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We study the problem of an interface growing in a two-dimensional Laplacian field in terms of the
statistics of the distribution of interacting particles. This equivalent many-body system consists of two
species of particles that interact, Z and P, confined to a disk. We show that by tip splitting, the system
reduces its surface energy. Tip splitting along the physical interface corresponds, in the equivalent
many-body system, to particle production of the form Z —2Z + P and we therefore introduce a constitu-
tive rule that facilitates this mechanism. We discuss the relation between the spatial distribution of the
reacting particles and the evolution of the statistics of the surface. In particular, we derive the multifrac-
tal function of diffusion-limited aggregation in terms of this spatial distribution.

PACS number(s): 68.70.+w, 81.10.Dn, 11.30.Na, 81.30.Fb

I. INTRODUCTION

Laplacian growth processes abound in nature and have
been the focus of much attention recently. Few examples
are: electrical discharge, solidification, dendritic growth,
viscous fingering, chemical dissolution, and evolution of
bacterial colonies. Much effort has been directed towards
theories that predict the rich variety of patterns that such
processes lead to. One of the simplest problems to for-
mulate in this context is the process of diffusion-limited
aggregation (DLA) in two dimensions [1]. Despite its
simplicity and the existence of a huge body of phenome-
nological examples and computer simulations, a funda-
mental theory for this process is yet to emerge. Although
a few probabilistic and renormalization group approaches
have been put forward [2—-4] there is still no clear under-
standing how, starting from the local equations of motion
(EOM), to predict the asymptotic morphology of the
growing pattern. In fact, the number of theoretical re-
sults in the literature on DLA is surprisingly small
vis-d-vis the large amount of phenomenological
knowledge on the subject. One of the key observations in
DLA is that the distribution of the electrostatic field (or
concentration gradient) along the growing surface flows
to a stable limit, sometimes expressed in terms of a
universal function, f(a) [5]. This indicates that the
asymptotic morphology of this process is robust against
fluctuations in initial conditions and that, in principle,
the asymptotic behavior is determined to a large extent
by the local growth mechanism. In this paper we take
some steps towards understanding this growth process.

The mathematical problem can be posed as follows:
Consider a simply connected region in a two-dimensional
plane § outside of which there exists a field ® that obeys
Laplace’s equation
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V=0 . (1.1)

On the boundary of the region (the interface between the
growing region and the rest of the plane) and on a circu-
lar boundary far away from it, the field assumes constant
values, ®, and ®,, respectively, with ®, <®,. The inter-
face moves outwards according to a local constitutive re-
lation

(5)=—V|, . (1.2)

It has been proposed [6,7] to conformally map the interi-
or of the physical interface onto the unit disk and study
the evolution of the map instead of that of the actual in-
terface. Several workers applied this idea recently to
derive results for particular systems [8,9]. An attractive
feature of this approach is that since the mapping func-
tion must be analytic only exterior to the interface, it can
possess zeros and poles inside the unit disk. Thus the
problem can be formulated in terms of the dynamics of
these singularities, and indeed most of the studies in this
problem specialized on particularly simplified sets of ini-
tial singularities and their time evolution. It has been
found [7,9] that generically the singularities of the map
propagate towards the unit circle to eventually hit it after
a finite time. When this happens a cusp forms along the
physical interface, the map ceases to be analytic outside
the unit circle, and the formalism breaks down. There-
fore the mathematical problem is ill posed unless surface
effects are introduced to prevent this catastrophe.

In this paper we use this formalism to analyze the evo-
lution of the statistics of the interface. The idea that un-
derlies our approach is the following: There is a one-to-
one correspondence between the structure of the evolving
interface and the spatial distribution of the singularities
in the unit disk. Therefore, by studying the statistics of
the latter, we expect to learn about the asymptotic pat-
tern of the growing physical surface. Specifically, we
want to relate the distribution of the potential field (or,
rather its gradient) immediately in front of the interface
to the distribution of the location of the singularities of
the map. As mentioned, we are motivated by the
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numerous observations that the statistics of the moving
boundary converge to a stable limit form, usually fractal.
One manifestation of this phenomenon is the appearance
of a well-defined multifractal function [5] f(«) that is in-
dependent of time or length scale (e.g., in DLA) [10,11].
We therefore expect the distribution of singularities to
reflect this asymptotic behavior by also converging to a
stable limiting form.

We present here several results, first regarding the ini-
tial motion of the singularities inside the unit circle
without surface effects. These include the following: (i)
the time dependence of the trajectory of a zero close to
the unit circle in a dilute approximation; (ii) numerical
solutions for trajectories of singularities for several ran-
dom initial positions; (iii) the time dependence of the in-
crease in curvature as a zero approaches the unit circle.
In the second part of the paper we introduce an
interface-curvature-dependent mechanism that prevents
formation of cusps as follows: When a zero Z gets too
close to the unit circle it “spawns’ a new zero-pole pair,
Z —2Z +P. By construction, this mechanism satisfies
several necessary constraints on the map (to be discussed
below). The spawning is triggered by a threshold value of
the local curvature just in front of the approaching zero,
implying a field interpretation [12], where the surface en-
ergy induces a field in which the zeros and poles move.
The EOM are then integrated from the new
configuration. We present analytical results concerning
the behavior of the singularities after the spawning event.
The trajectories and the relation to tip splitting in the
physical process are discussed. In the third part of the
paper, we study the relations between the distribution of
the singularities of the map within the unit disk and the
growth probability distribution along the physical inter-
face. In particular, we derive the multifractal spectrum,
f(a) in terms of the distribution of the singularities.

II. FORMULATION OF THE PROBLEM

We start from the EOM of the boundary in the form of
Shraiman and Bensimon [7]

3,y =—id,y {10,y *+ig(s)}=—id;yG(s), (2.1)

where ¢ stands for time, s is a parameter that runs along
the boundary and g (s) is a real function. This equation is
the limit of a map {=F(z,t)=F(z) that takes the unit
circle in the z plane to the physical boundary in the £
plane (which, for simplicity, is assumed to be simply con-
nected),

y(s)= lim F(z) .

z—e’

The term Re{G}=13,7| % in (2.1) represents propaga-
tion in the normal direction and originates directly from
the constitutive relation (1.2). The second term Im{G}
represents a tangential velocity that causes “sliding” of a
point s along the interface. This term is necessary to en-
sure that the right-hand side of (2.1) is the limit of an an-
alytic map (a different way of regarding it is that this
term ensures that the parametrization remains the same
as time goes on), and it is constructed by using Cauchy-
Riemann relations (see details below). In the following it
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is more convenient to work with F'(z)=dF /dz. Noting
that as z approaches the unit circle

—id,y=2zF'(z) , (2.2)

and replacing G (s) in (2.1) by an analytic function G (z)
whose real part tends to [d,y| 2 as z—e®, we can
rewrite the EOM in the form

a,unF')z—Fl—,:id;[zF'(z)G(z)] .
To make progress, several workers [7,8] focused on
specific maps and particular initial conditions. For the
purpose of the present treatment it is necessary that we
discuss the general case and arbitrary initial conditions.
A significant point to note at this stage is that the map is
already constrained by the very formulation of the prob-
lem: First, the map and its inverse must be analytic in z
outside the unit circle, excluding the point at infinity.
This means that the poles and zeros of F’(z) must be
confined to the unit disk. Second, the map should keep
the boundary conditions far away from the growing sur-
face unchanged. Therefore the topology far away from
the growth must remain invariant under the map, leading
to lim, , ,F'= A, where A is uniform over the plane (i.e.,
independent of spatial coordinates but it may be time
dependent). A third necessary constraint will be dis-
cussed later. To accommodate the above two constraints,
we choose the map to have the general form
F'(z)=1I1,(z)/I1,(z), where I1,(z) and II,(z) are polyno-
mials of the same degree

, 4 N (z—2Z,)
F'(z) (OTI z—P) "’

n=1 n

(2.3

(2.4)

where {Z} are the zeros of II; and {P} are the zeros of
IT,. This form is sufficiently general for the above con-
straints since it can be shown that it can approximate any
given curve arbitrarily accurately by choosing N as large
as desirable [13]

The next step is to find the form of the analytic func-
tion G (z). For |z| > 1, this is done by carrying out a Hil-
bert transform [7]

1 do otz

G(z)=—

2mi Y w w—zRe{G(m)} ’

(2.5)

where the integration path is around the unit circle and
where, using (2.2), we have Re[G (z)]=|zF'(z)| 72, Ob-
serving that z*=1/z on the unit circle we obtain

N
G2)=——1Go+ S 0Z)/z=2Z,) |, (26
A4 (t) n=1
where Q(Z,) is the residue of |F'(z)| ™%
2M12(1/Z,),(Z,)
Q(Z,)= ~ ,
(1/2,) [1 (Z,—Z.)
m's#n
¥ 0Q(Z,) T,0)
G"_El 2Z, I,0)

Substituting this expression into the EOM of the surface
and contour integrating around each of the singularities
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on both sides yields their EOM

n Q(Z,)+Q(Z,)
—Z,=—"—1G,+
" A2(t) 0 m'#n Zn_Zm‘ ]
0(Z,) Z,
=S5t
A% { %Zn_Pm

2.7
. i o(Z,)
BVET) [ " 23,2, }

A()=A(1G, .

As mentioned, these equations are subject to the
aforementioned two constraints, and we now introduce
the third constraint on the map: We require that F has
no branch cuts as z — o, namely,

1 _
S $F(z)dz=0. (2.8)

This leads to the following sum rule:

P,—Z,

SR, =>P,—Z) 11 —I—’TP‘_zo , (2.9)
n n m'#n* n m’
where R, are the residues of F’ at its poles P,. It is pos-
sible to show that this sum rule is equivalent to the re-
quirement that

>P,=32Z,. (2.10)

n n
Namely, assigning a dipole to the quantity Z, — P, [the
pairs (Z,,P,) can be assigned arbitrarily], the require-
ment is that the total dipole vanishes. By subtracting the
two equations (2.7) from each other and summing over n
it can be demonstrated that this constraint is satisfied
identically by the EOM. Note that if we regard the zeros
and poles as oppositely charged particles then the system
is constrained to be both charge and dipole neutral. In
passing we also comment that the residues R, are impor-
tant quantities in this formulation because (i) the map F
can be explicitly expressed in terms of these quantities,

N
§=F(z)=A(t) |z+ 3 R,In(z—P,) | ;

n=1

(2.11)

(ii) the time evolution of these quantities follows [14]:
R,(t)A(t)=R,(0) A (0)=(constant of the motion) ,
(2.12)

where the time-dependent scaling A (z) is the same for all
n and is exactly the rescaling factor in (2.4). This result is
obtained by considering the integrated form of (2.3),

F=zF'(z)G(z) , (2.13)

where F’, G, and F are given by (2.4), (2.6), and (2.11), re-
spectively. Upon substitution of these functions and
comparison of the logarithmic terms between the two
sides of the equation one obtains (i) an EOM for the poles
that coincides with (2.7), and (ii) an EOM for R,
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R, _ A
R, A)

(2.14)
which confirms (2.12).

III. RESULTS FOR A CONSERVED NUMBER
OF SINGULARITIES

We first present analytical results for the dynamics of
the system when the number of singularities is conserved,
i.e., when there is neither production nor annihilation of
singularities, N(t >0)=N (¢ =0). In the following we set
the prefactor A4 in (2.4) to unity, which effectively corre-
sponds to rescaling the growth area at each time step by a
time dependent factor 4 ~%(¢). To gain insight into the
dynamics of the many-body system we have integrated
the trajectories of the singularities numerically. In each
run we start from a random set of initial positions of the
singularities. We confine the initial distribution of the
poles closer to the origin than that of the zeros. This is
done to prevent the strong short-range interaction be-
tween zeros and poles at the first few steps from leading
to very high velocities already at the initial stages. So a
pole is initially located randomly inside a circle of radius
R,, while the initial zeros are randomly located within a
ring outside R,. We have considered in each run be-
tween 5 and 20 pairs. But we have observed that the'evo-
lution of the system is not crucially dependent on this
number. In general we find that the singularities “repel”
each other as is demonstrated in Fig. 1, where both poles
and zeros can be observed to move towards the unit cir-
cle. We find that these trajectories have very small az-
imuthal velocities.

Since the coupled EOM are strongly nonlinear and
difficult to solve analytically we resort to calculations at
particular limits. Inspecting the EOM we observe that
when a zero (Z,, say) comes sufficiently close to the unit
circle the value of Q, =Q(Z,) varies proportionally to
1/(1—1Z, |2), while terms independent of Q, in the EOM
remain regular. The rapid variation of this quantity
governs the EOM and therefore, to leading order in
(1— IZ,, |2), we can solve the EOM by neglecting the
terms that are not proportional to Q,. Using this ap-
proximation we obtain the following EOM:

N 1—-3P, /2Z,
en N
1 1
+ - :
2 \Z -7 "7 P, }
3.1)
—dInZ,,.,/dt ~— 1y L ,
127z sz, —1
2. |1 1
—dWP jdi~—2 |11 |
nb/dt~ Y Bz~

From the first of Egs. (3.1) we can analyze the behavior of
Z,=(1—ple"", p<<1. Assuming all the other singulari-
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ties are sufficiently farther away from the unit circle and
that the distances between any two singularities is large
compared to p we can solve these equations. We first
note that if we rotate the system by s, the singularities
are all shifted by ¢'“7* and the values of Z,and 1/Z,
become purely real. A careful analysis of the quantity
Q,/Z, combined with the observation that the EOM
should remain invariant under such rotation, gives that
Q,/Z, should be independent of s,. Namely, Q,
=A,e""/(1—|Z,|?), where A4, is, in principle, a com-
plex quantity independent of 5,. We therefore find

—t 172
p(t)=plty) |~ , TEt>1, (3.2)
T—1t,
where =const/Re{ 4, }, and
s,(t)=s,(ty)+(r—tx)Im{ 4, }[p(ty)—p(t)] . (3.3)

We can see that p—0 after a finite time 7 and the zero
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FIG. 1. Typical trajectories with time in the absence of sur-
face effects: (a) zeros (b) poles.
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Z, hits the unit circle, in agreement with the analysis
of Shraiman and Bensimon [7]. The velocity of Z,,
v, ~1/V'T—1t, diverges as t —7. This divergence can be
observed in the numerical results shown in Fig. 2. More-
over, the variation of the radial position according to
(3.2) also agrees with the asymptotic behavior observed in
Fig. 2, which was verified by plotting both the velocity
and the radial position vs (7—¢) on a log-log plot. From
(3.3) it may seem at first glance that the time dependence
of s, is similar to that of p, but a detailed analysis of Egs.
(3.1) confirms our observations that s, (7)=s,(¢,) remains
approximately constant along the trajectory. This obser-
vation can only agree with (3.3) if the prefactor of the
time dependence in s,, Im{ 4,}, vanishes altogether.
Thus we find from this particular analysis: (i) that the az-
imuthal angle of a zero approaching the unit circle hardly
changes during the approach, and (ii) the quantity Q, /Z,
tends to a purely real value in this limit. Our numerical
calculations indeed support the latter result up to compu-
tational round off errors. We were not able to derive this
result directly from the fundamental EOM although we
suspect that such a first-principles calculation can prob-
ably be carried out.

Turning to the behavior of the other singularities in
this limit we can immediately derive another result: it is
straightforward to use the above calculations to find that
for kn

Z (1) P(2)
Z, (ty) Pilty)

T—t

1_.

~——(T—t;)exp

2p(ty) T—1t,

172
‘ ] REP

which shows that the rest of the singularities, both zeros
and poles, are strongly affected by the proximity of Z, to
the unit circle. This strong effect can be probably better
appreciated by noting that although the location of the
singularities may be far from the unit circle, their veloci-
ties diverge at exactly the same rate as that of Z,,.

Next we turn to analyze the behavior of the curvature
K as the zero Z, approaches the unit circle. First, we
want to calculate a general expression for K in terms of
the locations of the singularities. This expression will be
used later to discuss systems where the number of singu-
larities is not conserved. The rate of change of the arc-
length along the unit circle, s, is related to the corre-
sponding change in the length / along the physical bound-
ary by the local value of |F’|. Denoting by ¢ the angle
that the tangent to the real boundary makes with some
reference axis, the local curvature is

=_d_¢_= =1 ﬁi_?s_ 3.5
K(s)=—r=IF|_ s~ (3.5)

Since ¢ is exactly the argument of the complex field E we
obtain

b _ 4 poin(zF"), ) - 3.6)

ds ds
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/ loglv(t)l ~ -0.5 log(t-t)

loglv(t)l

2k

loglv(t)!
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log(t-t)
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( c ) logl1-r(t)l ~ 0.5 log(t-t)
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FIG. 2. In the absence of surface tension, natural logarithms
of (a) the velocity of the zero closest to the unit circle; (b) the
velocities of all the zeros; (c) the positions of all the zeros. No-
tice the 1/V/7—t divergence of the velocity of the zero closest
to the unit circle and the following behavior of the velocities of
the rest of the zeros.
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Combining Egs. (3.5) and (3.6) and using some algebra,
we find

K(s)=|F'|"'Re
z=e™

d . o
1+zdzlnF]

=IF:|—1

1+Re3
m

1 _ 1
1—Z, e 1—P,e ™ ||’
(3.7

This expression is very useful because it allows for a
clear and simple interpretation of the contribution of
each of the singularities to the curvature. It is not
surprising that the dominant contribution of a singularity
whose argument is s,, within the curly braces is at the
point along the surface that is parametrized by s =s,,.
Expression (3.7) shows that when a pole P,
= |P,, |exp(is,,) is close to the unit circle it reduces the lo-
cal curvature at the nearest point along the unit circle by
approximately

e "—P
AK,~— ]I _’S—”’ ,
e "—Z,

(3.8)
m

P, #P,

which is regular in the distance between the pole and the

unit circle 1 —|P,, | as this distance goes to zero. On the

other hand, when a zero Z,=|Z,|exp(is,) approaches

the unit circle its contribution to the local curvature
diverges as

1 e "—P
" (1—1z,])?

m

AK _ (3.9)
s
m e " —Zm
m n

This result can be combined with the above-calculated
rate of approach of Z, to the unit circle, when it is the
most advanced zero, to yield the rate at which the curva-
ture diverges at s,

const
K(s))=——,

i (3.10)

where 7>t is the time at which Z, hits the unit circle.
Thus the local curvature is inversely proportional to the
time to “collision” of the zero with the unit circle.
Differently put, the curvature increases as u ,f, where u,, is
the velocity of Z,,.

Next we write down the explicit form of the EOM for
the local radius of curvature, a (s)=1/K (s), at any point
along the boundary

a=S—7T1,

(3.11)
23T

where I' runs over all Z, and P,. We find that
Oa _  *a
or 2(z—T)

2z|F'| !
(z—T){1+itan[arg(1—T*/z)]}

X |1+
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where the + (—) sign corresponds to I'=P (Z). Upon
substitution for I" from the EOM (2.7) we obtain the re-
quired EOM for a in terms of the locations of the singu-
larities

2z

+I({T})
+ |F'[(z—T)

1 )
z—T

d
Elna =%§ (3.12)

with the appropriate sign as above. The study of this
equation is of direct relevance to the statistics of the
evolving surface, but is not the aim of this paper and we
will address this direction elsewhere. Instead we now
turn to introduce the tip-splitting mechanism and, using
the above results, we analyze the modified many-body
system.

IV. TIP SPLITTING

So far we have discussed the motion of singularities in
the absence of surface effects up to the moment where the
EOM no longer hold. As mentioned already, the break-
down of the formalism is associated with formation of a
cusp singularity along the physical surface at a location
that corresponds to the position s where a zero hits the
unit circle. We now aim at modifying the dynamics so
that the useful many-body description can be extended to
arbitrarily long times. It is clear that the mechanism that
prevents cusp formation in the real world (disregarding
atomistic cutoffs for the purpose of the present discus-
sion) is related to surface effects. Since the mathematical
breakdown is always preceded by a local increase in the
curvature at the incipient location of the cusp along the
surface, we expect such effects to play a significant role in
the modification of this formulation.

Surface tension originates from surface bending energy
that the system has to expend as the curvature increases.
Therefore, for real growths, where the energy is limited, a
curvature-dependent term should be activated when the
curvature becomes too large. In the mathematical plane
the local increase in curvature corresponds to a singulari-
ty (generically a zero, as has been shown above) ap-
proaching the unit circle and therefore the activation of
the surface effect should correspondingly be triggered by
this approach. A related piece of information that is
relevant to this issue is the following: it is frequently ob-
served that the rate of tip splitting in growth phenomena
depends on the local growth rate of the surface. The
growth rate, in turn, is proportional to the gradient of the
potential field via the constitutive relation (1.2). Since it
is possible to relate between the field gradient and the
curvature (through the fact that both |F ’| and K depend
on the location of the singularities) it follows that the
splitting rate implicitly depends on the curvature. There-
fore we propose here to regard surface tension as
effecting a field that interacts with the moving singulari-
ties. The mechanism that we suggest here works as fol-
lows: As a zero approaches the unit circle the corre-
sponding location on the physical boundary develops an
increasingly protruding arm. Numerous observations
show that long arms cannot persist without eventually
branching or tip splitting. We claim that tip splitting is
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the system’s mechanism to reduce the local curvature-
dependent energy. It is simple to prove this claim in the
context of the present formulation. First we note that tip
splitting in the physical plane corresponds in the
mathematical plane to the reaction Z —2Z + P, namely,
to a zero that is close to the unit circle (i.e., that is re-
sponsible to an already long arm and a high curvature
term) spawning a new pair of a zero and a pole. The
generated pole is located exactly between the two zeros.
The newborn zeros correspond to the two newborn tips in
the physical surface, while the pole effects a trough be-
tween these tips. This mechanism for singularities pro-
duction is consistent with the constraining requirements
on the map: (i) the number of poles equals the number of
zeros at any time (“‘charge” neutrality); (ii) the sum rules
(2.8) and (2.9) (“dipolar” neutrality) are obeyed at any
time. For consistency, the new pole should be located at
the position of the parent zero, while the two zeros, Z’
and Z" are located, immediately after the production
event, at a predetermined small distance on either side of
the pole. It is straightforward to calculate the change in
the local curvature K (s) immediately in front of the
event. This calculation is carried out by expanding ex-
pression (3.7) in the small distance of the new zeros from
their parent, and calculating the change in the curvature
to the second order in this distance,

K(Z,(e*—82),Zy 4 (e5+82),Py , (e"),2N+2)

—K(Z,(e"),2N)=8K(8z) . (4.1)

We find that splitting in the radial direction s'=s =s" in-
creases K (s), while a split in the azimuthal direction,
s'=s+8s and s"'=s—08s (|Z|8s<<1) reduces K (s).
Therefore, since surface energy increases with curvature,
it should be favorable to produce singularities in the az-
imuthal, rather than in the radial direction. This process
leads to a generation of two embryonic fingers advancing
abreast immediately after the event. The stability of such
competing fingers has been discussed recently in detail in
the literature in the context of DLA [11] and we will not
dwell on this analysis here. The above result strongly in-
dicates that tip splitting is the system’s way to reduce the
local curvature term, and therefore the energetic cost of
protruding arms.

Having offered an energetic explanation for tip split-
ting, we are left with the question of when and how is the
spawning event triggered? The answer to this question
cannot be universal and must depend on the particular
system under study, namely, on the exact origin of the
surface effects. One way to implement such a mechanism
is to assume that the EOM of the singularities contain an
a priori curvature term that is activated when the contri-
bution of this singularity to the local curvature AK,(s)
increases above some threshold value K.. As mentioned
above, although the curvature at s, depends on the loca-
tion of all the singularities, it is nevertheless dominated
by the closest zero Z, [see Eq. (3.7)], and therefore, to a
very good accuracy, we can use this threshold idea as a
simplified rule, whose advantage is that it is local.
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V. STATISTICAL ANALYSIS
AND THE MULTIFRACTAL FUNCTION f (a)

The above discussion focused on deterministically
evolving surfaces and the randomness in the pattern
could stem only from arbitrary choices of the initial loca-
tions of the singularities. In this section we discuss noise
in such growth processes more generally and relate it to
the probability of growth along the surface. Let us first
point out what we expect from a statistical approach to
this problem. In general, statistical analysis is prompted
by phenomenological observations of a stable asymptotic
distribution of some measurable quantity. For example,
the thermodynamic properties of gases under given exter-
nal conditions fluctuate narrowly around very well
defined averages, indicating that whatever the route that
led the system to its present state, the distributions of
these properties do not change with time after some ini-
tial transient behavior. In other words, the system has
reached a stable limit (asymptotic) distribution although
microscopically the particles keep moving and interact-
ing with each other.

Similarly, we seek a phenomenological stable distribu-
tion of a measurable quantity that characterizes the sur-
face of the growth. One such candidate is the (normal-
ized) distribution of the growth probability along the
evolving surface. The local growth probability (or
growth rate) in our problem is proportional to the local
gradient of the field, p(s)=|E(s)|/(27@), where
(QE(1/277)95 |E (s')|ds’ is the total charge along the in-
terface in the context of the electrostatic problem. The
distribution of this quantity has been found to be mul-
tifractal, namely, its moments scale with independent
powers of the growth size [5]. A monofractal distribution
corresponds to the case where the gth moment scales
with a power that is linear in g. Such a distribution can
be made independent of scale (viz., of stable limiting
form) by normalizing the measure by its (scale-dependent)
average. This simple method cannot convert a multifrac-
tal distribution into a scale-independent form, but such a
conversion is possible [11,15,16]. The idea is to regard
the logarithm of the measure (measure = the growth
probability in the present context) divided by the loga-
rithm of the scale as the new measure. Following this
idea, we suggest the following candidate for a measurable
quantity that flows to an asymptotic limiting form.

als)= Inp(s)

InR, ’

(5.1)

where R, is the radius of gyration of the total physical
growth. Note that the prefactor 27 normalizes @ con-
veniently to 1, as is shown below. We wish to study the
asymptotic probability density of a, P(a). The crucial
step is to relate P(a) to the spatial distribution of the
singularities within the unit circle. This relation is found
through expressing the magnitude of the electrostatic
field at a point s (0=<s <27) in terms of the distribution
of the singularities, E (s)=|F'(z)| ! . The distribution
of |E (s)| is then given by
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N
P(EN= [ ‘H P(T,)dT, ]sztEtzn—lF'(z)I*‘] ,

n=1
(5.2)

where the locations of the singularities I" have been intro-
duced in Eq. (3.11) and where the limit z —exp(is) is tak-
en after integration. The distribution of a can be found
from the distribution of | E| as follows:

P(a)=2mQInR,RZP(|E|) . (5.3)

Thus all we need to do is find the probability density of
|E|. It is well known that the knowledge of all the odd
moments of the probability density of a measure on a
finite support is sufficient to determine that probability
density uniquely [17]. We therefore turn to calculate the
moments M, = (|E|?) next. This calculation then deter-
mines the multifractal spectrum through the asymptotic
relation

f(a)=In[P(a)]/InR, . (5.4)

VI. THE DISTRIBUTION OF THE MOMENTS
OF THE GROWTH PROBABILITY

In this section we first derive an exact expression for
the gth moment of the growth probability for a given
growth pattern. For a particular growth history this en-
ables us to calculate the multifractal function f(a).
Then, assuming that the asymptotic form of the distribu-
tion of the singularities is known, we discuss the ensemble
average of the moments of the growth probability.

As mentioned already, for Laplacian growth, the gth of
the growth probability density is [18]

1
M,=--$IEDIal, (6.1)
where the integration is carried out along the physical
surface and where @=1 has been used (see below).
Transforming the integration to the mathematical plane
by dl =|F'(s)|ds and putting E (I)=1/|F’(s)|, we obtain

D N ST
M= -G IF(s)|' s . 6.2)

Substituting for F’(s) from Eq. (2.4) and recalling that

around the unit circle s = —i Inz, we have
1—¢q
AW\ o N 1272, dz
M =——— —- . 6.3
7 21ri ¢ a1 | 2P, z 6.3)

Using the fact the around the unit circle z*=1/z, we end
up with the following expression:

p,= AW g (272, e
7 27ri w1 | 2P,
N l—ZZ: (1—q)/2 dz
XTI |——=+ -=
n=1 1——an z

(6.4)
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The second product within the integrand is analytic in-
side the unit disk and therefore the integrand has only
one simple pole at the origin and N singularities of order
(1—gq)/2 either at the locations of the zeros if g > 1 or at
the locations of the poles, if ¢ < 1. This indicates that the
locations of the zeros dominate the positive moments,
while the locations of the poles dominate the negative
moments. This makes perfect sense—one does expect
the protruding tips (characteristic to zeros close to the
unit circle), that enjoy high growth rates, to dominate the
high positive moments, while screened sites inside fjords
(characteristic to poles close to the unit circle), which en-
joy very low growth rates, are expected to dominate the
high negative moments [11]. Moreover, it is not surpris-
ing that this change of roles occurs at ¢ =1: From (6.3),
J

(z—=P,)

it can be easily verified that M, =@=1, which is why this
first moment serves as our normalization.

For simplicity, we consider here the odd moments,
g =2v—+1, where v is a positive integer [19], and we first
address the moments with g > 1

z—Z
z—P

n

_A@)™> 6 N

, I Z . (6.5)
27ri z

M,

n=1 n
The quantity J(z)=[[Y-,[(1—2zZF)/(1—2zP})] is anza-
lytic inside the unit circle and therefore the integrand
contains a simple pole at the origin and poles of order v
located at the positions of the zeros. A straightforward
calculation then gives

v

Z_Pk

N P,
HZ

n=1%“n

Mq>1=A(t)_2v{

v N v—1

V! n=1 dZV_l

zJ(z)Y

(6.6)

z2=Z, } ’

kvn | 2 "Lk

In particular, we calculate M, for v=1, which corresponds to ¢ =3 (v=0 is the normalization). This moment plays

q9

an important role because it has been found to yield the fractal dimension of the growth through D,=InM;/InR,
[11,20]. In our formalism this moment can be exactly expressed in terms of the locations of the singularities

N Pn N Qn
Mi=40)7% | ]I ~ +3 >z
n=1 n

m=1 n

(6.7)

For negative integer values of v the integrand contains a simple pole at the origin, as before, but the poles of order
—v=%>0 are now located at the positions of the poles of F’'. Carrying out the integral (6.5) then yields

v 1 N g

(z—2Z,)T(z)"

v

z _Zk

v 2 dz7 !

NZn
Iﬂ[P

n=1 n

Mq<1:A(t)Zv[

For example, for v=1 (¢ = —1) one obtains

Zy

N
L7,

n

o]l
=

M_,=A()? +

s (6.9)

M=
~

1

=

n
where

P,—Z,

0,=(P,—Z,)J(P,) <
kI;:[n Pn _Pk

Inspecting expressions (6.6) and (6.8) closely reveals
that it is always the quantity J(z) that causes singulari-
ties, which are close to the unit circle, to dominate the
moments. For ¢ =3, J(Z,) contains a term of the form
(1—Z,1)? "% in the denominator, which dominates these
moments via the zeros that are very close to the unit cir-
cle (1— |Z,,| <<1). Similarly, for ¢ < —1, J(P,) has the
term (1—|P,|)”7 in the denominator, which make the
poles that are nearest to the unit circle dominant. Below,
we use these observations to analyze a limit in which the
moments can be approximated by these dominant terms
alone.

z

(6.8)

z=P, ’

VII. THE DILUTE GAS APPROXIMATION

k#n Z—Pk

We have seen in Sec. III that if a zero Z,, whose argu-
ment is s, is close to the unit circle it dominates the cur-
vature at s,, K(s,) [Egs. (3.7)]. We have mentioned al-
ready that these zeros also dominate the positive mo-
ments of the growth rate distribution, and that poles that
are close to the unit circle dominate the moments M, .
Generically, the latter are poles that were created in later
generations because old poles are usually found in inner
regions of the unit disk. Thus the interesting action takes
place within some ring, r, < |z| <1 (whose size may actu-
ally shrink with time—a point to be discussed elsewhere).
To facilitate a simple calculation, we therefore neglect
the effect of the singularities that are well inside the unit
disk and consider only the effect of those that are no fur-
ther from the unit circle than 1—r,. We assume that the
distribution of the relevant singularities is dilute in the
sense that the typical separation between neighboring
singularities within this ring is larger than 1—r,. In this
limit the gth odd moment (g = 3) is approximately

Q4@ « , 1+1Z,]

- 1—2v
Av—11 2H Tz (1—1z,h

M;, 1>3=

+0(1), (7.1
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where
N
* I[1(Z,—P)1—=Z,Pf)
L= Zn k=1
T a+Z,)? 12, —2Z0)0—2Z,ZF)
k¥#n

and where the sum runs over all the zeros whose

|z, |=r..
A similar calculation for the negative values of v gives

AT o, 1P .
M., __ v (1—|P,|)
1—2ws—17 AT—1) n” TAE |P, |
+0(1), (7.2)
where
N
. IIP,—Z)(1—P,Z}¢)
_ Pn k=1
F==1%p, |7 I1(P,—P)(1—P,P})

k+#n

has the same form as p, when the poles are exchanged
with zeros, and where the sum in (7.2) runs now over all
the poles that satisfy |P,|>r.. It is intriguing to note
that the negative and positive moments have exactly the
same form when the zeros and the poles are inter-
changed. This observation suggests that differences be-
tween the behavior of the positive (v=1) and negative
(v=—1) moments can only arise from differences be-
tween the spatial distribution of zeros f, (Z) and that of
the poles f, (P) within this outer ring.

We note that in both (7.1) and (7.2) the dominant part
depends on the distance from the unit circle to a negative
power 1—v (or 1—% for v<1) and we have explicitly
separated this part from the more regular part in these
expressions. Since these terms dominate the moments we
consider the limit where the regular part is approximate-
ly constant. This allows us to rewrite (7.1) as

2v)'A(t

v _ 1—2v
y—1 ECD(I 1z, D',

My, 1123= (7.3)

where C, and D, depend on the location of Z, only
weakly. If the density of zeros is isotropic then the above
reduces to the calculation of the negative moments of the
density £, ( (Z=xe"):

d
M2v+123~ffz(x)( x

= (a—lz .
—X

(7.4)

Similarly, the calculation of the negative moments of the
growth probability reduce, in this limit, to the calculation
of the negative moments of f p(P xe’s):

M1—2vsv1~ff,,(x)(l x~ 1;((1_|Pl)1—2v> )

(7.5)

VIII. CONCLUSION

To conclude, we analyzed the problem of a one-
dimensional interface evolving in a two-dimensional La-
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placian field in terms of an equivalent many-body system.
The particles of the many-body system are the singulari-
ties (poles and zeros) of the general conformal map that
takes the interface into the unit circle at each instant of
time. We discussed the constraints on the map and its
constants of the motion. We wrote down the finite-
dimensional set of first order ordinary differential equa-
tions that is equivalent to the infinite-dimensional partial
differential equation that describes the motion of the in-
terface and analyzed them numerically first. Calculating
the trajectories of the singularities for various initial in-
terfaces, we found that in the absence of surface tension
the singularities “repel” strongly and that they “rush” to-
wards the unit circle with an insignificant azimuthal ve-
locity. Still without taking into account surface effects,
we analyzed the behavior of singularities that are close to
the unit circle. We found here that generically zeros hit
the unit circle at a finite time, 7. The distance between
the zero closest to the unit circle and unit circle p(¢) was
found to decrease inversely proportional to the square
root of the time to collision, p(t)~\/r-—t. The velocity
of that zero then diverges as 1/V'7—t. Moreover, we
found that the strong coupling between that zero and the
other singularities causes the velocities of all the singular-
ities to diverge during this fast approach at exactly the
same rate.

We calculated the general equation of motion of the ra-
dius of curvature anywhere along the interface. This
equation can be used as a basis for a statistical analysis of
the curvature distribution along the interface, or in other
words the morphology. The curvature immediately in
front of an approaching zero was found to diverge at a
rate proportional to 1/(7—1).

We next introduced a tip-splitting mechanism via pro-
duction of new pole-zero pairs of singularities through
the reaction Z—2Z + P. This production mechanism is
triggered by proximity of a zero to the unit circle and
hence a locally high curvature term. When the local cur-
vature exceeds a threshold value, the zero that caused
that high energy spawns a pole-zero pair at predeter-
mined locations in the vicinity of the parent zero. The lo-
cations of the products of this reaction are arranged to
reduce the high curvature, thus effectively reducing the
local surface energy associated with high curvatures. We
claim that tip splitting may therefore be the system’s
mechanism to “dissipate” locally high surface energies
along the interface. As time goes on, the spawning of
singularities takes place within an ever narrowing ring
close to the unit circle. It is the distribution of the singu-
larities within this ring that practically determines the
morphology of the physical interface.

Thus we next addressed the relation between the gen-
eral distribution of the singularities within the unit disk
and the statistics of the interface. In particular, we ana-
lyzed the distribution of the growth probability p ~ |E|
along the interface in terms of the locations of the singu-
larities. To obtain a stable asymptotic distribution, as
seen in nature, we suggested monitoring the probability
density of the quantity a=Inp /InR,, P(a), which relates
to the so-called multifractal function through
f(a)=InP(a)/InR,. We then calculated the exact mo-
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ments of the growth probability distribution. By using
the above relation these uniquely determine the mul-
tifractal spectrum. Our calculations show explicitly why
the zeros dominate the positive moments, while the poles
dominate the negative ones. To simplify the situation we
considered the ““dilute gas approximation,” namely, when
a narrow ring close to the unit circle contains singulari-
ties whose separation is typically larger than the width of
the ring. Calculating the above moments in this regime,
we found that the expressions for the positive and nega-
tive moments are identical if the locations of the zeros are
interchanged with the locations of the poles. This indi-
cates that the different behavior found in the literature
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between the positive and negative moments must origi-
nate from the different spatial distributions of the zeros
and the poles inside the unit disk.
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