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We study pulse propagation in birefringent fibers when differences in both phase velocities and group
velocities between the two components are taken into account. We have found that both slow and fast
linearly polarized solitons are unstable when the group velocity difference is high enough, and that a
two-parameter family of coupled soliton states appears in this regime.
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I. INTRODUCTION

Propagation of solitonlike pulses in birefringent non-
linear fibers has attracted much attention in recent years
[1-14]. The equations that describe pulse propagation in
these fibers have been derived by Menyuk [1]. These
equations are quite complicated and can be solved only in
an approximate way for certain specific cases. Two main
cases have been studied in depth: high and low
birefringent fibers, for which two separate approxima-
tions have been developed. The case of high
birefringence has been studied in detail in [1-5]. In this
regime, one considers that the two linearly polarized
components of the field have different phase velocities
and different group velocities. Due to the nonlinearity,
the pulses in these two components can capture each oth-
er, but their central frequencies become different [S] to
make their group velocities equal. As a result of averag-
ing, the fast oscillatory terms which relate the phases of
the two components can be ignored and usually only
trapping effects are considered in this approach [4,5].

On the other hand, the approximation of low
birefringence takes into account the difference in phase
velocities between the two linearly polarized components,
but neglects their difference in group velocities, as this is
assumed to be a higher-order effect. The two components
of the soliton travel with the same group velocity and
phase locking of these two components can occur. This
approach has been considered numerically by Blow,
Doran, and Wood [7]. In particular, polarization insta-
bilities were first found in [7] and studied in more detail
by Wright, Stegeman, and Wabnitz [9]. The full polariza-
tion dynamics of solitons in polarization-preserving
fibers, in the approximation of low birefringement, has
been considered in [14].

It is interesting to know what happens if both effects,
viz., pulse trapping and phase locking, act together. In
this paper we make a first step in trying to solve this
problem. In particular, we are extending the results of
[14], but now are taking into account the difference be-
tween the group velocities of the components.

1063-651X/95/51(4)/3547(9)/$06.00 51

Specifically, we study numerically the stationary soliton
states in a birefringent fiber, considering simultaneously
the differences in phase and in group velocities between
the components. In doing this we are not averaging over
the fast oscillatory terms, which was done in [1]. More-
over, we show that, in certain regimes of propagation,
these terms play an essential role in producing stationary
solutions, e.g., coupled soliton states.

Stationary solutions play an essential role in the propa-
gation dynamics of nonlinear pulses in optical fibers. In
Hamiltonian dynamical systems, they determine, to some
extent, the overall dynamics of solitonlike pulses. In the
low birefringence approximation, it has been shown that
two different regimes of propagation of solitonlike pulses
exist [14]. They are related to the linearly polarized slow
and fast soliton states and also to the elliptically polar-
ized soliton states which bifurcate from the fast soliton
branch. When taking into account the different group ve-
locities of each component, we see that even the station-
ary solutions become different. However, the propaga-
tion dynamics changes greatly only at quite high values
of the difference in group velocities.

In this work we study numerically, and using the Poin-
caré sphere formalism, the stationary solitonlike solutions
when polarization group velocity dispersion is taken into
account. We find that when the difference between the
group velocities is small, stationary solutions are similar
to those in the approximation of low birefringence, i.e.,
they consist of slow and fast solitons. When the
difference in group velocities becomes high, the slow soli-
ton splits into two other solutions. We find that in many
aspects, these solutions possess the same features as the
gap solitons considered by Aceves and Wabnitz [15] and
Christodoulides and Joseph [16]. In particular, the veloc-
ity of the soliton depends on the relative amplitudes of
the two components. '

The remainder of this paper is organized as follows. In
Sec. II we formulate the problem, recalling some well-
known solutions, viz., the so-called “slow” and “fast”

3547 ©1995 The American Physical Society



3548

modes. In Sec. III, we study the stability of these solu-
tions when the group velocity difference is taken into ac-
count. In Sec. IV we present and study a family of cou-
pled soliton states. Finally, Sec. V contains our con-
clusions.

II. STATEMENT OF THE PROBLEM

Pulse propagation in a birefringent optical fiber can be
described in terms of two coupled nonlinear Schrodinger
equations (NLSEs). In a reference frame traveling along
the £ axis with the average group velocity, this set of
equations takes the form [2]

iUg+i8U, +BU+1U,,
+(|UP+ A4V U+(1— 4)V2U*=0,

(1)
I |
iVe—i8V,—BV+ V.,

+(A|UP+ |V WV+(1— A)U?V*=0,

where U and V are the slowly varying envelopes of the
two linearly polarized components of the field along the x
and y axes, respectively, 8 is the inverse group velocity
difference, B is half the difference between the propaga-
tion constants, A4 is the normalized ratio of the nonlinear
susceptibilities, £ is the normalized longitudinal coordi-
nate, 7 is the normalized retarded time, and the asterisk
denotes complex conjugation.

The set of equations (1) has at least three integrals: the
action (total energy of the pulse)

o= [" (uP+|vPdr, 2)
the momentum
M=i[" (UUX—U*U +VVE—V*V,)dr, ()

and the Hamiltonian

H=[" LU P+|v, )

—%(U*UT—UU: —V*V_+VV?)

—BUUP=|VI)—L(U[*+|VIH— 4|U|2| V|2

—L1—ANU*V**+U*?V?) [dT . @)

Equations (1) can then be written in the canonical form in
terms of variational derivatives [17]

sU*’ 5 spr

Equations (4) and (5) define a Hamiltonian dynamical sys-
tem on an infinite-dimensional phase space of two com-
plex functions U and ¥V, which decrease to zero at infinity
and can be analyzed on the basis of the theory of Hamil-
tonian systems. This means that the behavior of the solu-
tions is defined, to a large extent, by the singular points of
the system [stationary solutions of Egs. (1)] and depends
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on the nature of these points (as determined by their sta-
bility). Hence the first step to make must entail finding
the stationary solutions of Egs. (1).

We are interested in pulselike solutions of (1) that are
close to the soliton solutions of a single NLSE. By
representing the field components in the form

U=ul(&,1,q)e", V=v(&1,q)e", (6)
Egs. (1) become
iug+idu,—(q—Blu+ju,,
+(ul*+ Al [Hu+(1— Aw2u*=0,
ivg—idv,—(qg +Bw+v,, 7
+(AluP+ 2w +(1— Au?*=0,

where g is the soliton parameter, the soliton period de-
pends inversely on g, and the energy of a soliton is pro-
portional to Vq.

Equations (7) have two simple stationary solutions,
viz., linearly polarized soliton waves along the slow axis

_ V2(qg —B)
u= ’
cosh[V2(q —B)(7—8&)]
and linearly polarized soliton waves along the fast axis

= V2qg+B
cosh[V2(qg+B)(7+8&]

It is remarkable that each of these solutions has zero
momentum (M =0), in spite of the fact that they are
moving in our frame of reference. That is, these solutions
show that the value of the momentum is not necessarily
related to the motion of the peak amplitude of the solu-
tion.

At §=0 there is also a one-parameter family of ellipti-
cally polarized soliton states [14]. They appear at values
of g higher than that of the point of_bifurcation
4o /B=(3V33—5)/8~1.529, Q.=V3(V33+1)8
~4.498V B (4 =2) and are analogous to the asymmetric
soliton states in nonlinear directional couplers [21]. In
the absence of linear birefringence (B=0, §=0) and non-
linear birefringence (4 =1), the pulses (8) and (9) reduce
to a soliton of a single NLSE, i.e.,

Vul+oi= —-—‘/Z_
cosh(V2q 1)

This solution can be linearly polarized along any direc-
tion in the (x,y) plane.

Without any loss of generality, we shall take =1 in
the rest of the paper. Any other value of B can be
transformed to this one by a proper normalization of the
variables. In particular, we would then have g /B instead
of g after normalization, Q /V/B instead of Q [14], and
8/V B instead of 8.

v=0 (8)

u =0,

9)

(10)

III. LINEAR STABILITY ANALYSIS

The solutions (8) and (9) can be conveniently represent-
ed on the energy-dispersion diagram [see Fig. 1(a)]. The
energy Q in this diagram is given by Eq. (2). The energy
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FIG. 1. (a) Energy-dispersion diagram for the fast and slow
linearly polarized solitons and coupled soliton states (upper and
lower solid lines, respectively). The dashed line is for a single
linearly polarized soliton in the absence of birefringence. The
dot-dashed line is for elliptically polarized soliton states at §=0.
(b) Perturbation growth rates for the fast and slow linearly po-
larized solitons for §=2. The solid line shows the growth rate
for the fast soliton, while dotted line is for the slow soliton.

of the NLSE soliton (10), Q versus g, is also shown in Fig.
1(a) (by the dashed line). It is well known [7,9,14] that,
when 8§ =0, the slow soliton is stable, whereas the fast sol-
iton in unstable for most of the allowed range of g [14].
The reason for this is the appearance of stationary ellipti-
cally polarized solitons above the point of bifurcation and
the interaction of the soliton with radiation below the
point of bifurcation.

If § is nonzero, the stability of these two types of sta-
tionary solutions must be studied again. In fact, these
states are strictly stationary solutions in certain moving
frames of reference, where the stability analysis must be
done. For this reason, it is convenient to make a change
of coordinates to obtain a frame of reference where these
solutions remain fixed:

T=1'18§ &£=€£. 1y
Equations (7) then become
iug+i28u,—(q—PBlu+u,.
+(ul*+ Alvu+1- A)v2u*=((1)2,)
ivg—(q +Bw+tv,,
H(AlulP+ v Pw+1—duv*=

b
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or

iug—(q—Blu+ju,,
+(ulP+AlvPu+(1—Aw2u*=0,

ve—i28v, —(g+Bw+3v,, 13
+(AlulP+ v [P +(1—Au?*=0.

We have studied the stability of the slow and fast soli-
tons, by using a standard technique (see [18]), based on
Eqgs. (12) and (13), respectively. In this way we have cal-
culated the perturbation growth rates at the practical
value of 4 =2. We have found that, for small §, namely,
8 <1, the results are similar to those obtained in [14] for
8=0: slow solitons are stable and fast solitons are unsta-
ble. Moreover, the fast mode is unstable in two different
ranges: one of them is related to the symmetry breaking
instability and the other one is related to radiative insta-
bility [14].

The new feature is that both of these ranges are shifted
to higher values of ¢q. In particular, the beginning of the
curve for the growth rate related to the symmetry break-
ing instability has moved to the right in Fig. 1(b) (and
now starts at ¢ ~14.8). Note that the point of bifurca-
tion of the elliptically polarized solitons from the fast
modes ¢ =g, is lower. This would indicate that the
point of bifurcation at which the elliptically polarized sol-
itons bifurcate from the fast modes changes from the
value g /B~=~1.529 to higher values of ¢/B as & in-
creases.

On increasing 6 further, the slow solitons also become
unstable. The instability growth rate for the slow modes,
as a function of §, is shown in Fig. 2 for g =6 (solid line),
g =10 (dashed line), and ¢ =100 (dot-dashed line). This
figure illustrates that the slow mode becomes unstable
only at certain threshold values of §~1.1. These curves
consist of two well-differentiated parts, separated by a

1T 17T

T T T T3 T 1771 1T 17T
R4 N\
/ S

30 }:“ s Y ]
QO [ ‘/'/ “‘ j
- ! 4 N
S 20 [—— /q=100 —
= B ]
fa i i |
L =. ]
S 10 ‘a —
e0 - LT
[ i.a=10 N i

0 L1 %@I_\LL-~0~+_L_L } 111 E 'l 111
0 2 4 6 8

)

FIG. 2. Instability growth rates for the slow mode versus &
for three values of g: ¢ =6 (solid line), ¢ =10 (dashed line), and
g =100 (dot-dashed line).
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small region of stability. The first part, at the lower
values of §, corresponds to perturbations with real eigen-
values, while the part located on the right-hand side of
the figure corresponds to complex eigenvalues. The cor-
responding curves for other values of g follow the same
tendency that these two curves indicate: when g is higher
the perturbation growth rates are higher and the region
with real eigenperturbations is broader. It is quite re-
markable that curves of this type have the same threshold
value of 8. This means that the slow solitons become un-
stable at the same critical value §=1.1, independent on
the values of q.

Figure 1(b) shows the perturbation growth rates of the
slow (dashed line) and fast (continuous line) modes as a
function of g for §=2. As in Fig. 2, these curves consist
of two segments, corresponding to zones where the per-
turbation with the largest growth rate has either complex
(initial part) or purely real eigenvalues (for high values of
q). In general, one can see that both the slow and the fast
solitons have regions of instability when 8 > =1.1. This
value of & defines the onset of instability for slow solitons.
This indicates to us that other soliton states, located
below the curve for slow solitons in Fig. 1(a), probably
exist at values of 6 > 1.

IV. NUMERICAL RESULTS

The above stability results are confirmed by our exten-
sive numerical solution of the propagation equations for
many different inputs. As an example, Fig. 3(a)
represents the propagation of the slow soliton with
g =100 for 8=6.4, clearly showing that it is unstable.
When the slow soliton propagates a sufficient distance for
the perturbation to develop, it produces a coupled soliton
state plus radiation. On the other hand, Fig. 3(b) shows
the propagation of the fast soliton with ¢ =100 for
8=6.4. Now the final state consists of a stable coupled
soliton state propagating forward (having the mean group
velocity) and a slow soliton which has small g (g =2) and
is therefore also stable (see Fig. 1). The cases shown in
Fig. 3 are just two examples of many which indicate that,
when 6> =1, coupled soliton states become stable, but
linearly polarized states along the principal axes do not
(the actual behavior is slightly more complicated than
this, as our numerical simulations show). According to
the linear stability analysis, the corresponding growth
rates are 7.2 and 7.6 for the slow and the fast mode, re-
spectively (at ¢ =100, §=6.4). As the instability is seed-
ed by a perturbation 100 times smaller than the station-
ary solution, this initially small perturbation becomes
clearly visible at a propagation distance of £€=0.4 [i.e.,
when 0.01 exp(7.4X0.4)=0.19].

In the case §=0, the energy Q does not depend on the
velocity of the soliton. Soliton solutions that travel with
a given velocity can be obtained from the solutions that
are at rest in the initial frame using a Galilean transfor-
mation [10]. They have the same stability properties as
solitons that do not move in the chosen frame. In the
present case, Eqs. (1) are not symmetric relative to Galile-
an transformations. This means that the energy could de-
pend not only on g, but on the group velocity of the soli-
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ton as well.

We have numerically propagated a great number of
different input pulses. In general, after propagating a cer-
tain distance, they reach a stationary profile (see Fig 3),
which moves as a unit in our frame of reference. We
have analyzed these stationary pulses. They are obvious-
ly stable solutions which are stationary in a proper frame
of reference. We call them “‘coupled soliton” states.

We have found that these coupled soliton states are, in

U (2, &)l

IV (z,8)l

ZOE

= 15

o .

S 10F v

= o)

- [

— 5t N,
0 . 1 Q\
-1 1 3 5

T
ZOE

:155-

wp .

élO— e s

= =

~
0 S/ T

FIG. 3. Perspective plots showing the field envelopes | U| and
| V| for propagation of (a) the slow soliton and (b) the fast soliton
for ¢ =100, 5=6.4. Because both are unstable, the slow soliton
transforms into a coupled soliton state radiating its excess ener-
gy, whereas the fast soliton (which has higher energy) splits into
a coupled soliton state and a stable low g (g =2) slow soliton.
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fact, a two-parameter family of solutions. At each g they
can have different values of the inverse group velocity rel-
ative to our frame of reference, vg—,', within the range
—6=< vg_r1 =<38. The ratio between the two components of
the soliton depends on U;I. The corresponding Q values
are, however, very similar, if not identical, for the family
of solutions with fixed g. As can be seen from Figs. 3 and
4, the ratio of component amplitudes is not equal to unity
for solitons which propagate straight (vg‘,1 =0). Howev-
er, in the two limiting cases, when v;l coincides with —§&
or +8 (slow and fast modes, respectively), one of the two
components is zero. For a given g, the energy Q of the
coupled states could be lower than the corresponding en-
ergy of the slow soliton. We may assume that the state
with the lowest energy is stable. The energy-dispersion
diagram for these states, found numerically, is given in
Fig. 1(a) for 6=2 and 4 (dotted lines). Note that these
curves are located below the curve for the slow linearly
polarized soliton. As 8 increases, the ‘“coupled state”
curve in this diagram moves down. It is also noteworthy
that the first coupled states (those with smallest energy)
that we obtain appear at those g values where both fast
and slow modes are unstable according to the linear sta-
bility analysis.

The peak amplitude of each component is located at
the same point ¢,(&). The two components have the same
phase at this point. They could be also 7 rad out of
phase because, due to the symmetry of the propagation
equations, if (U, ¥) is a solution, then (U, — V) is also a
solution. Hence we can conclude that the soliton is
linearly polarized, at least at its peak value. The direc-
tion of polarization moves from the slow principal axis to
the fast principal axis when v g"rl changes from —§ to +38.

T
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FIG. 4. Stable propagation of the coupled soliton state with
v..'=0and g =24.37, for §=4.

An example of convergence to a stationary solution
with vg_r1 =0 is given in Fig. 4. We used an input pulse
with the following components:

U=3.0sech(6.27)exp(—i3.117) ,
V=5.4sech(6.27)exp(i3.117) .

(14)

The figure shows that both components oscillate with a
small amplitude around a stationary state, which there-
fore must be stable—it happens to have a fixed value of
qg =24.37. Note that the input amplitudes of the two
components are different. The initial ratio of the com-
ponents, 3.0:5.4, produces a change in the direction of
propagation (v, 15£0) which is compensated for by fre-
quency shifts of the two components which are initially
+3.11.

A convenient way to analyze the polarization state of
the solutions is to represent them on the Poincaré sphere
[19,20]. In the case of solitonlike pulses, the Stokes pa-
rameters can be defined for the point of maximal ampli-
tude of the soliton or, alternatively, as integrated Stokes
parameters for the soliton as a whole. Due to results ob-
tained in [2] (i.e., that the polarization state of the soliton
is the same across the whole soliton), these two
definitions give qualitatively the same results. We have
to remember, however, that the two linearly polarized
components of the self-trapped pulse have slightly
different frequencies. This means that if phase locking
occurs in addition to trapping, the relative phase
difference between the two components gradually
changes from zero at the center of the soliton to a
nonzero value at the soliton tails. This indicates that us-
ing the definition of the Stokes vector at the center of the
soliton may be more convenient.

Qualitatively, in the case §=0, the trajectories on the
Poincaré sphere can be of two different types. The trajec-
tory followed depends on whether the initial value of g is
higher or lower than that at the point of bifurcation.
These trajectories, in the “approximation of the average
profile” [14] (where we ignore radiation), are shown in
Figs. 5(a) and 5(b) for cases when the energy is lower and
higher than the energy at the point of bifurcation, respec-
tively. Examples of real trajectories [taken from [14] and
calculated by direct numerical integration of Egs. (1)], in-
cluding radiation effects, are shown in Figs. 6(a) and 6(b).
These trajectories almost follow the trajectories of Fig. 5,
but they gradually slide from one trajectory to another
due to radiation. The amount of radiation depends on
the proximity of the initial ¢ to the point of bifurcation.
The slow soliton is represented on the sphere by the point
S=(—S,,0,0), so that all trajectories gradually converge
to this point while losing energy by emitting radiation.

We have represented the solutions of the present prob-
lem as trajectories on the Poincaré sphere. We have used
the definition of Stokes parameters at the point of max-
imum and also integrated Stokes parameters as in [14].
In both cases the results were qualitatively equivalent. In
addition, we continuously normalized the length of the
Stokes vector to unity in order to represent the results on
the surface of a sphere. If this was not done, the integrat-
ed Stokes vector would fall into the sphere due to the
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emission of radiation and the differential Stokes vector
could move far from the surface due to oscillations of the
peak amplitudes.

Figure 7 shows six trajectories of the integrated Stokes
parameter for different values of & for the input pulses:

U =sech(3.27)exp(—id7) ,
V =3.3sech(3.27)exp(i87) ,

(15)

where each sphere is labeled with its value of 6. We can
see that for low & (6=0.4 and 0.6), the trajectories are al-
most the same as in the case =0 [e.g., compare with
Fig. 6(b)]. Due to radiation, the trajectories still converge
to the point corresponding to the slow soliton. Hence,
for small §, the dynamical situation of the solitons is
qualitatively the same as in the case §=0. In fact, this
range covers many cases of practical interest, when the
difference in refractive indices of two components An
range from 107® to 107>, the pulse duration is around
20-50 ps, and the group velocity dispersion is less than 1
ps/(nm km). On the other hand, the value of 8 can be as

S @

FIG. 5. Trajectories on the Poincaré sphere for §=0 in the
approximation of average profile [14] for (a) ¢ <g. and (b)
9 = q.;- The value g, defines the point of bifurcation of ellipti-
cally polarized solitons from the curve for fast solitons. The
two stable points appearing in (b) describe elliptically polarized
solitons. Their energy-dispersion curve is the dash-dotted line
in Fig. 1(a).
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A wl

FIG. 6. Trajectories on the Poincaré sphere calculated using
Egs. (1) with 8=0. Initial conditions are chosen such that (a)
q=q. and (b) ¢ = q,,. In (b), for clarity, only three parts of the
full trajectory are shown: 0<£<100, 400<£<500, and
900 < £ < 1000.

large as 5 for pulse durations around 500 fs and
An=~10"* (see [1], p. 2681). The appearance of “sha-
dows” in some cases [4] clearly shows that the difference
in group velocities can be important.

When 8 increases to 0.8, the original stationary point
$=(8,0,0) starts to split into three separate points: one
that corresponds to the slow soliton S$=(S,,0,0) and two
additional ones located on the equatorial line S;=0. Fig-
ure 7(c) shows how the trajectory loops around all three
of these points. Complete splitting occurs at higher
values of §. Instead of converging to the slow soliton, at
these values the trajectories can converge to one of the
new coupled soliton states which has two nonzero com-
ponents (hence |S,|<S,). The convergence to one of
them is clearly seen in Fig. 7(d). The other state is
symmetrically located on the other side of the sphere.
This is a consequence of the symmetry of the propagation
equations referred to above. Note that depending on ini-
tial conditions, the trajectory can still converge to the
slow soliton because it is still stable at §=1.0.

When § is increased further, the stationary point
moves along the equatorial line closer to the point defined
by initial conditions (15) [Figs. 7(e) and 7(f)]. We can see
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=12 | © 8=2.0

FIG. 7. Trajectories on the Poincaré sphere for similar initial
conditions but different values of §. These show the appearance
of two coupled soliton states as § increases. Trajectories are cal-
culated using integrated Stokes parameters. Up to §=0.4, the
trajectories are almost the same as in the §=0 case.

that in the case of nonzero §, the stationary points are lo-
cated on the equatorial line S;=0. Each point on this
line corresponds to a certain soliton state with a particu-
lar group velocity and component ratio. For given 8 and
fixed g, this constitutes a one-parameter family of solu-
tions.

In Fig. 8 we give one more example, which shows that,
at low values of 8, the behavior is similar to that at §=0.
The input is a fast soliton with ¢ =10, which is unstable,
and 8=0.63. This input is gradually transformed into a
slow soliton state which has the minimal energy and
Hamiltonian. The Stokes parameters behave the same
way as predicted by the approximation of average profile.
This transformation is accompanied by radiation of small
amplitude waves.

Examples of the convergence of separate trajectories to
different soliton states at the same value of §, viz., §=2,
but with different ratios between the components, are
shown in Fig. 9. In each separate case, this ratio is relat-
ed to the final value of S;. This figure represents the tra-
jectory of the integrated Stokes vector for various input
pulses. For curve a the input was

U=2.4sech(4.271)exp(—il.97) ,
V=3.12sech(4.27)exp(i2.17) ,

(16)

for curve b
U=2.8sech(3.97)exp(—il.97) ,
V'=2.52sech(3.97)exp(i2.17) ,

S35 (a)

(17

T
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FIG. 8. (a) Trajectories on the Poincaré sphere for the evolu-
tion of the fast soliton with ¢ =10 at §=0.63. Due to its insta-
bility, the fast soliton gradually transforms into a slow soliton.
(b) Perspective plots for the field envelopes |U| and |V]. (c)
Peak amplitudes of the two components as the pulse propagates:
solid line, | Ul; dotted line, | ¥]. This shows the decaying oscilla-
tions as the final state is approached.
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0=2

FIG. 9. Here five separate examples of the evolution of the
integrated Stokes parameters for §=2 have been superimposed
on the same sphere. The evolution in each trajectory is deter-
mined by its initial conditions. The solutions converge to five
different coupled soliton states with similar values of g and Q.

for curve ¢

U=2.0sech(4.27)exp(—i1.97) ,

(18)
V=3.4sech(4.27)exp(i2.17) ,
for curve d
U=1.5sech(4r)exp(—il.87), 19)
19
V'=3.525sech(47)exp(i2.17) ,
and for curve e
U=sech(3.27)exp(—il.97) ,
(20)

V'=3.3sech(3.27)exp(i2.17) .

In all the five cases the final states have very similar
values of ¢ (8.0<¢g <8.25) and Q (7.0< Q <7.3). The ra-
tio of the components is different in each case and corre-
spondingly the speeds at which they move with respect to
our moving frame of reference are also different.

The value of g (or Q) of the soliton state to which the
solution converges is determined by the initial conditions.
The initial conditions (16)—(20) are chosen in such a way
that this value g is close to 8. We could choose a set of
initial conditions, differing from (16)-(20), which would
converge to soliton states with other g values. This
means that, in general, the new soliton states form a two-
parameter family of solutions. Hence, generally speak-
ing, trajectories of the solutions corresponding to the full
dynamics cannot be represented on a two-dimensional
surface as in [14]. Trajectories corresponding to different
solutions can intersect on this surface. A higher-
dimensional phase space is required to classify solutions
of this problem.
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The soliton states for high values of & are similar to
those found by Aceves and Wabnitz [15] and Christo-
doulides and Joseph [16]. For each g, they comprise a
one-parameter family of solutions, where the inverse
group velocity is the parameter of the family. The ratio
of the components depends on the group velocity. Al-
though these solutions have the same qualitative proper-
ties as those found in [15], the equations that we are con-
sidering are more complicated. They include second
derivative terms which are responsible for dispersion. As
a result, the amplitudes of the two components are not
equal at vg'rl =0, while they were equal in Refs. [15] and
[16]. No solutions in analytical form have been found so
far because of these complications.

We should stress at this point that in this paper we
have only studied stationary (phase-locked and
component-trapped) solutions. The full dynamics is obvi-
ously quite an involved problem. An arbitrary initial
phase is not immediately transformed into a phase-locked
pulse. The full trajectory on the Poincaré sphere would
usually rotate around the S| axis. The rotation corre-
sponds to the solutions with rotation phase [14]. This
process could continue indefinitely, if we ignore radiation
processes. Due to radiation, the trajectory generally
slides from one closed loop to another, with decreasing
Hamiltonian as the soliton loses energy on propagation.

In some cases, the trajectory can be “trapped” around
some of the stationary points. A few examples are shown
in Fig. 10. Initially the trajectory rotates around the S|
axis, but eventually it may be trapped by a stationary
solution located on the equatorial line S;=0. Due to ra-
diation, the trajectory then converges to the stationary
solution. The final state, i.e., the values of g (or Q) and
the ratio of the components (or S;), depends on the initial
conditions as well as the value of £ when the trapping

(q,Q)=(16.30,9.03)

FIG. 10. Trajectories on the Poincaré sphere showing that
some non-phase-locked solutions can be trapped and thus
forced to converge to stationary solutions.
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occurs. In three of the examples of Fig. 10 [(a)-(c)], these
final values of (g,Q) are shown under each example. In
some cases it would take very great distances & for the
trapping to occur. An example is shown in Fig. 10(d),
where the pulse still has rotating phase after rather long
distances of propagation. The full dynamics of soliton-
like pulses in this problem is under investigation.

V. CONCLUSION

In conclusion, we have found and numerically ana-
lyzed coupled soliton (phase-locked and pulse-trapped)
states in birefringent optical fibers when the difference in
group velocities between the two linearly polarized com-
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ponents is taken into account. We have shown that these
soliton states form a two-parameter family of solutions.
Stability properties of the new solutions have been stud-
ied. We have given examples of convergence of soliton-
like pulses to these stationary solutions.
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