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A method for generating large-amplitude nonlinear plasma waves, which utilizes an optimized
train of independently adjustable, intense laser pulses, is analyzed in one dimension both theoret-
ically and numerically (using both Maxwell-Quid and particle-in-cell codes). Optimal pulse widths
and interpulse spacings are computed for pulses with either square or finite-rise-time sine shapes.
A resonant region of the plasma wave phase space is found where the plasma wave is driven most
efficiently by the laser pulses. The width of this region, and thus the optimal finite-rise-time laser
pulse width, was found to decrease with increasing background plasma density and plasma wave am-
plitude, while the nonlinear plasma wavelength, and thus the optimal interpulse spacing, increases.
Also investigated are damping of the wave by trapped background electrons and the sensitivities
of the resonance to variations in the laser and plasma parameters. Resonant excitation is found to
be superior for electron acceleration to either beat-wave or single-pulse excitation because compa-
rable plasma-wave amplitudes may be generated at lower plasma densities, reducing electron-phase
detuning, or at lower laser intensities, reducing laser-plasma instabilities. Practical experimental
methods for producing the required pulse trains are discussed.

PACS number(s): 52.75.Di, 52.40.Nk, 52.35.Mw

I. INTRODUCTION

The generation of large-amplitude, relativistic plasma
waves is a subject of much current interest [1] because
of its potential use for ultrahigh-gradient electron accel-
eration [2]. While conventional rf-driven accelerators are
limited to fields ( 1 MV/cm, plasma accelerators have
been shown experimentally to support gradients & 100
MV/cm [3]. The maximum axial electric field of a rel-
ativistic plasma wave, as predicted by one-dimensional
(1D) cold fluid theory, is the "wave-breaking" field [4],
Ewn = Ep g2 (p&

—1), where [5] Ep ——(mcio„/e).
0.96n, p [cm ] V/cm, io„= (4ne n, /pm, ) ~ is the elec-
tron plasma kequency, n 0 is the ambient electron den-
sity, pr = (1 —v„/c ) ~, and v„ is the phase velocity of
the plasma wave. For a laser-driven, plasma-based accel-
erator, p„pg io/io& )) 1, where pg = (1—v /c )
vg is the group velocity of the laser, and u is the laser
frequency. For a laser of wavelength A 27rc/io = 1 pm
and a plasma of density n 0 ——10 cm, p~ 300,
Ep —100 MV/cm, and EwB 2.5 GV/cm.

Until recently, only two major types of laser-driven,
plasma-based accelerators had been investigated: the
plasma beat-wave accelerator (PBWA) [2,3] and the laser
make-field accelerator (LWFA) [2,6—8]. In the PBWA,
two laser beams of &equencies u~ and u2 are optically
mixed in a plasma to produce a laser beat wave of &e-
quency L~ = ~q —uq, i.e., in eKect a train of fixed
equally spaced pulses of equal pulse widths. By adjust-
ing the beat frequency and/or the plasma density such
that Lw wz, the laser beat wave can resonantly drive
a large-amplitude plasma wave. As the plasma-wave am-

plitude grows, however, nonlinear eKects cause the wave-
length of the plasma wave to increase and, hence, the
resonant frequency is shifted away from Lu. Eventu-
ally the relative phase between the laser beat wave and
the plasma wave becomes vr/2 out of phase and the beat
wave no longer drives the plasma wave to higher am-
plitudes. This resonance detuning due to the increase in
the plasma wavelength ultimately limits the plasma-wave
amplitude in the PBWA. In the LWFA, the ponderomo-
tive force associated with the gradients in the intensity of
a single, ultrashort laser pulse [9] drives a plasma-wave
"wake field. " The maximum plasma-wave amplitude is
obtained when the pulse duration r and/or plasma den-
sity is adjusted such that r 2vr/io„. The plasma-wave
amplitude increases as the laser intensity I increases and
the laser pulse length decreases (i.e. , as the density in-
creases). Hence, in the LWFA, the plasma-wave am-
plitude is limited by the maximum laser intensity and
the minimum laser pulse length. that can be obtained by
laser technology. Currently, these values are limited to
I 10 W/cm and 7 50 fs [9].

Recently, the self-modulated LWFA has been sug-
gested [10,11]. Here, a single laser pulse is incident on a
plasma with a density that is higher than the "resonant
density" such that the laser pulse duration is now several
plasma periods, i.e. , 7 ) 2vr/io„. Due to a self-modulation
instability [12], the pulse breaks up into multiple pulses,
each of which is "resonant. " Although higher plasma
densities and the hig¹intensity multiple-pulse structure
lead to higher wake-field amplitudes, they are diKcult to
achieve simultaneously due to plasma defocusing [13]. In
simulations of the self-modulated LWFA [10], the electron
energy gain was observed to be limited by phase detuning
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between the accelerated electrons and the plasma wave.
Electron-phase detuning is a fundamental limitation in

all plasma-based accelerators, i.e. , accelerated electrons
(with v + c) outrun the plasma wave (with v„vg ( c).
Acceleration will cease once the electrons phase advance
a distance (v —vz)t Az/2 relative to the plasma wave,
where A„= 2vrc/&u„ is the plasma-wave length. In the
laboratory kame, this corresponds roughly to a detun-
ing distance of J q p A„, where v = c has been as-
sumed. It can be shown [14] that the maximum energy
gain ATVq of a trapped electron in a 1D plasma wave of
amplitude E, is AW~ 4m, c p„E,/Eo for E, /Eo (( 1,
and in the noiilinear limit, KWq 2m, c p (E,/Eo)
for E, /Eo )) 1 [14]. For example, for a fixed value of
e = E,/EwB = 0.25 and a laser wavelength of A = 1 pm,
AW& 4.6 GeV for n, o

——1ois cm s (Ezra = 7.7
GV/cm), whereas b, Wq 4.6 TeV for n, o

——10is cm
(EwB = 2.5 GV/cm), where p~ u/u„)) 1 has been
assumed. Notice that for a 6xed E', ATVg 4fA~c p 6

n,o, assuming E, /Eo )) 1 and p2 )) 1. Hence, at the
high densities required either for self-modulation or for
the use of an ultrashort pulse in the standard MFA, p~
is relatively low and acceleration is limited by electron-
phase detuning. As will be discussed below, the accelera-
tion at high density is limited not only by phase detuning
but by the pump depletion length Lg.

In a previous paper [15], we proposed an alternative
accelerator concept, which we call the resonant laser-
plasma accelerator (RLPA), that combines the virtues
of these others, but has the following additional advan-
tages: (i) by utilizing a train of laser pulses with indepen-
dently adjustable pulse widths and interpulse spacings,
which are varied in an optimized manner, resonance with
both the changing plasma-wave period and phase reso-
nance width can be maintained in the nonlinear regime,
and the maximum plasma-wave amplitud. e is achieved;
(ii) lower plasma densities can be used, thus avoiding
electron-phase detuning; and (iii) lower peak laser in-
tensities can be used, thus allowing for a reduction of
laser-plasma instabilities. In this paper we investigate
the RLPA concept [15—17] in greater detail, including
important issues such as (1) the sensitivities of the wake
field to changes in the laser and plasma parameters, (2)
comparisons with the PBWA and LWFA, and (3) damp-
ing of the wave by trapped electrons.

This paper is concerned with determining the charac-
teristics of the plasma wave generated by a nonevolving,
optimized laser pulse train in 1D. The laser intensity pro-
file of the pulse train is assumed to be nonevolving and
a function of only the variable ( = v„t —z, where z is
the axial propagation distance and v„= v~ is assumed.
Neglected are various effects that could degrade the evo-
lution of the laser pulse train, such as diffraction, pump
depletion, and laser-plasma instabilities.

In the absence of some form of optical guiding, a laser
pulse will difFract after propagating a distance character-
ized by the Rayleigh length, Z~ = mro2/A, where ro is
the minimum laser spot size at focus. For a tightly fo-
cused laser pulse, ZR can be relatively short. However, it
has been observed both numerically [10] and experimen-
tally [18] that a preformed plasma channel can be used

to guide the laser pulse and prevent diKraction.
Pump depletion refers to the process by which the

laser pulse loses energy as it generates a plasma wave.
A rough estimate for the pump depletion length Ig is
given by equating the energy left behind in the plasma
wave to the initial energy in the laser pulse train, i.e. ,
LgE cvq~qEL. Here, it is assumed that the laser pulse
train consists of pulses with equal intensities (EL, is the
amplitude of the electric field of the laser pulse) and the
sum of the pulse durations is 7q q. As an example, con-
sider the sine pulse train described in Sec. IIIB. Here,
EL, = 38 GV/cm, vi~q ——2.2 ps, and E, = 0.18 GV/cm,
which implies a depletion length of Lg ——30 m. In order
to achieve large energy gains LTV, large pump depletion
distances must also be obtained LTV = zE, & L~E,
where z is the acceleration length. In the limit p~ )& 1,
the energy gain after a pump depletion length scales
roughly as one over the density, i.e. , LqE, 1/n, o.
Hence, for high-energy gains, operating at lower plasma
densities is required in order to avoid pump depletion,
just as with phase detuning. To obtain energy gains
larger than the pump depletion limit, multiple acceler-
ation stages appear necessary. Alternatively, the use of
an active medium has been suggested as a method to
overcome pump depletion [19].

Several laser-plasma instabilities could degrade the
laser pulses as they propagate, such as stimulated Ra-
man scattering, modulation and 6lamentation instabili-
ties, and parametric coupling to ion modes. Typically,
the growth rates of these instabilities increase with in-
creasing laser intensity. Since the use of multiple laser
pulses reduces the peak intensity required to drive a
large-amplitude plasma wave, the growth rates for the
various instabilities can be reduced. Furthermore, the
analyses of these various instabilities generally assume
long uniform pulse profiles. It is not clear how a pulse
train structure will afFect the behavior of the instabilites.
It may also be possible to reduce and/or eliminate some
instabilities by introducing pulse-to-pulse phase incoher-
ence of the high-&equency laser oscillations within the
train.

The analysis and numerical examples presented in this
paper are based on a 1D model. The validity of the 1D
model of plasma-wave excitation requires that do ) Ap,
where do ——2ro is the transverse laser spot diameter. The
above discussions on electron-phase detuning and pump
depletion indicate that in order to achieve large single
stage energy gains, low plasma densities are preferred.
To achieve high laser intensities at low plasma densities
while remaining in the 1D limit implies ultrahigh laser
powers. For example at n, o

——10 cm, A„= 330 p,m,
and to obtain an intensity of I 10 W/cm requires
a laser power of P & I7r(do/2)2 850 TW, assuming
d(} & Ap Such powers can be obtained by the petawatt
(10 W) laser systems currently under construction at
Lawrence Livermore National Laboratory [20] and else-
where. Proof-of-principle experiments, however, can be
performed in the 1D limit at higher plasma densities and
lower intensities with smaller but shorter pulse laser sys-
tems. For example, at n 0

——5 x 10 cm, A„= 47 p,m,
and an intensity of I 5 x 10i~ W/cm requires P & 8.5
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TW, which can be obtained with state-of-the-art "table-
top" systems.

In Sec. II, analytic solutions and sample calculations
for a square pulse train are presented to demonstrate
the advantage of the use of multiple pulses in terms of
amplitude and energy efIiciency. In Sec. III, numerical
results are presented of pulse trains of both the square
and sine shapes. Comparison of the difFerent acceleration
schemes suggests that the RI PA is more eKcient than ei-
ther the PBWA or the LWFA (Sec. III B 2). We also dis-
cuss the sensitivities of the wake fields produced by the
various plasma-wave generation schemes to changes in
the laser and plasma parameters, such as laser intensity
(Sec. III 8 6), laser. pulse widths and interpulse spacings
(Sec. IIIB4), and plasma density (Sec. IIIB 5). Kinetic
effects investigated by use of a particle-in-cell (PIC) code
simulation are discussed in Sec. IV. Pulse-shaping tech-
niques are discussed in Sec. V. Conclusions are presented
in Sec. VI.

II. ANALYSIS

The laser-plasma interaction is modeled by the rela-
tivistic Maxwell-fluid equations. The laser pulse is de-
scribed by the normalized transverse vector potential,
a, = eA~/m, c. The laser envelope ~a~ is assumed to
be nonevolving and a function of only ( = v~t —z,
where vg is the group velocity (assumed constant), i.e. ,
the "quasistatic" approximation [8]. Circular polariza-
tion is assumed, i.e. , a = a ((). The quantity a2 is
related to the laser wavelength A and intensity I by
a 6 x 10 A [pm]I ~ [W/cm ]. The plasma re-
sponse is described by the normalized electrostatic po-
tential, P = eC'/m, c2, which in the 1D limit obeys the
nonlinear Poisson equation [15—17,21]

(1+a')
~2(1 + P)2)

where Pg = v /gc, ps = (1 —P2) i) 2, and k„= u„/c is
the plasma wave number. In deriving Eq. (1), P was as-
sumed to be a function of only (, i.e., v„vg. In the
limit a «1, pg ——u/wz (nonlinear corrections are dis-
cussed in [22]). As previously mentioned, the laser pulse
structure is assumed to be nonevolving. This ignores
various efFects, such as diffraction, pump depletion, and
laser-plasma instabilities.

Square pulses

Several properties of the plasma wave can be deter-
mined analytically &om Eq. (1) for a series of square laser
pulses. When a is constant, Eq. (1) can be integrated
to yield

x —2p xp x

where x = 1 + P, p~ ——(1 + a ) ) and xo is an initial
condition, i.e. , x = xo at x' = 0. Here, x' = k„dP/d(
and is the normalized axial electric Geld of the plasma
wave, i.e. , x' = E, —= E,/Eo, where Eo ——m, c k„/e
(sometimes referred to as the cold, nonrelativistic wave-
breaking field [5]).

Consider an optimized square pulse train where a is
the amplitude of the nth pulse. For the first pulse, Eq.
(2) is solved with a = ai and the initial condition xo ——

x;„, = l. Equation (2) is integrated from the front
of the pulse to the back. The optimal pulse length Lq is
determined by the ( distance required to reach maximum
potential within the pulse, i.e., x' = 0 and x = x
The wake behind the first pulse is given by solving Eq.
(2) with a2 = 0 using the initial conditions x = 0 and
xp ——x „,. The potential of the wake oscillates betweenx, and x;„,. The distance required to reach the
minimum potential, x' = 0 and x = x;„,, is defined
to be one half the nonlinear plasma wavelength, A~, /2.
The optimal spacing between the first and second pulse
is determined by placing the &ont of the second pulse at
the position in the wake of the Grst pulse for which x' = 0
and x = x;„,. Hence, the optimal spacing between the
first and second pulse is some odd multiple of A~, /2. In
general, for an optimized square pulse train, it can be
shown that the amplitude of the wake behind the nth
pulse oscillates between x;„&x & x, where

Here, p~ = (1+a ) ) and x;„,:—1. Furthermore, the
maximum electric field amplitude behind the nth pulse
is given by

2 2
/

2
(

2
/ 2)1/2

(5)

where E „=E „ /Eo. In deriving Eqs. (3)—(5),
the spacing between pulses and the pulse lengths are as-
sumed to be optimized, such that the nth pulse begins at
x = x;„„,and ends at x = x „„.Both the optimal
width L of the nth pulse and the nonlinear wavelength
of the wake behind the nth pulse (and, hence, the optimal
spacing between pulses) increase with increasing n. Wave
breaking occurs when the electron fIuid velocity becomes
equal to the plasma-wave phase velocity vg. When this
occurs, the electron fluid density becomes singular. From
Eq. (1), wave breaking occurs when x;„m 1/pg, which
implies x „~xvvB = (2p2 —1)/pg. This corresponds
to a wave-breaking electric field of E~2B ——2(p~ —1), or
E, = EwB [4].

The above results, i.e. , Eqs. (3)—(5), are valid for laser
pulses with arbitrary group velocities vg & c. Sublumi-
nous group velocity efFects, vg ( c, become important
at high plasma densities, since pg w/tu„1/n, o

i/2
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In the limit vg
——c, Eqs. (1)—(5) simplify significantly

[15—17]. Numerical solutions to Eq. (1) indicate that for
x2 «xw2B and p )) 1, Eq. (1) can be approximated by
the limit Pg -+ 1, i.e. , [7,8]

2x" = p~/x' —1, (6)

where the prime denotes k„d/d(. For a series of opti-
mized square pulses, analytic solutions can also be readily
obtained &om this reduced equation. In particular,

2 2 . . . 2
Xmax~ fJ1 fJ 2

1/2 —1/2Emax max xmax

(7)

(8)

0 I I I I I I I I I I

5 10 15
aT' (=nap')

20

and x;„=1/x „.Furthermore, the optimal width
of the nth pulse I and the nonlinear wavelength of the
wake behind the nth pulse, A~„, are given by

FIG. 2. The ratio of the maximum 6eld achieved with a
train of pulses (Z „„)over that achieved with a single pulse
(E „,) of the same energy versus the quantity az, ——nao for
n = 3, 5, 10, and 100.

L„= (2/kp)x'i „E2(p„), (9)

A"„= (4/k„) x''„-E2(p„),

where E2 is the complete elliptic integral of the second
kind, p = 1 —&~ xmax a pn = 1 —xmax . The
optimal spacing between the end of the nth pulse and the
&ont of the nth + 1 pulse is an odd integer multiple of
A" /2. Note for equal pulse amplitudes, i.e. , ai ——a2 ——

. . . —:ap, x „„=p~"=(1+ap)". Inthelimitx „))
Several recent papers have addressed various aspects of
this problem [15—17].

The maximum normalized electric Beld, E,
x' „=E „/Ep, for an optimized train of n square
pulses of equal amplitudes, is plotted in Fig. 1 versus
the quantity aT nao, using the above analytical re-
sults. For pg )) 1 and x g( x~B, E „ is approx-
imately independent of n o. The curves show the re-
sult for 1, 3, 5, 10, and 100 pulses. Figure 1 indicates
that just a few optimized square pulses are far more ef-
ficient than a single pulse. For example, at n 0 ——10

cm (A = 1 pm, ps 10s, EwB 1.3 GV/cm), three
square pulses can be used with an intensity I = 3.5 x 10
W/cm /pulse (ap ——1.3) and a total pulse train Huence of
Iwt t ——27MJ/cm toproduce E =0.1GV/cm. Here,
wq t is the sum of the pulse durations in the train and
2.7ap 10 A [pm]I [W/cm ]. A single pulse at n, p ——

10is cm s requires I = 3.2 x 10 W/cm (ap ——12),
over an order of magnitude higher intensity than in each
pulse in the train, and a total fluence six times greater
(Irt t ——130 MJ/cm ), to produce this same E . (A low
density was chosen for this example so that Bnite-rise-
time effects could be neglected, as discussed Sec. III B 1.)
Figure 1 indicates that the amplitude-eKciency advan-
tage of multiple pulses increases with increasing number
of pulses n or total laser intensity ao. Figure 2 shows the
ratio of the maximum field achieved with a train of pulses
(E „)over that achieved with an equivalent-energy sin-

gle pulse (E „,) versus a„, demonstrating the energy
eKciency of the RLPA as compared with the LWFA.

III. NUMERICAL OPTIMIZATION

10 A. Square pulses

10
2 = 2

aT = na0
100

FIG. 1. The maximum electric field (E „„)vs the quan-
tity aT ——nao for n = 1, 3, 5, 10, and 100.

Figure 3 shows an example of an optimized square
pulse train (n = 4, ap ——1.2, n, p

——10is cm s), as
obtained by a numerical solution of Eq. (1), in which the
widths and spacing between pulses are varied in order to
maximize x . For numerical reasons, we used nonideal
square pulses that have small but finite rise times, which
is valid —as will be explained in Sec. III B 1—in the limit
of low density, as was used in the example of Fig. 3. It is
found that E, = 0.56 GV/cm for Irt t ——19 MJ/cm .

The laser pulses are optimally located in the regions
where dP/d( & 0. If the laser pulse is located in the
region of dP/d( & 0, it will absorb energy &om, and
reduce the amplitude of, the plasma wave. I ikewise, if it
is in the region of dP/d( & 0, it will impart energy to, and
increase the amplitude of, the plasma wave. Whether or
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electric field (E /Eo)
potential (x-1)
intensity (a )

2-
potential (x- I )

electric field {E /Eo)
density (n/n p 1)
intensity (a )

10

0

—10
0 4 6 S

t—z/c (ps)
10 12 0 1000 2000

t—z/c (fs)
3000

FIG. 3. Numerical solutions for an optimized square pulse
train at n = 10 cm and with ap ——1.2.

not the laser pulse absorbs energy from or imparts energy
to the plasma wave depends on the sign of dgR/dg, where
g~ is the index of re&action. In the limit vg = c, the 1D
nonlinear index of re&action for an intense laser pulse in
a plasma is given by [8,21,23]

rIR - 1 —((u„'/2(u')/(1+ P).

0

(b) . . . . electric field (z /zo)
potential (x-1)
intensity (aI)

tl ',

When drIR/dg ( 0 (i.e. , dp/dg ( 0), the pulse pho-
tons will &equency-up-shift as they propagate; hence,
the pulse absorbs energy from the wave [24,23]. Fre-
quency down-shifting (giving energy to the plasma wave)
requires drIR/d( & 0 (i.e. , dP/d( & 0). Hence, to enhance
the plasma-wave amplitude, pulses are optimally placed
where dP/d( & 0.

When a train that is not optimized is used, for instance
fixed interpulse spacings (as in the case of the PBWA),
x reaches some saturated value before being driven
down by destructive interference when the pulses become
out of phase with the wave, i.e., when they are located in
regions where dP/d( ( 0. This is referred to as resonance
detuning. Within the optimal (absorption) region, the
plasma wave is driven most effectively near P =
(where both the fiuid velocity and density of electrons
are maximum), and least effectively as P m P

B. Sine pulses

The above results are valid in the limits of either in-
finitesimally short rise times, or low density. In prac-
tice, the rise time w„„ofa pulse directly out of a laser
is finite and determined by the bandwidth of the laser
amplifiers; e.g. , currently, the minimum amplified pulse
width is w;„50 fs [25). In order to study the effects
of plasma density and finite rise times on efIiciency, we
now consider pulses with an envelope profile a(() given
by a half-period of a sine function. (That Gaussian pro-
files give qualitatively similar results is verified in other
simulations. )

In Fig. 4(a), we plot the wake field resulting from
single-pulse excitation (I.WFA) including fast oscilla-
tions of the laser pulse. For this example, A~o = 10
cm, ao ——1.2, and the pulse is linearly polarized, i.e. ,

0 1000 2000 3000 4000 5000
t—z/c (fs)

FIG. 4. Numerical solutions for LWFA and RLPA with
sine-shaped pulses: (a) single sine pulse at n, = 10 cm
with ao 1.2 and (b) an optimized sine pulse train at
ne = 10 cm with ap ——1.2.

f. P/asma-tease phase resonance region

Note that whereas with increasing x „, 7 pt for suc-
ceeding square wave pulses increases v ~t A~ /c, the
opposite is true for multiple sine pulses. This difI'erence
arises because, whereas for square pulses 7. is independent
of v„, , for sine pulses w 27;;, . It is more advantageous
to have a short sine pulse width (v (( A~ /c), so that
the highest pulse amplitude is reached near P;„(where

1.4ao 10 A2 [pm]I [W/cm ]. The high-frequency
density fluctuation inside the laser pulse envelope is due
to a fast component of the ponderomotive force at twice
the laser frequency, i.e. , a = (a /2)(1 + cos2k() for
u = acoskg. Figure 4(b) shows an example of a sine
pulse train that was optimized numerically. For the laser
amplitude, only the envelope, averaged over the fast os-
cillations, is shown. For this pulse train, n = 4, ao ——1.2,
n o

——10 cm, and the pulses are linearly polarized.
The first pulse in Fig. 4(b) has an optimum pulse width
7 = 'r &t = 940 fs (resonant with n, o

——10 cm and
ao ——1.2) and the final pulse has w = w zq

——&;„200
fs (Irt i ——2.2 MJ/cm ), which gives E, = 0.18 GV/cm
(e = 0.07). As in the square wave case, A~„, and thus
the spacing between pulses, increases with each succeed-
ing pulse as x increases.
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L- = (2/k~)&'.'..IE2(~/2 Io-) —E2(~i ~-) I (12)

where p sin o.q ——1 —x „.In the limit x~~~ )) 1,
L„, -+ k z „„1/E „and, hence, the resonance
becomes sharper with increasing plasma-wave amplitude
(Q —= &Ivrr/Lres &max~).

Figure 7 shows a plot of L„,/c, which approximates
T pt& versus e, where e = E,/EvvB, for various densities.
Notice that, in the regime of high n 0, finite-rise-time
effects become important at high e, i.e. , 7 pt, decreases
below 7;„as e increases beyond a critical value (e.g. ,
L„,/c ( 50 fs for e = 0.16 at n, o

——10 cm ). Since
pulses with 7 ( w;„50 fs cannot currently be pro-
duced, the later pulses in a train will not be optimized.
Although the later pulses with 7 = 7 ) 7 pf will con-
tinue to increase e, they will do this less effectively than
a train in which all pulses are of optimal widths. In fact,
a pulse train in this high-n, o regime can be less ampli-
tude efEcient than a single optimized pulse at the same
density; i.e., a greater I7t t is required for the pulse train
to achieve a given E, at fixed n 0. But, as will be shown
in Sec. IIIB4, the reduction in eKciency for pulses with

it is most elfective in driving the plasma wave), than
to have a long sine pulse width (w AIv„/c), so that
the pulse is driving the wave for a longer time, albeit
mostly when it is less efFective (away from P;„). Sine
pulses are found to be more effective than square pulses
for this same reason. For the later sine pulses, 7 p& is
found to be approximately given by the width of the re-
gion between where P ( 0 and dP/d( ) 0, which defines
a "phase resonance width" L, , for finite-rise-time pulses
(see Fig. 5). The physical origin of L„, is that in this
region (i) the ponderomotive force of the laser pulse is in
the right phase with the electron motion to give energy
to the plasma wave and (ii) the density of electrons with
which the laser pulse can interact is highest. The latter
is clearly seen in Fig. 6, which is the same as Fig. 4(b),
except the plasma-wave density is plotted instead of the
electric field.

For the wake behind the nth pulse, L„, can be deter-
mined from Eq. (1) in the limit vs = c,

8,
Q

6

4

density (n/n, 0-1)
potential (x—1)
intensity (a*)

II

II
'I

I I,

Q
N

gj

longer than optimal 7. is more than compensated by a
reduction in the sensitivity of the wake-field amplitude to
changes in A~. Furthermore, high n 0 is unfavorable for
electron acceleration because of electron-phase detuning,
ATVq e n, o in the E )) 1 and p )) 1 regime, as
will be discussed in greater detail in the next subsection.

S. E~ciency cosnJInrison betrIIeen RLPA and LWEA

Figure 7 indicates that, for low n, o and up to the
previously mentioned critical value of e, the condition

L„,/c )7;„50fs can be satisfied for all of the
pulses in a train [as was the case of Fig. 4(b)]. Conse-
quently, multiple sine pulses in this regime are found to
be similar to ideal square pulses in that a pulse train is
more amplitude efBcient than a single pulse at the same
density. Specifically, 8 times higher intensity (ao ——3.4,
or I = 1.6 x 10i W/cm [26]), corresponding to 2.5
times more fluence (I7.tet ——5.6 MJ/cm ), is required of
a single pulse (7 = w zt ——700 fs for n, o

——10i cm ) to
reach the same value of E, (0.18 GV/cm) as is reached by
the train of Fig. 4(b). Reducing the intensity required to

1000 2000 3000 4000 5000
t —z/c (fs)

FIG. 6. Numerical solutions for the RLPA with sine-shaped
pulses at n = 10 cm and ao ——1.2, showing plasma-wave

16 —3

density instead of electric 6eld.
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FIG. 5. Legend explaining the definitions of various opti-
mization parameters.

FIG. 7. Plot of I„,/c vs e for various densities. Fi-
nite-rise-time effects are important for L„,/c ( Tm;„.
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TABLE I. A summary of the various laser, plasma, and acceleration parameters that were found
in the comparison between the sine pulse train (first column) and the single sine pulse with the
same plasma density (second column) and the single sine pulse with higher density (third column).

Plasma density n, (cm )
Wave-breaking field Ewe (GV/cm)
Longitudinal field E (GV/cm)
Plasma wavelength A„(pm)
Laser field Er, (GV/cm)
Laser wavelength A (pm)
Laser pulse width r (fs)
Laser intensity ap
Laser intensity I (W/cm )
Laser power [P ) Im(A„/2) ] (PW)
Total laser fiuence [Ir~ ~] (MJ/cm )
Dephasing length Li (cm)
Pump depletion length Lq (cm)
Total energy gain AW (TeV)

Train (4 pulses)
1016

2.4
0.18
330
38
1.0
940-660-400-200
1.4/pulse
2 x 10 /pulse
1.7
2.2
22x10
3.0 x 10
0.4

1 pulse

10
2.4
0.18
330
110
1.0
700
12
1.6 x 10
14
5.6
2.2 x 10
7.8 x 10
0.4

1 pulse
1018

7.7
0.18
33
22
1.0
90
0.5
7x10
6 x 10
0.031
2.2
40
4.2 x 10

reach large plasma-wave amplitudes also reduces strongly
driven instabilities, such as stimulated Raman scatter-
ing, self-focusing, or Blamentation, which disrupt either
the plasma wave or the laser beam. Pulse-to-pulse phase
incoherence of the high-&equency laser oscillations can
also reduce instabilities. A single pulse with the same
intensity and pulse width as the first pulse in Fig. 4(b),
corresponding to 0.43 times the laser fluence (I7i t ——2.4
MJ/cm2), results in a 3.9 times smaller E, (46 MV/cm).

In order to drive the same E, with the same I as a
sine pulse train, a higher n 0 must be used with a single

sine pulse. (Recall that for a single pulse, E, n, o I for1/2

ao ( 1.) Thus, the same value of E, = 0.18 GV/cm as
is reached by the train in Fig. 4(b) is obtained by a less
intense single pulse (ao ——0.7) with 7 = T &t = 90 fs at
n, o ——10is cm s, and with 70 times less energy (I7'i
30 kJ/cm ). The maximum energy gain, as determined
by electron-phase detuning, is LTV& ——400 keV for the
single pulse. Since energy gain favors low n o, the pulse
train in Fig. 4(b) can accelerate an electron to an energy
that is orders of magnitude greater; i.e., AWq ——400

GeV, i000 times greater than the single pulse. Thus,
a pulse train of equivalent intensity at either equal or
lower n, o can accelerate an electron to greater energy
than a single pulse [27]. Table I gives a summary of the
various laser, plasma, and acceleration parameters that
were found in the above comparison between the sine
pulse train and the single sine pulse. Table II gives the
same parameters found in the comparison between the
square pulse train and the single square pulse discussed
in Sec. IIIA.

8. Efficiency comparison betuieen RLPA and PBWA

Thus far, the RLPA concept has been compared only to
the LWFA; in this section, it is compared to the PBWA.
In the example of Fig. 8(a), four beat pulses were as-
sumed with amplitudes ao ——1.2 in a plasma of den-
sity n, o ——10 cm . In this case, the unperturbed
plasma-wave frequency was used for the beat frequency
in a PBWA pulse train, Au uz. However, as expected

TABLE II. A summary of the various laser, plasma, and acceleration parameters that were found
in the comparison between the square pulse train and the single square pulse with the same plasma
density.

Plasma density n, (cm )
Wave-breaking field Ewe (GV/cm)
Longitudinal field E' (GV/cm)
Plasma wavelength A„(pm)
Laser wavelength A (pm)
Laser pulse width r (ps)
Laser intensity ao
Laser intensity I (W/cm )
Laser power [P ) I7r(A„/2) ] (PW)
Total laser fluence [Iatot] (MJ/cin )
Dephasing length Lq (cm)
Pump depletion length Lq (cm)
Total energy gain EW (TeV)

Train (3 square pulses)
1015

1.3
0.1
1000
1.0
2-2.5-3.1
1.3/pulse
3.5 x 10 /pulse
27
27
11x10
3.0 x 10
3

Single pulse
1015

1.3
0.1
1000
1.0
4.1
12
32x10
250
130
1.1 x 10
15x10
11
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in this nonlinear regime, resonance detuning between
the plasma wave and the PBWA laser train is observed.
Therefore, for a more reasonable comparison, the pulse
width for the PBWA needs to be optimized for a given
plasma density, as was done for the RLPA, but in this
case with the constraint that the pulse widths, pulse am-
plitudes, and interpulse spacings are kept constant for
all pulses in the train. The PBWA optimized in this
manner is shown in Fig. 8(b). A beat-wave wavelength
greater than the one corresponding to the unperturbed
density A„ is found to be optimum [28], compensating for
the increase in the nonlinear wavelength A~ that arises
from the increase in plasma-wave amplitude. As can be
seen from Fig. 8(b), the net effect is to move the spacing
between the peaks of the laser pulses closer to A~, and
thus the locations of the peaks closer to the plasma-wave
resonance regions (L„,). Although the final wake of the
optimized PBWA is found in the example of Fig. 8(b)
to be similar to that in the RLPA scheme for compara-
ble laser pulse intensities, it should be emphasized that
much more energy was required for the former. This is
related to the fact that the RLPA is more efficient than
the PBWA not only because it mitigates resonance de-
tuning by adjusting to the change in A~ as the plasma
wave grows, but because it also adjusts to the change in
the phase resonance width, i.e., the plasma wave is driven
more efficiently when T &t L„,/c as in the RLPA than

when w ~t L~/c AIv„/2c as in the PBWA.
It is useful to compare the wake Gelds produced by the

various concepts given equal total laser Huence (or en-
ergy), since that is the technological limitation imposed
by the type of lasers capable of the high intensities re-
quired [29]. The intensity and pulse width were varied
in such a way that the total laser energy and number of
pulses (n = 4) were kept the same for both the PBWA
and the RLPA. It is found that the optimized PBWA is
less energy eKcient than either the RLPA or the LWFA
for a given density. For example, a PBWA pulse train
with ao = 1.0, ~ = 1.2 ps, where ~ is the pulse width for
each pulse, and total Auence in the pulse train equal to
I7't~t ——3.4 MJ/cm, produced a normalized wake-field
amplitude of E,/Eo ——0.4 at a density of n, o ——10
cm s (Eo 96 MV/cm). An equivalent-energy RLPA
train (ao ——1.6, vt t ——1.9 ps) gave E,/Eo ——3.0, which
is 7.5 times larger. In another example with n 0 ——10
cm, a LWFA single pulse with I7t~t ——5.2 MJ/cm
(ao ——3.4, r = 700 fs) produced a wake larger by a factor
of 1.2, E, /Eo ——1.7, than an equivalent-energy PBWA
(four pulses) with ao = 1.2 and 7. = 1300 fs, which gen-
erated E,/Eo ——1.4. These results are summarized in
Tables III and IV. Thus, based on the previous discus-
sion, the B.LPA is the most energy eKcient of all three
schemes in this parameter regime.

electric field (E /Eo)
potential (x-1)
intensity (a )

0

A k,VVV

0
!

2000 4000
t—z/c (fs)

6000

'd (Ez/ 0)
potential (x-1)
intensity (a $...

I '!.'

I

I

'. I.'

I

I C

0 2000 4000 OOOO

t—z/c (fs)
8000

FIG. 8. Numerical solutions for the PBWA: (a) without
optimization, showing the effects of detuning and (b) with
optimization.

Wake field -amphtude es inter pulse spacing and
pupae width

The sensitivity of the growth of E to changes in the
pulse widths 7 and interpulse spacings AN of the laser
pulses of Fig. 4(b) (n, = 10 cm and ao 1.2) was
studied numerically. It is governed by both the number
of pulses and the Q of the resonance, where Q x „is
as defined in Sec. III 8 1. This can be seen from Fig. 9 in
which we plot the maximum electric field E „produced
by varying both 7 and AIv„, for the second n = 2 (a),
third n = 3 (b), and fourth n = 4 (c) pulses of the
train shown in Fig. 4(b). For instance, from Fig. 9(c), it
appears that the fourth pulse n = 4 is highly sensitive to
absolute changes in ~ or AN in the vicinity of v = 7 p&.

It can clearly be seen from Fig. 9(c) that the wake
from pulses with 7 ) v pq are found to be less sensitive
to changes in interpulse spacing than those with 7 7 p&,
without sacrificing much efIiciency. For instance, if the
pulse width of the last pulse (n = 4) were w = 300 fs

1.5& zt (instead of 7 ~t), it is found that a decrease in
the optimal spacing between the last and the third pulse
(AIv, ) by 25 fs (corresponding to hAIv, /cw ~t ——13%) re-
sults in a decrease of E, (from the value obtained using

and the optimal position) by only 2.2% (in-
stead of 5%). Note, in the r = 1.5w ~& case, I7t~t ——2.3
MJ/cm2, corresponding to a laser pulse train energy in-
crease of only 4.5%.

The added pulses can also absorb the plasma wave, i.e. ,
the maximum electric field (E „)can be reduced to a
value below that without it (E „,), when the spac-
ing (A ) is reduced such that the pulse becomes located
in the dP/dI," ( 0 region. Absorption can be optimized
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TABLE III. A comparison between the RLPA and PBWA at the same plasma density and laser

energy Huence shows that the former produces a 7.5 times greater wake field.

Plasma density n (cm )
Total laser lluence Iri t, (MJ/cm )
Laser intensity ao
Laser pulse width 7 (fs)
Longitudinal field E /Eo

RLPA
1016

3.4
2.6/pulse
940-540-320-100
3.0

PBWA
1016

3.4
1.0/pulse
1200
0.4

just as amplification can, by varying 7. and A~, with the
maximum amount of absorption equaling the maximum
amount of ampliBcation. The second pulse can in fact to-
tally absorb the plasma wave produced by the first pulse
[16], the energy of the plasma wave going into up shifting
the frequency of the light [23,24].

The wake-field amplitude is less sensitive to an increase
in the spacing (A ), since this moves the pulse further
from the dP/d( & 0 region, and thus the wake contin-
ues to be enhanced, but less efFectively. As A increases
beyond its optimum value, E „approaches asymptot-
ically the value it had without the pulse, E „1 Thus,
the larger the value of n, the less the sensitivity to spac-
ing, since the value of E „,is large to begin with,
and thus the relative change, AE „„/E „„,cannot
be as large as it is for, say, the n = 2 pulse, for which
E „,= E „, is smaller. (See the scaling change of
E „„for the three plots of Fig. 9.)

0.90—

0.85

0.80
CO

X 0.75

0.70

0.65

0,60
800 900 1000 1100 1200 1300 1400

X, (fs)

1.4

1.2—

S. Wake field am-plitude vs plasma density

Since the exact resonant plasma density is diKcult to
produce with current technology, we will consider the sta-
bility of the Bnal RLPA wake Beld to variation of the am-
bient plasma density. In Fig. 10(a), the sensitivity of the
wake field versus the ambient plasma density for the pulse
train in Fig. 4(b) is shown. The density resonance width
is 0.51, which is defined as An, /n o

——(nU —nl, )/n o,
where n~ and nI, are the upper and lower values of the
ambient density for which the wake amplitude is one half
of its peak value (the peak value occurs at the resonant
ambient density n, o). For comparison, the density res-
onances for the PBWA pulse train of Fig. 8(b) and the
LWFA pulse of Fig. 4(a) are shown in Fig. 10(b) and
Fig. 10(c), respectively. The arrows indicate the densi-
ties corresponding to the resonant densities in the linear

1.0—

0.8—

0.6—

0.4
800

1.6

I

1000
I

1200
Z, (fs)

I

1400

c)

1600

TABLE IV. A comparison between the LWFA and PBWA
at the same plasma density and laser energy Huence shows
that the former produces a 1.2 times greater wake field.

1.0
v'~

0.8
1100 1200

I, ~ ~ . I, , ~ ~ . . . I

1300 1400 1500 1600
Z, (fs)

Plasma density n, (cm )
Total laser fluence I7t, t (MJ/cm )
Laser intensity ao
Laser pulse width r (fs)
Longitudinal field E /Eo

LWFA
1016

5.2
11
700
1.7

PBWA

5.2
1.4/pulse
1300/pulse
1.4

FIG. 9. The maximum electric field E „„produced by
varying both the pulse widths v and interpulse spacings AN„,
for the second n = 2 (a), third n = 3 (b), and fourth n = 4

(c) pulses. Note the change in scaling of E „ for the three
plots.
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approximation, Au& = ~„(n,) for fixed Au in the PBWA,
and w = 2m/u„(n, ) for fixed ~ in the LWFA. As expected,
since it is impulsively driven, the LWFA is found to be
the least density sensitive, with a resonance width equal
to 3.90. For the PBWA, the corresponding density reso-
nance width is found to be equal to 0.62. Thus despite
the much greater efficiency of the RLPA than the PBWA,
their sensitivities to ambient density variation are similar.
Achieving a density uniformity meeting this requirement
should pose no signiGcant technological challenges —at
least for a proof-of-principle experiment —since, in fact,
by use of multiphoton ionization [30], uniform laboratory
plasmas have been created over distances on the order of
10 cm.

2.0

1.5—

1.0—

0.5—

0.0

8. Walee fi-eld amplitude es laser intensity

In addition to density variation, shot-to-shot laser in-
tensity Buctuations can result in detuning. Figure ll(a)
shows the dependence of wake-Geld amplitude on the
laser intensity for the RLPA, with the same pulse widths
and interpulse spacings as were used in the pulse train
shown in Fig. 4(b). As usual we assume here that the in-
tensities of all pulses in the train are the same. Note the
multiple peaks and sudden discontinuities in the slope of
the curve. They correspond to the various pulses coming
in and out of resonance as E and thus A~ change with
increasing intensity. The peak at ao ——1.4 corresponds to
optimization of all pulses. As the intensity (ao) increases,
the position of the fourth pulse moves toward the absorp-
tion region (dP/d( & 0) and thus x „becomes reduced.
At ao ——1.6, the fourth pulse moves into the emission
region again (dP/d( ) 0) and there is a sharp disconti-
nuity. Another discontinuity appears at ao: 2 1 as the
third pulse moves from the absorption to the emission
region. The peak at az 2.3 corresponds to the fourth
pulse reaching resonance again. Unlike the RLPA case
[Fig. 11(a)], Fig. 11(b)—which shows the sensitivity of
the PBWA—does not have several peaks, since the pulses
in this case are much longer than L, „and since the in-
tensity in this example was optimized in such a way that

0.5
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1.4—

1.0 1.5
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(b)

0.40— 1.0—

0.38
0.5 1.0 1.5

plasma density (10' crn )
2.0 0.5—

0.0
FIG. 10. Final wake-6eld amplitude as a function of the

value of the initial plasma density for: (a) RLPA, (b) PBWA,
and (c) LWFA. The arrows indicate the densities correspond
ing to the resonant densities in the linear approximation,
Ac@ = u„(n, ) for fixed b.w in the PBWA, and 7 = 27r/u„(n )
for fixed w in the IMFA.

0.5 1.0 1.5 2.0
ao (normalized intensity)

2.5

FIG. 11. Final wake-6eld amplitude as a function only of
the laser intensity (constant A and I. ) for (a) RLPA, and

(b) PBWA.
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detuning would not occur. However, as can be seen from
Fig. 11(a), the amplitude fluctuations of the RLPA are
in the worst case only 20% for a 10% change in laser in-
tensity, which does not represent a serious problem since
shot-to-shot intensity stabilities of ( 5% are achievable.

IV. PARTICLE-IN-CELL CODE SIMULATIONS

), N I' ~ ) I j
/

I' /
X

h. / 'y y I
/~ g / I ~ X,/wJ

—2-
0

electric field

potential
intensity

1000 2000 3000 4000 5000 6000
t—z/c (fs)

In order to study kinetic eKects, we used a particle-
in-cell (PIC) code with one spatial dimension and three
velocity dimensions. The simulation is fully relativistic
and incorporates all of Maxwell's equations. In order to
simulate a laser pulse, one boundary becomes an antenna.
A sine wave oscillates at the laser wavelength, in this case
1 pm. To get the correct pulse shape, another sine wave
modulates the laser wave so that the pulse has the shape
of a half sine-wave equal to the pulse width. A spatial
grid was set up so that one laser wavelength was equal
to 20 grid points. For a particle density nz of 1.4 x 10
cm, similar to that chosen in the previous fluid model
simulations, the plasma wavelength A is 279 pm or 940
fs.

p )

The total domain of the simulation is 10A& in length.
The electron-ion mass ratio is 1/1836, with the electron
charge chosen to give the correct A„ for the above n„
with 10 particles/cell. The flrst simulation run, shown
in Fig. 12(a), was for a LWFA with a pulse width equal

to A„. Qualitatively, it has the same characteristics as
that of the fluid model, although the density used in the
PIC code was slightly higher. Comparison of these two
results validates the quasistatic approximation and the
assumption of nonevolving pulse shapes used in the fluid
code, but, of course, only for the short distances studied.

Because of the computing expense involved in running
the PIC code, optimization of the RLPA could not be
done by variation of parameters as was done with the
fluid code. A good approximation, however, was made
by performing a total of four separate simulations, adding
one pulse at a time. The half-width of each succeeding
pulse was made to coincide with L«» which was deter-
mined by the previous simulation. The results appear in
Fig. 12(b).

A feature revealed only when the PIC code is used
to model the RLPA is particle trapping and damping of
the plasma-wave wake field. Notice that in Fig. 12(b)
the wake-field amplitude decreases significantly after it
reaches its peak amplitude, i.e. , after the last of the
four laser pulses is added to the train. This is not ob-
served in PIC simulation of the single-pulse case of Fig.
12(a), which implies that trapping and wave damping
only occur when the wake is driven to suKciently large
amplitudes. The PIC-simulation particles start with a
small temperature such that their initial velocities are
much less than the phase velocity of the wave. However,
the latter pump pulses cause some of the background
electrons to become tr~pped in the plasma wave, and
these trapped electrons continue to be accelerated in the
wake behind the pulse train, depleting energy from the
plasma wave, thus causing its amplitude to damp. A
phase space diagram of longitudinal electron momentum
vs time (p, /m, c vs t —z/c) from the PlC simulation
of the RLPA is shown in Fig. 13. The solid line repre-
sents the prediction of the cold fluid theory [8,21j, i.e. ,

p, /m, c = pv, /c, where

(1+")- (1+4)'
m c 2(1+.P)

(13)

assuming vg c. The solid line was obtained by plotting
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FIG. 12. PIC simulation solution with n, = 10 cm and
a = 1.44 for (a) a single sine pulse, and (b) four sine pulses.
Plasma-wave damping is observed at late times only in the
latter case.

FIG. 13. Phase space diagram of longitudinal momentum
vs time (p /m c vs t —z/c) from the PIC simulation of the
RLPA. The solid line represents the prediction of the cold
fiuid theory.
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FIG. 14. Normalized electron momentum
distribution [f(p /m, c) vs p, /m, ,c] from the
PIC simulation of the RLPA at various times:
(a) t z/c —= 0.0—1.2 ps, (b) t z/c —= 1.2 —2.2
ps, (c) t —z/c = 2.2 —3.2 ps, and (d)
t —z/c = 3.2 —6.0 ps.
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the above expression for p, (g) with both a (() and P(()
computed by the PIC cod.e. It can be seen from Fig.
13 that the Quid theory and the PIC code agree well for
the bulk of the particles. However, an energetic tail of
electrons ind. icates that some trapping by the wave has
occurred.

A more quantitative estimate of the fraction of trapped
electrons can be obtained from Fig. 14, which shows
normalized longitudinal electron velocity distributions
[f(p, /m, c) vs p, /m, ,c] calculated at various time inter-
vals (intervals in t —z/c) during the simulation. These
t z/c inter—vals correspond roughly to the region between
the fronts of the n and n+1 pulses and are approximately
a plasma wavelength in width (the last interval extends
from the end of the last pulse to the end of the simulation
region). Hence, for each time interval the momentum
distribution is integrated over approximately a plasma
wavelength, and. in one case, Fig. 14(d), over several A„.
By comparing Fig. 14 with the Huid theory prediction
of Fig. 13, it can be seen that the tail of trapped elec-
trons are those with momenta exceeding approximately
p, /m, c ) 1, just to the high-energy side of the peak on
the right-hand. side in Fig. 14.

V. PULSE TRAIN GENERATION TECHNIQUES

demonstrated quite effectively in the case of an unam-
plified pulses using a zero-dispersion stretcher, i.e. , the
gratings of the stretcher being located at the focal plane
of the lenses. The possible diKculties that are encoun-
tered with amplification of the pulses are: (1) reduction
of the bandwidth due to gain narrowing, (2) distortion of
the pulse shapes due to gain saturation, and (3) nonlinear
interference between pulses, which overlap in time in the
amplifiers when they are stretched. The first problem,
gain narrowing, also limits the minimum pulse width of
a single pulse, and is overcome by use of larger bandwidth
gain media or a combination of amplifiers with different
gain media, having adjacent but different central frequen-
cies, effectively producing a larger net bandwidth [32].
The second problem, gain saturation, can be avoided. by
reducing the single-stage amplification and adding more
amplifier stages if necessary. The last problem is circum-
vented by avoiding any fast amplitude modulation of the
chirped pulse in order to minimize nonlinear effects in the
amplifier; this implies that phase masks are preferable to
amplitude masks. Shaped pulses have already been am-
plified in the laboratory [33],at least in preliminary ways,
but more development is necessary.

By use of either a computer-controlled liquid. crystal
display [34], or an acoustoptic modulator [35], located
in the Fourier plane, the pulses may be modulated in

There are several ways of producing the required pulse
train in practice, but they have yet to be fully investi-
gated in the high-power regime that is required for wake-
field generation. The first, shown in Fig. 15, is to use
Fourier filtering. In this case, a mask is placed in the
pulse stretcher of a chirped pulse amplification system
[9] to modify the phase and/or amplitude of every com-
ponent of the initial pulse in such a way that, when it is
recompressed, a series of pulses with arbitrary spacings
and widths will be produced [31]. The minimum rise
time of each individual pulse is still governed by the gain
bandwidth of the amplifiers. This technique has been

grating
-~& ampler gcompresso~II

FIG. 15. A variably spaced pulse train with arbitrary pulse
widths is produced by use of Fourier Altering in the laser
stretcher stage.
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real time (between shots). This provides the possibility
of maximizing the wake Geld experimentally using real-
time feedback between the modulator and a diagnostic
of the plasma-wave amplitude. A possible problem with
the use of spatial Gltering with Gnite resolution is spa-
tial diffraction of the laser beam, the effect of which is to
create a spatially dependent temporal pulse profile [36].
However, this is less of a problem for wake-Geld genera-
tion than for other applications of pulse shaping, because
the wake field is excited at the laser focus, in the far field,
and because it is sensitive to the laser pulse envelope and
not changes in the carrier frequency.

A less elegant -method of producing optimized pulse
trains is to divide the amplified stretched pulse by use of
beam splitters placed after the amplifiers, then send the
separate pulses to separate compressors, with adjustable
lengths and delays, and finally recombine the pulses be-
fore they enter the interaction chamber. Alternatively,
several pulses could be created using a beam splitter and
separate delay lines (as in a Michelson interferometer)
placed before the amplifiers, but, as mentioned above,
this may create high-&equency beating of the chirped
pulses, inducing deleterious efFects [37].

The advantage, however, of the pulse-shaping tech-
nique discussed in the previous paragraphs is that the
pulse widths and interpulse spacings may be tailored in-
dependently of each other, unlike the case of optical mix-
ing, as is used in the standard beat-wave accelerator. In
the latter case, two long pulses (pulse lengths equal to
several plasma wavelengths) and with different central
frequencies (difFering by the plasma f'requency) are ampli-
fied in separate laser amplifier chains and then optically
mixed in the plasma in order to create a modulation that
approximates a train of equally spaced pulses with equal
pulse widths (equal to the spacing). As a consequence
of both resonance detuning and. narrowing of the phase-
resonance width (I„,), the beat-wave method of driving
a plasma wave is less efficient then either the RLPA or
the LWFA, as discussed in Sec. III 8 3.

VI. CONCLUSIONS

Optimal pulse widths and interpulse spacings were ex-
actly computed from analytical theory for a train of
square pulses, and were optimized numerically for a train
of sine pulses with realistic rise times. By optimally vary-
ing the pulse widths and interpulse spacings, resonance
detuning between the laser pulses and the plasma wave
can be eliminated. This implies that plasma waves can
be driven up to the limits imposed by wave-breaking,
particle trapping, and/or the limits of laser pulse train
technology.

Resonant regions of the plasma-wave phase space were
found where the plasma wave is driven by the laser
pulses most efficiently (i.e. , the regions where P & 0 and
dP/d( ) 0). In order to overlap the laser pulses with
these regions, the optimal interpulse spacings were found
to increase as the plasma-wave amplitude (and nonlin-
ear plasma wavelength Aiv) increases. One the other
hand, the width of this phase resonance region L„,—

and thus the optimal Gnite-rise-time laser pulse width
7 p& decreases with increasing plasma-wave amplitude,
due to wave steepening. It also decreases with increasing
background density, in this case due to the relationship
7 ~ 2a/u~ n, , familiar from single-pulse excitation
(LWFA).

The sensitivities of the wake Geld to changes in the
plasma density and laser intensity were not found to
pose significant technological problems. Wake Gelds from
trains with somewhat-longer-than-optimal pulse widths
were found to be considerably less sensitive to variation
of interpulse spacing without sacrificing much efficiency.

PIC code results validated the use of the quasistatic
approximation and the assumption of nonevolving pulse
shapes in the Quid code for the short distances studied.
They also showed the importance of particle trapping and
wake-field damping for large-amplitude plasma waves.

In these 1D studies, the RLPA was found to have ad-
vantages over either the PBWA or the LWFA, since com-
parable plasma-wave amplitudes may be generated at
lower plasma densities, reducing electron-phase detun-
ing, or at lower laser intensities, reducing laser-plasma
instabilities. The increased eKciency of the RLPA arises
not only because it mitigates resonance detuning by ad-
justing to the change in A~ as the plasma wave grows,
but also because it adjusts to the change in the phase
resonance width, i.e., the plasma wave is driven more ef-
ficiently when 7. Pt L„,/c than when v;pi L„/c
Aiv„/2c as in the PBWA. This advantage exists even
at relatively low plasma-wave amplitudes, far from wave
breaking, when the change of A~ is not significant, but
the change of L, , is significant.

If large single-stage energy gains are desired () 100
GeV), then low plasma densities (n, & 10 cm s) are
advantageous because of the favorable scaling of the
pump depletion distance, the phase detuning distance,
and the phase resonance width. However, in order to
reach the required high intensities, and yet remain in
the 1D regime, large laser powers (PW) will be neces-
sary, because of the increase in the plasma wavelength
with decreasing density. Such large laser systems will be
available within the next few years. In the nearer term,
for lower energy-gain applications (GeV), or proof-of-
principle experiments, higher plasma densities (n, & 10'
cm ) can be used. In this case, much lower laser powers
are sufBcient (TW), which are currently available &om
table-top lasers with ultrashort pulses (r & 100 fs). Prac-
tical methods for tailoring laser pulse trains using pulse-
shaping techniques are also presently available.
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