linearly polarized
components of the self-trapped pulse have slightly
different frequencies. This means that if phase locking
occurs in addition to trapping, the relative phase
difference between the two components gradually
changes from zero at the center of the soliton to a
nonzero value at the soliton tails. This indicates that us-
ing the definition of the Stokes vector at the center of the
soliton may be more convenient.

Qualitatively, in the case 5=0, the trajectories on the
Poincare sphere can be of two different types. The trajec-
tory followed depends on whether the initial value of q is
higher or lower than that at the point of bifurcation.
These trajectories, in the "approximation of the average
profile" [14] (where we ignore radiation), are shown in
Figs. 5(a) and 5(b) for cases when the energy is lower and
higher than the energy at the point of bifurcation, respec-
tively. Examples of real trajectories [taken from [14] and
calculated by direct numerical integration of Eqs. (1)], in-
cluding radiation eff'ects, are shown in Figs. 6(a) and 6(b).
These trajectories almost follow the trajectories of Fig. 5,
but they gradually slide from one trajectory to another
due to radiation. The amount of radiation depends on
the proximity of the initial q to the point of bifurcation.
The slow soliton is represented on the sphere by the point
S= ( —So,0,0), so that all trajectories gradually converge
to this point while losing energy by emitting radiation.

We have represented the solutions of the present prob-
lem as trajectories on the Poincare sphere. We have used
the definition of Stokes parameters at the point of max-
imum and also integrated Stokes parameters as in [14].
In both cases the results were qualitatively equivalent. In
addition, we continuously normalized the length of the
Stokes vector to unity in order to represent the results on
the surface of a sphere. If this was not done, the integrat-
ed Stokes vector would fall into the sphere due to the
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UI and
I
V. (c)(b) Perspective plots for the field envelopes

Peak amp itu es o e1 d f th two components as the pulse propagates:
~ ~ ~solid line,

~ U~; dotted one,1'
~

V~. This shows the decaytng oscilla-
tions as the final state is approached.
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for curve c

U =2.0 sech(4. 2r)exp( —i l.9r),
V=3.4 sech(4. 2r)exp(i2. lr),

for curve d

(18)

U = 1.5 sech(4r)exp( i 1 8r), — .

V= 3.525 sech(4~)exp(i2. 1r),
and for curve e

FIG. 9. Here fj.ve separate examples oles of the evolution of the
integrated Sto es parameS k meters for 5=2 have been superimposed

same s here. The evolution in each trajectory 1s e er-
d b 't initial conditions. The solutions con g

different coup e so i on1 d 1 ton states with similar values o q a Q.

The soliton states for high values of 5 are similar to
those found by Aceves and Wabnitz [15] and Christo-

se h [16]. For each q, they comprise a
r famil of solutions, w ere e

meter of the famil The ratiogroup velocity is the parameter of t e ami y.
of the components depends on th g pthe rou velocity.
though these so u ionsgh h 1 tions have the same qualitative proper-

found in [15], the equations that we are con-
sidering are more complicated. ey inc u

h' h re responsible for dispersion. Asderivative terms w ic are r
a result, the amp itu es o1' d of the two components are not

al at U '=0, while they were equal in Refs. [ ] an
rm have been found so[16]. No solutions in analytical form ave

far because of these complications.

have only studied stationary (phase-locked and

n t immediately transformed into a phase- oc ep ase is no imm
ulse. The full trajectory on the Poincare sp e

d h. S .... Th. ..t.t....„.usually rotate aroun e
e 14 . Thiss onds to the solutions with rotation phase [14 . is

'
definitely, if we ignore radiationprocess could continue in e n

eneraHrocesses. Due to radiation, the trajectory genera y
slides from one c ose oop
H lt nian as the soliton loses energy on propagation.Hami onian

In some cases, the trajectory can e rappe "
am les are shownsome of the stationary points. A few examp

. 10. Initially the trajectory rotates around the SIin Fig. 10. Initia y e
b a stationarybut eventually it may be trapped y a s

S =0. Due to ra-solution located on the equatorial hne
s to the stationaryiation,u

'
the trajectory then converges o e

f or ) and1
' . The final state, i.e., the values o q

ends on the initialthe ratio of the components (or S,), depends on
conditions as we as ell the value of g when the trapping

U =sech(3. 2r )exp( i l.9r),—
V=3.3 sech(3. 2r)exp(i2. lr) .

(20)

,'S3 (b)

In all the five cases the final states have very similar
f (8.0« 8.25) and Q (7.0&Q &7.3). The ra-values o q . q

f the components is diFerent in eac case atioo ec
spondingly the speeds at which they move wi pith res ect to
our moving ramef of reference are also difFerent.

~ 0The value of q (or Q) of the soliton state to whtch the
solution converges is determine y e in'd b the initial conditions.
The initial conditions (16)—(20) are chosen in such a way
that this value q is close to 8. We cou c

d' '
differing from (16)—(20), which would

converge to soliton states with other q va ues. is
1 the new soliton states form a two-

parameter family of solutions. Hence, general y spea-
in, trajectories of the solutions corresponding to the full
dynamics cannot be represente
surface as in [14]. Trajectories corresponding to different
so u ions c

classif solutionsdimensional phase space is required to c assi y s
of this problem.

(q, Q)=(16,43, 9.18) (q, Q)=(14.55, 8.43)

S3 (c}

{q,Q)=(16.30, 9.03)

FIG. 10. Trajectories on the Poincare pare s here showing that
some non-p ase-- hase-locked solutions can be trapped and thus
forced to converge to stationary solutions.
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occurs. In three of the examples of Fig. 10 [(a)—(c)], these
final values of (q, Q) are shown under each example. In
some cases it would take very great distances g for the
trapping to occur. An example is shown in Fig. 10(d),
where the pulse still has rotating phase after rather long
distances of propagation. The full dynamics of soliton-
like pulses in this problem is under investigation.

V. CONCLUSION

In conclusion, we have found and numerically ana-
lyzed coupled soliton (phase-locked and pulse-trapped)
states in birefringent optical fibers when the di6'erence in
group velocities between the two linearly polarized corn-

ponents is taken into account. We have shown that these
soliton states form a two-parameter family of solutions.
Stability properties of the new solutions have been stud-
ied. We have given examples of convergence of soliton-
like pulses to these stationary solutions.
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