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Hamiltonian formalism for space charge dominated beams
in a uniform focusing channel
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We employ the Kapchinskij-Vladimirskij envelope Hamiltonian [I. M. Kapchinskij and V. V.
Vladimirskij, in The Proceedings of the 9th International Conference on High Energy Accelerators,
edited by L. Kowarski (CERN, Geneva, 1959), p. 274] to describe the envelope evolution and the
particle Hamiltonian to describe particle motion in a space charge dominated beam. Properties of
the envelope function in a mismatched uniform focusing channel are studied. Parametric resonances
of the particle Hamiltonian due to envelope oscillations of a mismatched beam are studied. We find
that the Hamiltonian dynamics depends only on a single effective space charge parameter, the ratio
of the space charge perveance to the focusing strength. The onset of global chaos exhibits a first
order phase-transition-like behavior when the amplitude of envelope oscillations for a mismatched
beam is larger than a critical value. This global chaos can greatly enhance the halo formation. The
relation between the critical envelope mismatch for the halo formation and the effective space charge
parameter is numerically obtained. Possible experiments are suggested.

PACS number(s): 07.77.—n, 29.27.Eg, 41.75.—i, 52.25.Wz

I. INTRODUCTION

The interest in intense charged particle beams has
grown in the past few years due to the demand in high
brightness and high intensity ion sources. The difficul-
ties in transporting such a beam ranges from emittance
blowup to halo formation. These problems can cause
beam loss and radiation damage to the transport line
[1,2].

For beams dominated by the self-space-charge force,
Kapchinskij and Vladimirskij (KV) have constructed a
self-consistent equilibrium distribution function, which
obeys the KV equation governed by the external focus-
ing force and the force due to self-beam charge and cur-
rent [3]. Since this pioneering development, there have
been many progresses on problems related to beam dy-
namics of the space charge dominated beams, such as
the concept of rms emittance, the envelope equation, etc.
[4,5]. When the KV envelope function, governed by the
external focusing and the self-nonlinear electromagnetic
force, experiences a time dependent modulation, nonlin-
ear parametric resonances may play an important role in
the envelope dynamics. In particular, nonlinear proper-
ties of the KV equation in a periodic focusing solenoidal
field were extensively studied in Refs. [5,6].

In a similar spirit, the motion of beam particles obeys
the Hill's equation, which takes into accounts the focus-
ing force and the self-space-charge force. Thus the beam
transport of a space charge dominated beam is mod-
eled in a one-way "self-consistency" by studying simul-
taneously the KV and Hill's equations. This is usually
achieved by numerical simulations. Results of numeri-
cal simulations have indicated that the halo formation
arises mainly from resonance excitations [2,7—9]. On the
other hand, experimental measurements and numerical
simulations have been used to verify the theory that the

emittance growth is related to nonlinear electric Beld en-
ergy [10—12]. In particular, Ref. [12] showed that the
emittance of a proton beam grew very fast in a short
distance of a transport channel without a focusing Beld.

Alternately, the Fokker-Planck equation has been used
to describe the halo formation in a space charge dom-
inated beam [13]. All of the complicated mechanisms
such as mode-particle, mode-mode interactions and res-
onances are lumped into the dynamics of the Fokker-
Planck-like equation. Energy conversion from the enve-
lope mismatch to thermal energy was used to interpret
the halo formation.

To achieve microscopic understanding of particle mo-
tion, we choose to study particle motion by solving the
KV and Hill's equations, where numerical simulations
have shown that chaos plays an important role in halo for-
mation. Although numerical simulations are very useful
in obtaining a visual chaos, they often lead to confusion
when the number of parameters is large. Sometimes, it is
difficult to understand the underlying physics based on
numerical simulations alone. Furthermore, because cor-
relations between parameters are usually nonlinear, the
task of unravelling a key condition for halo formation is
hindered by numerical chaos. Therefore, analytic anal-
ysis is useful. In this respect, Gluckstern has recently
obtained an analytic solution for the second order reso-
nance in a space charge dominated beam [14]. Our work
furthers the goal of studying chaos generated by overlap-
ping parametric resonances.

The beam transport model can be divided into two
coupled oscillations, where the KV envelope Hamilto-
nian is used to describe the envelope oscillations [6], and
the Hill's equation that includes the focusing and space
charge forces is used to describe the betatron oscillations.
Here, the assumption is that the envelope evolution will
acct the particle motion, while the evolution of particle
motion does not acct the envelope function. This is a

1063-651X/95/51(4)/3529(18)/$06. 00 3529 1995 The Americsn Physical Society



3530 RIABKO, ELLISON, KANG, LEE, LI, LIU, PEI, AND WANG

reasonable assumption, because the fraction of particles
outside the envelope is small. The particle Hamiltonian
that gives rise to the Hill's equation can then be expanded
in the particle action-angle variables of an unperturbed
particle Hamiltonian. Families of parametric resonances
arises naturally from this procedure [15,16].

This simple theoretical model has the merit of under-
standing the essential physics analytically. Multiparticle
simulations [9] and possible experiments can be used to
verify this model. We organize this paper as follows. In
Sec. II, we review properties of the envelope Hamilto-
nian and study the evolution of the envelope function for
a mismatched beam in a uniform focusing channel. In
Sec. III, the particle Hamiltonian of a space charge dom-
inated beam is expanded in action-angle variables of an
unperturbed Hamiltonian. We will show that paramet-
ric resonances can arise from the harmonic modulation
of the space charge force due to a mismatched envelope
function. The harmonic modulation produces coherent
excitation to Hamiltonian tori. Dependence of the para-
metric resonances on the space charge parameter will be
discussed. Conditions for global chaos and halo forma-
tion will be examined. Possible experiments for the ob-
servation of the enhanced halo formation resulting from
global chaos will be discussed in Sec. IV, and the e8'ects
of angular momentum will be studied in Sec. V. Conclu-
sions and discussions will be presented in Sec. VI.

The parameter 4
——

4
' signi6es the linear space charge

tune shift a la circular synchrotrons. For a uniform fo-
cusing channel with a matched envelope function, the
basic period L is arbitrary. In this paper, we study only
the uniform focusing channel, i.e. , k(0) = p, where p
corresponds to the phase advance of transverse betatron
oscillations. In terms of new phase space coordinates, the
envelope Hamiltonian becomes

A. Envelope function in a uniform focusing channel

For a uniform focusing channel, the scaling factor I is
arbitrary. The result will be independent of I used in the
scaling transformation. The dimensionless equilibrium
envelope radius for the matched beam is given by

t'1 g
1/2

Rp ——
l

—(QI-'+ 1+ K)
l

rgb
(4)

where the e8'ective space charge parameter,

/2 + 2 A/2
4' 4' 2~ 4' B2

We will show later (see Sec. IV) that the relevant focusing
parameter in the uniform focusing channel is the phase
advance per unit length pf = pjL.

II. THE HAMILTONIAN FOR THE ENVELOPE
PHASE SPACE

Using the longitudinal distance s as the time coordi-
nate, the KV Hamiltonian for a transport channel with
paraxial symmetry is given by H, = 2Pb + V~V(Rb),
where Rb is the equilibrium radius of the beam, (Pb, Rb)
are the conjugate envelope phase space coordinates, and
the KV potential is given by

=1 2
+KV — kf (s)Rb ~b inRb +

2 2A2

Here kf (s) is the external focusing field, and e is the
emittance of the beam. The space charge perveance pa-
rameter of the beam is given by Kb ——

pQ 3 where r, ~

is the classical radius of the particle, P and p are the
relativistic factors of the beam, and % is the number of
particles per unit length. For a uniform focusing channel,
kf (s) is constant. For a periodic focusing channel, kf (s)
is periodic, i.e., ky (s) = ky (s + L), where L stands for
the cell length of the focusing field.

We transform the KV Hamiltonian to a dimensionless
form [5] using the following dimensionless parameters and
variables: 0 = 2m& for the time variable, k(0) = L kf (s)
for the dimensionless focusing strength in a periodic cell,
K = ' for the space charge perveance parameter, and

J, = — PdR = [E, —Vp(R)]'~ dR,
27' 7r

where E, is the "energy" of the envelope Hamiltonian
given by

H, =E (1) =v, J, +2n, J, +

The tune of the Hamiltonian, defined as the number of
oscillations in one period, is given by

dE
Q, (J) = ' =v, +n, J +.

dJ,

where the nonlinear detuning parameter,

(8)

10)
64~.R4v, l~ R2)lK+

384vr5Rpsv4 R2 r
(9)

can easily be obtained by the canonical perturbation
method, and

K
K = —

)
2p

is the only scaling factor of the dynamical system (see
Appendix A). Because the Hamiltonian in Eq. (3) is in-
tegrable, the envelope radius for a mismatched beam will
follow an envelope torus of the Hamiltonian How. The
action of a given envelope torus is

for the dimensionless envelope phase space coordinates.
Here L is the basic period of the accelerator structure.

P - 1/2
v. =2—1 —~2' '
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Thus the envelope function of a weakly mismatched beam
is given by

R= Ro+
i

'
i

cosv~o,
g 7rv~ )

where the action is given by J, = 7rv, (R —Ro)2 foi
small amplitude oscillations. Since the tune Q„shown
in Fig. 1, depends quadratically on B —Bp up to about
R —3, the expansion of Eq. (8) is a good approximation
within the same range.

For later reference, we define a mismatch parameter
M as

FIG. 1. The envelope tune Q, normalized to —" vs the

maximum amplitude B = R for an envelope torus is shown
for parameters Ro ——1.4199 and K = 2.1913. Note that the
envelope tune depends quadratically on 8 —Bo for a small
R —Ro Asym. ptotically, we have 27rQ, /p ~ 2 as R —+ oo.
For a space charge dominated beam with K/2p )) 1, we have
27rQ, /p, —+ v 2 as R ~ RII.

F2(R, J ) = PdB,

is the tune of small amplitude envelope oscillations. The
phase advance of the envelope function in one period is
2p at a zero space charge limit, and v 2p at the infinite
space charge limit. For a linear system, one can intu-
itively see that the tune of the envelope function is twice
the corresponding betatron tune, i.e. , v, = 2(—"), and
independent of J ~ In the presence of the space charge
force, the envelope tune will have the following asymp-
totic properties: Q, (J, = 0) = b', and Q, (J, —

& oo) —+ —,
i.e. , Q, g [v„—"). Therefore, the nonlinear detuning

arises solely from the space charge alone. Figure 1
shows a typical example of as a function of the en-

velope amplitude for the parameters Bp ——1.4109 and
r = 2.1913.

Using the generating function

Bp —B;„1J
Bp Bp vrv,

'

where B;„is the minimum of the envelope radius of
a mismatched beam. This definition divers from that of
Refs. [2,7,8], where they define M = R „/Roas the mis-
match parameter, where B is the maximum envelope
radius. In our definition, a matched beam has M = 0.
Because of small anharmonicity in the envelope poten-
tial, the envelope oscillations may be nonsymmetric with
respect to Bp. For example, when v = 2.5, the radius of
a beam with M = 0.2 will oscillate between 0.8Bp and
1.24Bp.

III. THE HAMIITONIAN FOR THE PARTICI E
PHASE SPACE

Using the longitudinal coordinate 8 as the time vari-
able, the particle IIamiltonian for transverse oscillations
in a paraxial symmetry transport channel is given by

H„=—,
' (p.' + p,') + V„(*,z),

where (x,p, z, p, ) are transverse phase space coordinates
in the Larmor precessing frame [1,5]. The transverse fo-

cusing potential V„(x,z) that includes self-fields of the
beam in the KV model is given by

BI2 BE,
BJ. "BJ.

RdB
R

(12)

where B is the maximum amplitude of an envelope torus,
the conjugate angle coordinate is given by

— =1 2V„= kf (s)r—P 2
', r'8(Rb —r)

2

Kb ( r )
I
1+2»

I
0("—Rb)

2 ( Rb)

where r = v x2 + z2. Using the generating function

(17)

Hamilton s equations motion are J, = 0, i.e. , J is invari-
ant, and @ = Q, (J), i.e. , i/I, = Q, (J)0+ i/I, o.

B. Small amplitude envelope oscillations

z
F2 (x, z, p„,p~ ) = p I/x2 + z2 + p~ arctan

where p„and p~ are new momenta with conjugate co-
ordinates (r, Ip), respectively, the rotationally symmetric
Hamiltonian becomes

For a weakly mismatched beam, we can expand the
envelope function around the average radius, i.e. , B =
Bp + Y. The resulting envelope Hamiltonian is given by

1 (, p', l
H, = — p„'+—, + V„(r).

2 ( r )
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Since the Hamiltonian is independent of the angle vari-
able y, the momentum p~ is invariant, which corresponds
to the conservation of angular momentum [5,14]. The
system reduces to a one-dimensional (1D) equation of
motion. In this section, we will study a restricted 1D
motion with p~ = 0. The e8'ects of a nonzero angular
momentum will be discussed in Sec. V.

Using yb to stand for either x or z coordinates, and
pb for either p or p„0for the time variable, and the
normalized coordinates of Eq. (2) with

where Y = Bp —B = MBp cos v 0. Note here that we
have thrown away many time dependent terms, which
do not depend on the phase space variables (y, p). These
terms contribute to the fluctuation of Hamiltonian val-
ues without giving rise to resonance phenomena. Since
the Coulomb force depends only on the total charge in-
side the envelope radius, the envelope oscillations do not
perturb particle motion outside the envelope radius, and
the perturbing potential exists only inside the envelope
radius.

yb
s pcI

A. Action-angle variables of the unperturbed
Hamiltonian

for the conjugate phase space coordinates, the Hamilto-
nian becomes

II„=—p + —k(8)y=12 1 2

47r 4~

——
l

1 + 2 ln —O(lyl —B),
4vr q B

y O(B —lyl)

(21)

~ 1
p~

27r
' (22)

K 1 KI = ——~'y+ yo-(B —lyl) + —o(lyl —B)
27r 27rB2 27r y

(23)

where B follows the KV Hamiltonian flow discussed in
Sec. II, and 0 is the step function used to describe
space charge potential inside or outside the core given
by 0(() = 1 for ( ) 0 and 0 otherwise. Hamilton's equa-
tions of motion for the beam in the uniform focusing
channel are given by

Due to a weakly mismatched beam envelope oscilla-
tions, particle motion experiences a time dependent mod-
ulation. To understand the eKect of time dependent per-
turbation, we expand the perturbation in action-angle
variables of the unperturbed Hamiltonian. The action
for a torus of the unperturbed Hamiltonian is given by

1
Jb = — pb"yb = CJy

27r

Using the generating function

+2(y) ~y) = pdyi (29)

1
Jy —— p dy.

27r

The scale transformation of Eq. (20) transforms the ac-
tual action of a beam particle by the scaling factor of the
emittance e, i.e. ,

A scaling property of the envelope and particle Hamilto-
nians is discussed in Appendix A. If the envelope radius
is constant, the Hamiltonian (21) is time independent
and the energy is a constant of motion. However, if the
envelope radius B depends on the time 0, the nonlinear
system is not integrable.

For a weakly mismatched beam, the envelope function
is given by Eq. (14), i.e. , R = Bp(1—M cos v, 9). Expand-
ing the radius B about Bp, the particle Hamiltonian for
a weakly mismatched beam is given by

the conjugate angle variable is given by

BF2 OE„"dy
2 7I

My 8Jv y P

The energy of the unperturbed Hamiltonian is a function
only of the action, i.e. , Ez(J&). The particle tune is given
by

&w(Jw) = ~J".
y

Hp ——Hpp + LIIp.

=12 1 22
H&p = —p + —p y

47r 47r

1 + 2 ln O(lyl —Bp),
K '

lyl

47r Bp

, y'O(Rp —
I yl)

7r p

The unperturbed. Hamiltonian H„p is given by

(24)

(25)

We will And in the next section that the power series ex-
pansion of the particle tune for a space charge dominated
beam differs from that of Eq. (8).

Proyertiee of the unperturbed particle Hamiltonian
OtD

and the perturbation is obtained by expanding B around
Bp in Eq. (21) (see also Appendix 8), i.e. ,

For a beam with a matched space charge envelope, the
beam radius is Bp. Particle motion, governed by the
Hamiltonian (25), can be divided into three regions.

(26)

LH
2vrR2 B (y —R )+ (y —-R )+.

7t p p 2B'
p

x o(Rp —lyl),

1. Particles inside the equilibrium KV envelope ra-
dius: Here we have E~ ( E&p with Epp = 7t vy Bp ——

2vy and the betatron tune depression given by
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v„= —[Qr.' + 1 —i~,j.p
27t-

Particle motion in this "energy" region is sinu-
soidal. The action is related to the energy by
Ep vy Jy Thus the tune of Particle motion is con-
stant, i.e. , Q„=v„with v„4"„,when r )& l.
Since all particle motion inside the core has an iden-
tical tune vy, the space charge force causes a con-
stant incoherent tune shift by Avy = &~ —vy. The
particle motion can be described by

1.0 I

27r Q

0.8

0.4

0.2

P 06

K/2p, = 1

I I I

[

I I I I

[

I I I I

2.1913

K/2@,=5

Jy cos v„OI p = —+47rv„J„smv„0. (33)
7t Vy

0 0 I» I

0 10

Jh

The maximum action is given by J„=7tvyBp ——2.
This result is a trivial fact, by definition of Eq. (28),
that the emittance e of a matched beam is twice the
maximum attainable action for particle motion in
the original phase space. The torus for particles on
the matched envelope ellipse is given by

FIG. 2. The particle tune Q„, normalized to
is plot ted vs the particle action J = J„for (RII, r )
= (1, 1), (1.4199,2.1913),(2, 5), respectively. Asymptotically,
we have " + 1 as J„Moo.

2

+Bpp = 1.
0

(34)
chamber impedances, or by the space charge force result-
ing from mismatched envelope oscillations. In this paper,
we discuss only the latter perturbation.

2. Ep + oo) Jy + oo In the limit of a large action,
the space charge force is not important. Thus we
have Q„(J„-+oo) m 2

3. E„p & E ( oo: Q„C [v&, 2" ). The tune of a
test particle outsid. e the core lies within the range

In the in6nite space charge limit with K -+ oo while
keeping eK/L = Ks constant, we have Rs = geLRp ——

QKs/py and v„-+0. Some properties of particle oscilla-
tions at a large x just outside the envelope core are listed
as follows:

g. The envelope torus of a uIeakly mismatched beam

Although the Hamiltonian (24) is a good model (see
Appendix B) for studying resonances in Eq. (21), we
should bear in mind that the particle motion is gov-
erned by Hamilton's equations of motion (23), and we
are studying a test particle under the in8uence of the
mismatched envelope oscillations in the KV equilibrium
equation. For a mismatched beam with particles dis-
tributed uniformly inside the envelope with an emittance
~, the envelope ellipse at the minimum beam envelope lo-
cations can be expressed. as

+2~(E„—E„,)y=Bp+
p

2

2+(1 —M) Rpp, = l.
0

(35)

Jv = -+ (V'E~ —v'E~p)+ (E~ —E~p)
1 4Rp ~2vr

27i vy 7l+ —(J —-)
p 8]c

2vr Qv

P

where we observe that the particle tune will show a cusp
at the envelope action. The slope dQ„/dJ„is inversely
proportional to v. Some examples of normalized parti-
cle tunes " vs J„areshown in Fig. 2 for parameters

(Rp, r) = (1,1), (1.4199,2.1913), and (2.0, 5.0), respec-
tively. The cusp of the particle tune shown in Fig. 2
indicates that a simple power series expansion may not
be a good approximation for the exact particle tune of
a space charge dominated beam. At the same time, the
sharp rise of the particle tune near J„=2 will bear
important implications to parametric resonances when
the system is perturbed harmonically. Such a harmonic
perturbation can be generated by wake fields of vacuum

3. Jineav Mathieu instabilitie8

For particle energy below E„p,the Hamiltonian is lin-
ear. The equation of motion for a particle in a mis-
matched beam is given by

f 2 KM
y +

~
v„+ cos v, e

~ y = 0. (36)

Within the model of the coupled KV and Hill's equations,
particles initially inside the core will reside inside the
core for all times, i.e., the modulation of the mismatched
envelope function does not cause particles to leave the
core. This can easily be proved by observing that the
Hill's equation inside the core is linear. Time dependent
modulation to a linear system does not destroy tori unless
a linear Mathieu instability is encountered.
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This is the Mathieu's equation. The first order Mathieu's
instability occurs when the condition

(1 KM 1 KM
E —+

v, (2 47r v R 2 47' v R )

(H„)= E„(I„)— v—,I„+h„(I„)cosnP„,
n (42)

where the efFective resonance strength 6„ is given by

averaged Hamiltonian in the resonance rotating frame as

is satisfied. This is equivalent to the half integer stopband
in circular synchrotrons, where v, serves as the revolution
tune and v„plays the role of the betatron tune. However,
we will see later (Sec. III B 1) that the linear Mathieu
instability is not important to particle motion in a space
charge dominated beam.

"-,- = ™+4R. IG-,-(Iu)l.4 B

nQy(Ip pp) —mv + nh' (Ip pp) = 0, (44)

The fixed points of the time averaged Hamiltonian is
given by sin ng„,pp = 0, and

B. Parametric resonances

Now the task is to expand the perturbation in action-
angle variables of the unperturbed Hamiltonian. For ex-
ample, the term linear in M can be obtained with

(y —Ro)O(Ro —y) = ) G (Jy)e

where the prime corresponds to the derivative with re-
spect to I. There are thus n unstable fixed points
(UFP's) and n stable fixed points (SFP's) in the particle
phase space for the n:m resonance.

In particular, the Mathieu's resonance discussed in
Sec. III A 3 is equivalent to the n = 2, m = 1 parametric
resonance, where the origin of the particle phase space
becomes unstable, i.e. , I„UFp: 0 This occurs when the
condition

where
v, i2 v 2 v, j (45)

1G„(J„)=— (y —R )8 (Ro —y) e ~"dgy, (39) is satisfied. This condition is equivalent to the Mathieu
instability of Sec. III A 3.

with G = G* and p is the phase of G . Because
the Hamiltonian of Eq. (24) is symmetric with respect
to y ~ —y, all odd harmonics vanish, i.e. , G = 0 for
n = odd. The Hamiltonian can then be expressed as

OO OD

II„=E„(J„)+,) ) (m+1)M-lG„
0 m=ln&0

x [cos(nQ„—mv, 0 + p ) + cos(n@„+mv, o + p )]
+ ~ ~ ~ (40)

where G i ——G of Eq. (39). Here only terms that
are important to particle dynamics are explicitly shown.
Terms with m ) 1 are usually not important for a
weakly mismatched beam. The resonance strength func-
tion G can be obtained similar to that of Eq. (39) by
replacing proper integrand, e.g. , (3y —Ro)/2 for m = 2,
etc.

The Hamiltonian of Eq. (40) expressed in action-angle
variables exhibits clearly parametric resonances. A co-
herent perturbation to a Hamiltonian torus occurs when
the stationary phase condition, ng„=mv„ is satisfied.
Such a resonance is called a n:m primary resonance. To
understand the effect of a resonance condition on the
Hamiltonian Bow, we perform another canonical trans-
formation to the resonance rotating frame using the gen-
erating function

f. Parametric resonance conditions

We would like to investigate the parametric reso-
nance before the resonance strength calculation. Roughly
speaking with the condition that h' = 0, the n:m res-
onance of Eq. (44) is approximately given by Q„/v, =
m/n, where Q„/v, C [

—"",2" ). Since v&/v, and p/2vrv,
depend only on the effective space charge parameter K,
the n:m parametric resonance condition depends only on

Figure 3 shows v„/v, and p/2av, as a function of
the parameter K, as solid curves, where the lower curve,
for v„/v„is the tune of particles inside the KV envelope
with J„e[0, 2], the upper curve, for ",depicts the
limit that J„~oo, and the shaded region corresponds
to particles with action J„E(2, oo). Horizontal lines,

2, 4, 6, . . . corresponds to 2:1, 4:1, 6:1,. . . resonances.
Here we note that the 2:1 resonance condition is satis-

fied for all values of r. This 2:1 resonance bifurcates atJ„(1/2 as r —+ 0, which becomes the linear Mathieu
instability. Since the linear Mathieu's instability occurs
only in the limit of zero space charge parameter, where
the resonance strength is zero, it is not important. Using
results of Sec. IIIA1, the stable fixed point for the 2:1
resonance can be estimated to be Bspp 1.8B0 for large
K.

E2 —— y
——v, o + " Iy. (41)

The fourth and the sixth order resonances bifurcate at
and K —~, respectively. In general, the n:1~7 ~i7 '

resonance can exist only at
Here I„=J„and P&

——g„—™v,g + ~—" are conjugate
phase space variables. Neglecting the time dependent
terms, which are averaged to zero, we obtain the time

n —42

v &
QS(n2 —2)

(46)
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occurrence of the parametric resonance condition. It is
worth noting that the 2:1 resonance is always further
apart from high order resonances. This has important
implications on the halo formation to be discussed later,
where halo particles are defamed as beam particles which
orbit about 2:1 resonance islands. In fact, as the parame-
ter K increases, the fixed point of the 2:1 resonance moves
away from the core with Jpp, z.i (QK + 1+ it). This
process makes the core less susceptible to the halo for-
mation. In reality, the radial extension of a beam with
a large K will be correspondingly larger, thus the halo
formation will depend on the actual particle distribution
in the tail region. The intersection of the horizontal line
m/n with Q„/v, curve in Fig. 4 corresponds to the n:m
resonance action, JFp. . . Based on our numerical sim-
ulations, we find a scaling property with

FIG. 3. The ratio of the particle tune to the envelope tune
is plotted as a function of the efFective space charge strength

The shaded region corresponds to the allowable region
of the particle tune. Horizontal lines mark parametric reso-
nances due to the envelope modulation. Note here that the
2:1 resonance can exist at all values of the efFective space
charge parameter. A higher order resonance exists only when
the horizontal line intersects the shaded area.

Jpp,„,(~) = c„,r. , (47)

2. The te8onanee 8tvength

where C2. g = 2.15, C4.g = 0.43, C6.g = 0.24, . . . . This
means that all resonances in this dynamical system ex-
pand almost uniformly as a function of the parameter
K.

The condition for the n:m resonance can be obtained by
replacing n with —in the above equation, e.g. , the 8:3
resonance bifurcates at ~ = 0.4865 and the 6:2 resonance
bifurcates at K = 0.6682. Although the higher order
parametric resonance strength functions become zero at
the envelope radius (see next section), particles near the
envelope core can percolate into these resonance islands
in numerical particle-in-cell calculations. In a real beam,
particles can become more sensitive to errors and noise
when parametric resonances are located just outside the
envelope core.

Figure 4 shows Q„/v, vs J„for K = 2.1913 (see the
middle curve of Fig. 2). Here horizontal lines mark the

Since the equation of motion is linear for y & Bp, the
resonance strength of Eq. (39) can be obtained easily.
First, for a particle inside the envelope, i.e. , Ep & Epp
v„/2 or J„(1/2, the resonance strength is given by

G„(Jy)= Jyh„2,
1

(48)

where 8 z is the Kronecker b function. This means that
only the 2:1 resonance is possible inside the core. How-
ever, the resonance condition of Eq. (44) can reach the
core only when K, = 0. Thus the Mathieu resonance is
not important.

For a particle with energy E„larger than E„p,the reso-
nance strength can also be obtained easily using Eq. (30),
i.e. ,
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Q /v,
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K/2p, =2.1913
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FIG. 4. Q„/v, vs J~ = J„for the case with r. = 2.1913.

Intersections of Q„/v, with horizontal lines mark the fixed
point locations of parametric resonances.

Figure 5 shows the resonance strength for n = 2, 4, 6 vsJ„for K, = 1 with p = 2.4142. It is worth noting that
the Gz(J„)1/2) is nearly constant. Because the res-
onance strength increases with v. , secondary resonances
obtained by combining nearby primary resonances can
become important for large K [15j.
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K/2p, = 1
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0.0
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4 6 8 10

FIG. 5. The resonance strengths G for n = 2, 4, 6 are
shown as a function of the particle action J„=J„for
(p, , K) = (2.5, 10).

8. 1Vumef'ical aimulations

To verify the parametric resonance condition discussed
in earlier sections, numerical simulations are performed.
Since the envelope function oscillates periodically, test
particles experience periodic perturbation of the mean
electric and magnetic forces. To eliminate the artificial
time dependence of periodic modulation, hereafter, we
examine only particle motion in Poincare surfaces of sec-
tion at the minimum envelope radius locations (see Ap-
pendix C). Figure 6 shows Poincare surfaces of section

for ~ = 1.501 and M = 0.2, where the upper plot shows
dominant 2:1,4:1,and weak 6:2 resonances, and the lower
plot shows a closeup view of the core region. We observe
no other high order resonance in this case.

Increasing the space charge parameter K, the resonance
strength will be proportionally increased. More impor-
tantly, many more parametric resonances appear in the
phase space. Figure 7 shows the Poincare surfaces of sec-
tion for v = 2.5 with M = 0.15. In the upper plot, we
And clearly 2:1,8:3, and 4:1 resonances, while the 6:2 res-
onance is not explicitly visible due to the choice of initial
condition. Note particularly that there is no higher order
resonance than the 6:1 resonance in the lower plot.

There are two effects related to the mismatched pa-
rameter M. First, the envelope tune Q of Eq. (8) in-
creases with the amplitude of envelope oscillations. Thus
the shaded area of Fig. 3 is lowered. The condition for
higher order resonances can be satisfied at a lower effec-
tive space charge parameter K. However, this effect is
small for a weakly mismatched beam. More importantly,
the resonance strength increases with M and the sec-
ondary resonance may become more important by com-
bining primary resonances. Figure 8 shows the Poincare
surfaces of section near the core for K = 2.5 with M = 0.2.
We note that there is no primary resonance beyond the
6:1 resonance. However, many secondary and tertiary
resonances appear.

For a beam with a very large space charge parameter,
many primary and secondary resonances appear near the
core. The upper and the lower plots of Fig. 9 show the
Poincare surfaces of section near the core for v- = 5 with
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FIG. 6. Poiricare surfaces of section in particle phase

space (x, p), w'here x = y, with parameters M = 0.2 aIIII
(BII, tc) = (1.049, 1.501). The lower plot is the closeup view of
phase space maps near the core. See Appendix C for further
explanation.

FIG. 7. Poincare surfaces of section in particle phase space
(~,p), where x = y, for a mismatch factor of M = 0.15 with
parameters (Bo, K) = (1.019, 2.5). The lower plot is a closeup
view of the phase space near the core. See Appendix C for
further explanation.
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I map. Because there is a torus, which separates the local
chaos from the 2:1 resonance islands, this local chaos can
enhance emittance growth without inducing halo forma-
tion provided that the beam distribution is within the
boundary of the con6nement torus.
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C. Halo formation and global chaos
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FIG. 8. The Poincare surfaces of section in particle phase
space (x, p), where x = y, for (Ro, K) = (1.019,2.5) with the
mismatch parameter M = 0.2 near the core being enlarged
to display many secondary and tertiary resonances (see also
Fig. 7). See Appendix C for further explanation.
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FIG. 9. Poincare surfaces of section in particle phase space
(x, p), where x = y, for (Bo, R ) = (1.005, 5) with M = 0.1 and
0.15 shown in the upper and lower plots, respectively. Note
that local chaos becomes a dominant feature in the lower plot.
See Appendix C for further explanation.

M = 0.1 and 0.15, respectively. The 2:1 resonance, not
shown in this figure, is located at BSFp 2.y 1.8RO sim-
ilar to those of Figs. 6 and 7. With a small mismatch
parameter M = 0.1 shown in the upper plot, we observe
4:1, 8:1, 10:1 and 12:1 resonances. When the mismatch
parameter is increased to 0.15 shown in the lower plot, lo-
cal chaos becomes the essential feature in the phase space

i. Poincat e ence'gy

We consider a mismatched envelope ellipse given ini-
tially by Eq. (35). The evolution of the envelope ellipse
is given by

(0)
+ + (0)p, (5O)

where B(e) describes the envelope oscillations in the
transport channel. The Hamiltonian value (energy) of
an envelope particle oscillates with time, but the action,
Jy 2 and the Poincare surface of section are invari-
ant. Since we always consider the Poincare surfaces of
section at the minimum radius locations [17], the maxi-
mum energy at y, = 0 is defined as the Poincare energy
for an envelope particle given by

1

4vr(1 —M) 2A2 2(l —M) 2

The Poincare energy of a test particle outside the en-

Within the KV model, all particles with actions less
than 1/2 will remain inside the envelope function for a
matched or mismatched beam. A mismatched envelope
oscillates at the tune of Q, and all particles inside the
envelope oscillate at a tune of vy. Since the core en-
velope remains intact and the motion of particles inside
the envelope is linear, Hamiltonian tori inside the enve-
lope can be distorted but not destroyed. The only possible
resonance inside the envelope is the linear Mathieu res-
onance, which is not important (see Sec. III B 1). The
torus, which follows envelope oscillations with an action
Jy —

2 1
is called the envelope torus.

The Hamiltonian flow outside the envelope torus has a
very different structure. The 2:1 resonance exists for all
values of K, . The SFP and UFP of the 2:1 resonance are
always outside the envelope torus. When the parameter
r increases, we And that the SFP action of 2:1 resonance
is approximately given by JFp 2, q

—QK + 1 + K.
Since the envelope torus does not corrupt, how can

halo be generated? The answer lies in the fact that par-
ticle distribution of finite temperature has a diffusive tail.
When global stochasticity develops, particles outside the
artificial KV envelope can become halo particles. The
diffusion process produces tail distribution and the reso
nance generates halo. With this physical picture in mind,
we investigate the dependence of the critical mismatch
parameter M„which is defined as the envelope mismatch
for the onset of global chaos, on the effective space charge
parameter v.
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velope ellipse is larger than E„I . We now consider the
motion of a test particle outside the core with Poincare
energy Ez ——HEI, I with g ) 1. For a given mismatch pa-
rameter M, there is a critical number g such that all test
particles with g ) g will orbit about the 2:1 resonance
islands and become halo particles. Although particles
with g & g, may encounter local chaos due to higher or-
der primary or secondary resonances, they are bounded
by a Hamiltonian torus, which separate the 2:1 resonance
from the rest of the higher order resonances. Since higher
order resonances usually stay close to the core, local chaos
may enhance emittance dilution without generating halo
provided that the initial beam distribution does not ex-
tend very far from the core. The lower plot of Fig. 9 is
a clear example of the bounded local chaos. Here, a 10'FD

tail distribution within the bounded local chaotic region
can produce a factor of 2 increase in emittance.

2. H'ala and global chaas

Figure 10 shows the g vs the mismatch parameter M
for v. = 2 and 2.5, respectively. Here, a unique feature is a
relatively "smooth dependence" of g vs M for v = 2 and
a "erst order phase-transition-like" character for v = 2.5.
Numerical simulations indicate that a sharp transition in

occurs always when v ) 2.2. The critical mismatch
parameter M, can then be de6ned as the mismatched
parameter where a sudden jump of the critical Poincare
energy occurs as shown on Fig. 10 reaching the envelope
core, where g = 1. For example M = 0.2975+ 0.0025

at v = 2.5. The physics of this sharp transition can be
understood as follows.

When v is small, there are few resonances near the
core (see Figs. 3 and 4). Since the vridth of the 2:1 para-
rnetric resonance, or equivalently the corresponding Mel-
nikov integral, varies smoothly with the parameter M,

will decrease smoothly as the parameter M increases.
Along with the smooth decrease in g„asmall stepwise
decrease is expected arising from the overlapping 2:1 res-
onance with high order resonances one by one like a stair-
case. This is the case for K = 2, shown as open circles
in Fig. 10. Because there are relatively few resonances
in the vicinity of the core, a small stepwise decrement
in g appears when the 2:1 resonance overlaps with the
4:1 resonance around M = 0.3. The chaotic region pro-
duced by the overlapping 2:1 and 4:1 resonances is still
relatively far away from the core. Therefore, g contin-
ues to decrease smoothly with respect to an increasing
mismatch parameter M.

When r is large, there are many primary and secondary
resonances near the envelope core. This appears to be the
case when K ) 2.2. As the mismatch parameter is varied,
local chaos is formed near the envelope core for a small
mismatch parameter. Once the stochastic layer of the 2:1
resonance overlaps with the boundary of the local chaos,
mainly the 4:1 resonance, global chaos occurs. A sudden
jump in the critical Poincare energy shown in Fig. 10
for K = 2.5 provides us a sensitive determination of the
critical mismatch parameter M .

The top plot of Fig. 11 shows the critical mismatch
parameter M, as a function of the efFective space charge
parameter v. We note that the critical M, parameter is

6 I I I

I

I I I I

I

I I I I

I

I I I I

0.4 I I I 1

oEI oo IC=2
o8o o

0

M,
0.2

+=2.5

0.1
2

100

50

I I

4 5 6 7 8 910

I

0.25

~ ~EHE5$
s I i i i i I

0.3 0.35
I

0.4 0.45

6E/Eo
10

FIG. 10. The minimum Poincare energy of a test particle
that orbits the 2:1 resonance is shown as a function of the
mismatch parameter for K = 2 and 2.5, respectively. The
critical mismatch parameter corresponds to the sudden jump
of the Poincare energies. In this example, M, 0.2975. Note
that the smooth transition of the minimum Poincare energy
shown for r. = 2 has become a Grst order phase-transition-like
behavior shown for r. = 2.5.
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FIG. 11. The lower plot shows the gap of the Poincare
energy at the onset of global chaos. The dependence of the
M vs the space charge parameter K obtained from numerical
simulations is shown in the upper plot.
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FIG. 12. The Poincare sur-
faces of section at a global chaos
condition vrith v = 4.16 and
M = 0.2. See Appendix C for
further explanation.
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almost constant when K, & 4. For K ( 4, the M vs r
can be fitted by either exponential form or power law.
Unfortunately, it is difficult to derive the dependence of
M, onK.

To verify that the sudden jump in the critical Poincare
energy is related to global chaos, we plot the change of
the critical Poincare energy bE/Eo at M = M, where
Eo = Ep Q is the Poincare energy of the envelope, as a
function of K in the lower plot of Fig. 11. Since Eo 1/r
shown in Eq. (51) and bE/Eo r. shown in the lower
plot of Fig. 11, we find that the critical transition jumps
correspond to an energy gap between the stochastic layer
of the 2:1 resonance and an orbit near the envelope core.
This means that local chaos near the envelope torus has
already developed. When M ) M, all the phase space
area between the 2:1 Gxed point and the vicinity of the
core is in chaos. The sudden phase transition is, there-
fore, related to the occurrence of global chaos where the
separatrix of the 2:1 resonance overlaps with local chaos
of higher order resonances near the core. An example of
global chaos for the Poincare surfaces of section is shown
in Fig. 12 with parameters K = 4.16, M = 0.2.

IV. SUGGESTED EXPERIMENTAL TESTS

Extensive numerical simulations on the space charge
effects in circular synchrotrons have been performed [18].
Emittance growth has been observed to follow similar
behavior as that of a space charge dominated transport
line [10]. However, the space charge parameter v for
low energy beams in synchrotrons is typically v 0.1.
The emittance growth in synchrotrons arises mainly from
structure resonances.

The situation is diferent for the beam transport from

an intense ion source. Typically, the rms normalized
emittance of a proton or H beam of 30 mA at 35 Kev
is about 0.1—0.2m mmmrad. The beam size is typically
about 4 mm [19]. The space charge perveance for this
beam will be about Kq ——2.0 x 10 . Thus the matched
focusing strength per unit length for this beam is about
11 m . The resulting efFective space charge parameter
v, is about eight. Thus, particles outside the envelope
function of such a beam may encounter many resonances
if the beam envelope is not matched. The resonance con-
dition depends only on the parameter K alone while the
beam radius depends on both p and K parameters. In
the above example, global chaos can result from a mis-
tuned focusing channel with a focusing strength larger
than 13.5 m or less than 9.5 m

A. Time scale, matched beam size, and focusing
strength

Before we look into possible experimental tests, we first
examine the time scale. A space charge dominated beam
has typically N 5 x 10 o protons/meter. Assuming a
5-mm beam radius, we expect that the particle density
is about n-10" m '.

For a source of a given emittance, the match beam
envelope is given by I4 = geLRo, where L is the scaling
length. The matched focusing strength is given by

Qe2 + KgB~~

where py ——&~ is the betatron phase advance per unit
length. Thus, once e, K~, and B~ are given, the matched
focusing Geld py is completely determined. Since e
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%blab for a space charge dominated beam, we obtain

py = /Kg/I4 ——/2vrnro/(/3p ~ ). Since the plasma
frequency of the beam is given by w„~ = /4mnr Oc~, the
distance that the particle travels in one plasma oscillation
is given by

l 27CPc/(d l
'Y Pf

Thus the plasma oscillation length of the beam particle is
about the same as the length of the envelope oscillations.

Now, we examine characteristics of the 2:1 resonance.
Fallowing Eq. (42), the Harniltonian for the 2:1 resonance
can be expressed as

1/»

b +4Pf~ + Kb 2Pf.

If the beam source radius is constant, then the beam
mismatch parameter is given by

~
+source I b

~

B, (58)

Measurements of the threshold mismatched parameter as
a function of the space charge parameter can be used to
verify the onset of global chaos shown in I'ig. 10. This
sharp transition would greatly enhance the halo forma-
tion.

1 MK
H2. q

--n„(I——I„)+ cos 2Py,
2 " Sar

(54)
V. EFFECTS OF NONZERO ANGULAR

MOMENTUM

o.yvM 2@v,
V~ 27l gK +1+K

- -l/4
&e.

where we have used the relation, 2' v„BO —— 1 and
~G2~ = 1/8vrv„. Our numerical simulations indicate that
n„r= 3v . The characteristic tune of the 2:1 resonance
becomes

We have discussed halo formation for particles with
zero angular momentum in Sec. III. It would be inter-
esting to know what the e8'ect of nonzero angular mo-
mentum on particle motion is. Using the normalized
coordinates of Eq. (20) and the generating function of
Eq. (18), the Hamiltonian for a test particle in the KV
beam in a paraxial symmetric uniform focusing channel
can be expressed as Hp Hpo + AHp where

AI2, g = 2v'3M 1—
gK + 1+K

- —1/4

The width of the 2:1 resonance is approximately given by H„o———p„+V„o(r,p~),
=12

4'
K Y58 = —

2 (r —Bo) + H(RO —r)
27t.Ro» Ro

(60)

Note here that the width of the 2:1 resonance is also
proportional to v.

A weakly mismatched beam at M = 0.1 —0.2, the
characteristic tune of the 2:1 resonance is about 0.1—0.2
of the envelope tune or the plasma oscillation tune. This
means that a &eshly scrapped beam with particles at the
tail region of phase space will develop a complete halo in
about 5—10 plasma oscillations.

B. Possible observations

Since the beam current depends on the extraction elec-
tric potential according to the Child's law, the beam
intensity can be varied. Thus, a possible space charge
beam transport experiment is to increase the beam in-
tensity without changing the focusing strength. In this
case, the space charge parameter v. and the mismatch pa-
rameter are both increased. Transport of this hearn may
encounter a threshold current for halo formation. Mea-
surements of the threshold beam current can be used to
verify the theoretical model for linking the onset of halo
to the overlapping parametric resonances.

Another experimental test is to vary only the mismatch
parameter. Assuming that the source emittance is con-
stant, the eQ'ective space charge parameter can be kept
constant by setting the phase advance per unit length
py proportional to the source intensity. However the
matched beam radius is given by

are, respectively, the unperturbed Hamiltonian and the
perturbation. The unperturbed potential is given by

2 2

Vpo(r, p~) = +nv„r-
4~~» @~ R,'
XO(, —~.).

(—
/

1+ 21n

(61)

1J = — p, (E„,r, p~)dr.
27r

(62)

Conversely, the energy Ez can be expressed as a function
of the action J„.The radial tune becomes

Using the generating function

E(r, J„,p~) = p„(Ep(J,), r, p~)dr, (64)

Here (r,p„,p, p~) are conjugate phase space coordinates.
Since the Hamiltonian is independent of y, the angular
momentum p~ is invariant for any test particle in the KV
Hamiltonian.

The unperturbed Hamiltonian is independent of the
time variable, therefore, the "energy" is a constant of
motion. We now define the radial action J„for a Hamil-
tonian torus with a given energy E„andangular momen-
tum p as
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where r" is the maximum radial amplitude of the Hamil-
tonian torus, we obtain the conjugate angle variable g„
as

vP„=BI'/BJ . (65)

The perturbation can then be expanded in action-angle
variables. Since the particle motion inside the KV enve-
lope is linear, the perturbation does not destroy the linear
invariant tori of any test particle inside the KV envelope.
On the other hand, the Coulomb potential is nonlinear
for particles outNide the KV envelope radius. Coherent
perturbation can result in parametric resonances at sta-
tionary phase conditions,

2Jr, Kv + IP(p, KvI =
z (7o)

(71)

where the subscript KV stands for KV particles. Thus
the KV particles are uniformly distributed on a line in
the radial action and angular momentum plane. The
minimum radial action is zero, thus the maximum angu-
lar momentum of KV particles is p~ Kv = 1/2 (see also
Ref. [14]). Similarly, the maximum radial action of KV
particles is 1/4.

A test particle inside the envelope core can however be
a non-KV particle, which executes linear betatron oscil-
lations. The maximum radial action for a particle exe-
cuting linear betatron oscillations is given by

'nr @r mr ve. (66)

This is the n„:m„radialmode parametric resonance. Be-
cause the radial amplitude oscillates twice as fast as com-
pared with betatron oscillations in a single plane, the
n„:m„radialresonance is equivalent to the n:m resonance
of Sec. III B 1 with n = 2n„and m = m„.Parametric res-
onances and global chaos can be studied similar to that
of Sec. IIIC.

Thus a test particle having J„&J, and Ip~I & 1 exe-
cutes linear betatron oscillations inside the core. It may
not be KV particles and yet the perturbation due to enve-
lope oscillations cannot destroy the Hamiltonian torus of
this non-KV particle. Only non-KV particles lying out-
side the envelope core can be perturbed by the envelope
oscillations.

A. Properties of KV particles
B. Properties of particle motion with a nonzero

angular momentum

First, we examine dynamical properties of the KV core
particles. The KV distribution corresponds to particles
located on the emittance shell (also the energy shell for a
uniform focusing channel) of the four-dimensional phase
space (x,p, z, p ). This leads to a uniform distribution
in a circle with radius Ro in the coordinate spaces (x, z).
Thus the Coulomb force is also linear inside the envelope
radius. In terms of the action variables of Eq. (27), a KV
particle satisfies the relation

The radial potential V„ for a test particle with a
nonzero angular momentum p~ has a minimum at the
radius ro, where

2 +p2 + K K2 + ] + ~ ]f p ) ]

(72)

JzKV + JzKV = 1 (67)

i.e. , KV particles are uniformly distributed on a line in
the action space. A test particle can be located at any
position on the (1,J,) plane of the action space. A
beam with dominant KV particles is called a KV beam.
If the amplitude of the betatron oscillations of a particle
is smaller than the KV radius, the Hamiltonian for the
particle is given by

Finding the local curvature of the potential around r =
ro, one can obtain the tune of small amplitude oscilla-
tions. The ratio of the small amplitude tune to the en-
velope tune becomes

if I@~I & 1

(73)

p'lII„=—p„'+—, + ~v„'r' («Ro),4'
~

" r2) (68)

where the subscript i signifies the Hamiltonian inside the
envelope radius.

Since the motion of a particle inside the envelope ra-
dius is linear, the particle tune is independent of the am-
plitude of oscillations, i.e. ,

Es* = 2vw Jr + v~lpv I~ (69)

where the radial tune of the particle is twice that of the
particle tune in a single plane (see also Appendix D).
From Eq. (69), we obtain

In particular, we note that the radial tune is discontin-
uous at I@~I = 1, i.e. , Q 0/v, & 1 for I@~I & 1, and
Q„o/v, & 1 for Ip&I & 1. This is due to the intrinsic
property of the KV model, where the second order deriva-
tive of the particle potential is discontinuous across the
envelope radius.

The lower plot of Fig. 13 shows Q /v, vs r/Ro, where
r" is the maximum radius for a torus of the Hamiltonian
Bow, with K = 2 and angular momenta p~ = 0.65, 1.25,
and 2.3, respectively. The feature of the radial tune can
be understood easily as follows. Since the Hamiltonian
is linear for r & Bo, the small amplitude radial tune for
a particle with Ip~I & 1 is equal to 2v„.The radial tune
shown in Fig. 13 for the cases p+ ——0.65 resembles that
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1:1 resonance, is relatively independent of the angular
momenta of test particles.

The resonance strength function of Eq. (39) for t 2

is shown in the lower plot of Fig. 13 for v = 2 with

p~ = 0.65, 1.25, and 2.3, respectively. Since the radial
1:1resonance strength function for diferent angular mo-
mentum at the resonance location r" = 1.8BO decreases
slightly with increasing angular momentum, the width
of the resonance decreases also slightly with angular mo-
mentum.

0.20

0.15

0.65 ~

C. EfFects of angular momentum on halo formation

0.05
1.25

0.00 I I I I I I I I I I I I I I

1.25 1.5 1.75 2

of Fig. 4 with p~ = 0. On the other hand, the small
amplitude radial tune is larger than v, [see Eq. (73)] for

~p~~ ) 1. When the amplitude of the radial motion in-
creases from ro with energy E ) 2v„(1+p ), which is
the potential energy at the envelope core, the particle
orbit enters the KV core and experiences space charge
force and, therefore, the radial tune decreases. As the
radial amplitude becomes large, e.g. ,

r" & 2R0, where the
particle orbit stays mostly outside the envelope core, the
effect of space charge becomes not important, and the
particle radial tune approaches 2Iti/2vr. The radial tunes
for p~ = 1.25 and 2.3 in Fig. 13 display this characteristic
clearly. Appendix D provides an approximate solution by
employing a superposition of linear solutions in two dif-
ferent regions in order to simulate the nonlinear detuning
arising from the Coulomb potential.

Note here that the radial tune of a test particle is
nearly independent of the angular momentum for v"

1.5RO. On the other hand, the radial tune of a particle
with angular momentum p& ) 1 can satisfy a parametric
resonance condition at two regions of phase space. For
example, there are two phase space trajectories that sat-
isfy the radial 1:1 resonance condition for p~ = 2.3 (see
Fig. 13). The bifurcation of these resonances is similar to
that of a double rf system [15]. The resonance strengths
for these resonances are generally very small because
their trajectories enter the core only slightly. Neverthe-
less, local chaos can be created when the resonance over-
lapping condition is satisfied. Beyond i & 1.5R0, the
radial tune is nearly identical for particles with different
angular momenta, thus the single plane 2:1 resonance
condition of Sec. III B 1, which is equivalent to the radial

FIG. 13. The upper plot shows Q„/v, vs i, where r" is
the maximum radial amplitude of a Hamiltonian torus, with
K = 2 and angular momenta p~ = 0.65, 1.25 and 2.3, respec-
tively. For p~ & 1, the particle tune is nearly independent of
angular momentum. The lower plot shows the corresponding
strength function Gq vs r.
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FIG. 14. The radial Poincare surfaces of section in (p„,r)
with rc = 2, p~ = 0.65. The upper plot, with M = 0.04, ex-
hibits the primary and the secondary resonances. The lower
plot at M = 0.16 displays global chaos resulting from over-
lapping resonances.

To study the effects of the KV envelope oscillations
on particle motion with angular momentum, we study
the Hamiltonian dynamics of Eqs. (59) and (60) with
Y/Bp = 'M cos v, 0, which approximate the coupled KV
and Hill's equations. In this 1D model of radial os-
cillations, the Poincare surface of section can be ob-
tained by plotting phase space points at a time inter-
val of Ae = 2m/v, . The radial tunes for K = 2 and

p~ = 0.65, 1.25, and 2.3 are shown in Fig. 13. Because
the radial tune is relatively independent of the angular
momentum of a particle with ~p~~ ( 1, conditions and
phase space locations of parametric resonances are also
independent of the angular momentum. Chaos and halo
formation can be analyzed in a similar fashion as that
of particles with zero angular momentum (see Sec. III).
The upper plot of Fig. 14 shows the Poincare surfaces of
section in (p„,r) phase space for r. = 2 and p~ = 0.65
(see Fig. 13) with the modulation amplitude M = 0.04.
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Note particularly that the primary radial modes, 1:1,2:1,
and 3:1 are clearly visible. The secondary 3:2 resonance
resulting from the combination of the 1:1 and 2:1 pri-
mary resonances is clearly visible at this small modu-
lation amplitude. The local chaos around the envelope
core presumably arises from the overlapping secondary
5:2 resonance with the primary 3:1 resonance. A global
chaos can also result from the overlapping radial 1:1res-
onance and the local chaos near the envelope core. For
example, global chaos appears in the lower plot of Fig. 14
where M = 0.16 is used in our simulation. This is to be
compared with that of Fig. 10, where there is no global
chaos for K = 2 until M » 0.4.

The radial tune of a particle with angular momentum

~p~~ ) 1 exhibits a minimum as a function of r" (see
Fig. 13). This implies that there are two separate ra-
dial orbits, which can satisfy the resonance condition,
nQ„(i) mv„ for the radial n:m resonance. Figure 15
shows the radial Poincare surfaces of section for r = 2
and p~ = 2.3 with M = 0.04 (upper) and 0.16 (lower),
respectively. For M = 0.04, we observe two 1:1 reso-
nances that correspond to Q„/v, = 1. The third SFP
corresponds to the minimum of the radial potential of
Eq. (61). When the modulation amplitude is increased
to M = 0.16, the inner 1:1resonance has bifurcated. The
reminiscence of the 1:1resonance remains visible.

For particles with angular momentum slightly larger
than one, the radial tune decreases very fast near i Bo
(see Fig. 13), the radial parametric resonances are more
densely packed in the radial phase space (p„r).Local
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FIG. 16. The Poincare surfaces of section K = 2, p~ = 1.25
for M = 0.04 (upper) and 0.16 (lower), respectively. The
inner 1:1 resonance is too weak to be visible for M = 0.04.
When the modulation amplitude is increased, higher order
resonances cause local chaos near the envelope core.
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chaos can result from a smaller perturbation due to en-
velope oscillations. In fact, because the perturbation due
to envelope oscillations is relatively large, overlapping
higher order parametric resonances are the main reason
of local chaos. Figure 16 shows radial Poincare surfaces
of section with parameters K, = 2, p& ——1.25 for M = 0.04
(upper) and M = 0.16 (lower), respectively.

When the angular momentum becomes very large, e.g. ,

p~ & p&, where p~ 2.5 for K = 2, the radial tune
would never cross the radial 1:1 resonance. Does this
mean that the halo is complete suppressed~ The answer
is yes and no. For the case that p~ && p~, where p~,
is the critical angular momentum, then the halo is com-
pletely suppressed. However, when pz is just above p&,
the halo can be generated by the second order pertur-
bation. This means that a large envelope modulation
can produce a nonlinear detuning through the second or-
der canonical perturbation. In this process, the radial
1:1 resonance (halo) can exist. Numerical simulations
indeed support this observation. Nevertheless, we can
conclude that particles with large angular momenta are
less susceptible to envelope oscillations. If one can cre-
ate a dominant KU beam with non-KU particles having
large angular momenta, then the beam transport is less
prone to halo formation.

FIG. 15. The Poincare surfaces of section K = 2, p~ = 2.3
for M = 0.04 (upper) and 0.16 (lower), respectively. For
M = 0.04, there are two 1:1resonances in accordance with the
radial tune shown in Fig. 13. When the modulation amplitude
is increased, higher order perturbation can become important
to cause the inner 1:1 resonance to bifurcate.

VI. CONCLUSION

In conclusion, the beam transport problem is studied
in a one-way self-consistency model by solving the KV
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envelope and Hill's equations in Hamiltonian dynamics.
Parametric resonances of the particle Hamiltonian can
be generated by a mismatched envelope oscillations. The
resonance condition is found to depend only on a single
effective space charge parameter v, i.e., the ratio of the
space charge perveance parameter to the phase advance
of the focusing field. Due to the mismatched beam en-
velope oscillations, the 2:1 resonance occurs at all space
charge perveance parameters.

Our theoretical analysis agrees well with numerical
simulations. We prove analytically that the linear Math-
ieu resonance plays no role in the halo formation, where
halo particles are defined as particles that orbit the 2:1
resonance islands. Using our approach, the condition for
the halo formation is derived based on the existence of
tail particles outside the arti6cial KV envelope function.

From our numerical simulations, the critical Poincare
energy for the halo particle exhibits a first order phase-
transition-like behavior when plotted as a function of the
envelope mismatch parameter. This erst order phase-
transition-like behavior can be unambiguously identified
as the onset of global chaos. The relation between the
critical mismatch parameter M and the effective space
charge parameter K is obtained from numerical simula-
tions. Effects of global chaos on halo formation are dis-
cussed. Effects of angular momentum on halo formation
are examined, and some experimental tests of the theo-
retical model are suggested. These experiments are im-
portant to confirm the validity of the space charge model
by studying the KV and Hill's equations.

In this paper, we have studied only the halo formation
for space charge dominated beams in a uniform focusing
channel. This method can readily be applied to study the
beam transport problems in a solenoidal periodic focus-
ing channel and the quadrupole focusing channel, where
Floquet transformation is needed before analytic solution
can be obtained. Extension of the present work is highly
desirable for future studies.
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APPENDIX B:THE SPACE CHARGE FORCE

Within the KV equilibrium envelope model, test parti-
cles obey Hamilton's equations of motion (23). The space
charge force experienced by test particles has a cusp at
y = R, i'-, F..= Fi(y)8(R —lyl) + F.(y)8(lyl —R),
where Fq(y) and F2(y) can be obtained easily from
Eq. (23). The 8 function is very unfriendly in the per-
turbation treatment. However, we can make a successive
averaging approximation to the space charge force with

1 1 1

F.»(y) F~(y) F2(y)
+ (Bl)

The space charge f'orce can now be written as

F,„=F,„q+ EFq8(R —
~y~) + AF28([y~ —R) . (B2)

The averaging procedure can be performed iteratively on
the remainder force AEi, LE2. This successive averag-
ing procedure converges rapidly. The model presented in
Eqs. (24) and (26) agrees well with the limiting case of
the averaging procedure.

APPENDIX C: NUMERICAL SIMULATIONS

Numerical results are obtained by solving Hamilton's
equations of motion for the envelope and particle Hamil-
tonians simultaneously, i.e.,

H„=—p + —y — y 8(R —
~y~)

1 2 1 2 K

4x 4x
t'r K y)—

I

—+-»= I8(lyl —R)
i 2vr 7r R)

Here, the new Hamiltonians depend only on a single space
charge parameter v = K/2p. Thus the KV space charge
model in a uniform focusing channel is a single parameter
Hamiltonian system.
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APPENDIX A: SYMMETRY PROPERTIES OF
THE HAMILTONIANS

Making a scaling transformation: 0 = p0 for the time
coordinate, (y, p) = (~py, ) for the conjugate parti-
cle phase space variables, and (R, I') = (~pR, ) for
the conjugate envelope phase space variables, the new
envelope and particle Hamiltonians becomes

1 -2 1 -2 ~ — 1H, = —P + —A ——lnB+4' 4~ 4~A~

We use a fourth order symplectic integrator to solve these
one-way coupled second order differential equations to
obtain the phase space maps. The Poincare surface of
section is obtained by plotting one particle phase space
point whenever the envelope phase space recurs. The
Poincare surface of section effectively removes uninterest-
ing time dependent component of phase space maps while
retaining dynamic resonances. The result is equivalent to
the resonance rotating frame discussed in Sec. III B.

The Poincare surfaces of section shown in Figs. 6—9
and 12 correspond actually to the phase space map of pp
vs yg. The parameters are chosen as Eg ——1, pf ——1,
while the emittance e is varied to obtain a proper space
charge parameter K = Ks/2pye. The phase space area of
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the envelope ellipse is proportional to +e. This choice of
parameter will maintain the Poincare surfaces of section
having nearly identical radius. This is evident that Bo ——

Bg is almost identical for all cases.

APPENDIX D: AN APPROXIMATE SOLUTION
TO PARTICLE MOTION WITH ANGULAR

MOMENTUM

Although Gluckstern (see Eqs. (2.11)—(2.16) of
Ref. [14]) obtained analytic solution by employing Bo-
goliubov averaging method. on the Coulomb potential,
his result did not give rise to a cusp in the particle tune
around r" = Bo. Since the cusp in the particle tune is
important in producing local chaos due to higher reso-
nances, we would like to explore an alternative approxi-
mation scheme, which can provide us a better represen-
tation of the particle tune.

Let the Hamiltonian H&0 of Eq. (59) be approximated
by H„with

where two of the parameters A, B, and C can be de-
termined by the continuity conditions at r = Ro, i.e. ,

A = —2C/R02 and R = C/Ro4T. he remaining parameter
C can be best adjusted to obtain a proper particle tune
near the resonance region.

In this model, the minimum radius position of the po-
tential well is given by

(D2)

which agrees reasonably well with that of Eq. (72) pro-
vided that C is properly chosen. The corresponding min-
imum energy is

vw lp~] if /p~/ & 1,

(1+C) (p' + C) —C

H„=—
~
p„+—

~
+ 7rv„r4~g" r'

1 C
A + Br' + —0(r —R,),4' r' (Dl) For a given energy, the solutions for the approximate

Hamiltonian H„aregiven by

E2/v2 —p2 cos(2v„8+y;) (r & Ro),

for the particle inside and outside the envelope radius,
respectively. A solution to the approximate Hamiltonian
is then obtained by matching the inner and outer solu-
tions at r = Bo. A trajectory inside the envelope radius
will have a radial tune 2v„and a trajectory outside has a
radial tune of 2v„gl+ C. A trajectory with mixed inner
and outer paths will have a tune determined by a proper
matching condition. The parameter C can be chosen to
best fit the particle tune near the important resonance
region. We thus approximate the detuning due to the
nonlinear Coulomb potential by varying components of
two linear oscillations.

Using Hamilton's equation of motion, the radial tune

Q, of a Hamiltonian torus is given by

are, respectively, the number of periods that the par-
ticle stays outside and inside the envelope core in one
complete radial oscillation. For a given energy E, the
maximum radial amplitude of the torus can be ob-
tained from Eq. (D4). The asymptotic radial tune at
E ~ oo is Q„-+2v„gl+ C. A satisfactory choice
of the parameter C from our numerical calculations is
C 2dI" /(gr2 + 1 —r), which simulates the particle
tune reasonably well in the region of i/Ro E [1,2.5). The
choice of this parameter gives the following asymptotic
property:

where

2' ) if E & 0.5'(1+p ),
1/(N + N, ), if E & 0.5'(l+ p ),

Q„m2vygl+ C = 2~d —. (D7)

N
1

27l'vygl + C

x arccos

N,. = 1
27l Vy

arccos
Q2 ~2p2

u v'

(D6)

-(E —v.)

(E + Cv„)2 —v2(1+ C) (p2 + C)

Our numerical simulations show that d 0.65—0.7 pro-
vides satisfactory approximation to the nonlinear detun-
ing. The choice deviates &om the exact asymptotic value
of 2(p/2vr) by 14—20%. The resonance strength function,
obtained analytically by using the approximate solutions,
agrees also reasonably well with the exact solutions.
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