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Self-diffusion in a periodic porous medium with interface absorption
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A matrix eigenvalue problem for the diffusion eigenstates of a periodic porous medium with
interface absorption is set up by expanding those eigenstates in terms of the eigenstates of the zero
absorption diffusion problem in the same medium. This approach enables us to obtain accurate
numerical solutions for many aspects of self-difFusion. We use our approach to evaluate the time-
dependent bulk effective or restricted diffusion coefficient of the Quid 61led porous medium and other
properties that can be measured using NMR techniques, such as the spectrum of spin relaxation
times and the spin echo amplitude in the presence of a pulsed magnetic 6eld gradient.

PACS number(s): 47.55.Mh, 05.60.+w, 07.57.Pt, 66.10.Cb

I. INTRODUCTION

D +2G
Bt

in the pore space,

t9G p G=0
Bn Dp

G~, o = 8 (r —r').

at the pore-inatrix interface, (1.2)

In 1966, Wayne and Cotts studied particle diffusion in
a restricted geometry using nuclear spin echo measure-
ments in the presence of a Gxed magnetic Geld gradient
[1]. More recently, spin echo measurements in the pres-
ence of a pulsed Geld gradient have been shown to be ca-
pable of yielding even more detailed information about
diffusion in such systems [2—5]. Much of the interest in
these experimental techniques is due to possible applica-
tions in biology and medicine, where these methods allow
in vivo measurements which are noninvasive as well as
radiation free [5]. The ability to perform measurements
without having to have a specially prepared sample inside
the measurement apparatus is also attractive for geolog-
ical studies and oil exploration. There, instruments are
often physically restricted to lie in a long and deep bore-
hole whereas the material under investigation (e.g. , fluid
filled porous rock) lies some distance away [6]. It is there-
fore no surprise that some effort has also been invested in
theoretical studies of diffusion in a porous medium, with
special emphasis on how the restricted diffusion affects
quantities such as the spin echo amplitude [7—15].

A useful quantity, which contains all the information
about self-diffusion in the porous medium, is the diffu-
sion propagator G(r, r', t), which satisfies the following
equations

Here Dp & 0 is the diffusion coefBcient in the pore space
and p & 0 is a coefBcient that characterizes the rate of
absorption at the pore-matrix interface. In the case of
diffusing molecules that carry an oriented or polarized
nuclear magnetic moment, this absorption really repre-
sents an enhanced surface relaxation of the spin orien-
tation. The enhanced relaxation is usually caused by
nonmobile paramagnetic ions adsorbed at the interface.

In a pulsed-field-gradient —spin-echo (PFGSE) experi-
ment, a spatially uniform gradient of the magnetic Geld
VH is applied for a short duration of time b during both
the decay period of the spin precession signal and the sub-
sequent reconstitution period, when the spin echo signal
is being built up. The measured echo in such an ex-
periment, also called the PFGSE amplitude, is given by
a double spatial Fourier transform of G (see, e.g. , Refs.
[12,1S])

M(k, t)—:— dV dV'G(r, r', t)e '" ' ', (1.4)
Vp v„v„

where t is the time separation between the Geld gradient
pulses, Vp is the total volume of the pore space, and
the wave vector k is simply related to V'H, b, and the
gyromagnetic ratio of the diffusing molecule p

(1.5)

In some of the recent theoretical studies, considerable
effort was devoted to developing approximate methods
for calculating G and M, as well as the values of the
bulk effective, time-dependent, microgeometry restricted
difFusion coefficient D(t) [12—15], which is defined for an
isotropic porous medium (also for a porous medium with
cubic point symmetry) by focusing on the small k behav-
ior of M(k, t) and writing

M(k t) =M(O t)e
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where a is a typical linear size scale of the pore struc-
ture. As t -+ oo (i.e. , when t )& a /D„), D(t) tends to
a limiting value denoted by D„which is the bulk effec-
tive or macroscopic diffusion coefBcient of the Quid Glled

1063-651X/95/51(4)/3401(16)/$06. 00 51 3401 1995 The American Physical Society



3402 DAVID J. BERGMAN AND KEH-JIM DUNN

porous medium. For times t such that t (( a /D~, ex-
plicit asymptotic expressions have been evolved for D(t)
that allow it to be calculated from a knowledge of D~, p,
and the surface-to-volume ratio S„/V„of the total pore
space [14].

When we consider (1.4), the intrinsic relaxation rate
of magnetization in the bulk pore Quid is already fac-
tored out, therefore when p = 0, we get that the total
magnetization M(0, t) has the constant value 1 for all
times t. When p g 0, M(0, t) acquires a nontrivial time
dependence and decreases with increasing time due to
the interface enhanced relaxation. This decay can be de-
scribed by a linear combination of decaying exponentials.
To these interface enhanced decay rates one should add
the intrinsic decay rate of magnetic polarization in the
bulk pore quid. In practice, the interface enhanced re-
laxation rates are usually much greater than the intrinsic
rate and in that case the spectrum of relaxation rates is
essentially determined by the surface relaxation. That is
why, by performing PFGSE experiments and using either
(1.4) or (1.6), important and detailed information can be
garnered regarding the process of restricted diffusion in
a Quid filled porous medium.

In a recent article [16], we proposed an approach for
studying restricted diffusion in a periodic porous medium
with zero interface absorption (i.e. , p = 0). In that ap-
proach, the diffusion eigenstates are erst calculated nu-
merically by solving a matrix eigenvalue problem for the
Fourier expansion coefficients of the eigenfunctions. The
eigenstates are then used to calculate other quantities,
such as G, M, and D(t). This is considerably less trivial
than it may sound because at the outset these eigenfunc-
tions were not defined everywhere, but only inside the
pore space, and their normal derivative was required to
vanish at the pore-matrix interface. This was dealt with
by rewriting the diffusion equation as an equation for the
local chemical potential, which is defined everywhere, un-
like the equation for the particle density, which is only
nonzero inside the pore space and has a jurnp discon-
tinuity at the pore-matrix interface. This extension of
the equation to the entire volume of pore space plus ma-
trix had the effect of incorporating the above mentioned
boundary condition into the revised differential equation
for the diffusion.

In this article we broaden that discussion to the case
of difFusion in a periodic porous medium with nonzero
interface absorption (i.e. , p g 0). This is achieved by
expanding the eigenstates of the p g 0 problem in terms
of those of the p = 0 problem and setting up a matrix
eigenvalue problem for the expansion coeKcients. The
method is applied to a number of systems, with difFerent
porosities, made by embedding a periodic, simple cubic
array of identical spherical obstacles inside an otherwise
uniform Quid. These systems include cases where there
is some overlap between neighboring obstacles as well
as cases where neighboring obstacles are well separated.
This calculational method, like its predecessor in Ref.
[16], is applicable to any type of microstructure, with
whatever value of the porosity, as long as it is composed
of a unit cell which is repeated in a periodic fashion.

The reInainder of this article is organized as follows.

II. THEGKY

The diffusion eigenstates of a porous medium are so-
lutions of the eigenvalue problem

IJQ~ + D„V' g~ = 0 inside the pore space,

+ @„=0 at the pore-matrix interface. (2.2)0n D„

(2.1)

Here IJ, is the eigenvalue and g„(r) the eigenfunction. It is
easily shown that the eigenvalues are all real and strictly
positive whenever p is strictly positive and eigenfunctions
that correspond to different eigenvalues are mutually or-
thogonal and can be normalized to 1, namely,

dVQ„*@ = b„„.
v~

(2.3)

Like any other function, the diffusion propagator
G(r, r', t) can be expanded in the complete set of states

G(, r', t) = ) "'v/i„(r)gI* (r'). (2.4)

In general, for a disordered pore structure, the spectrum
of eigenvalues is quasicontinuous and the sum that ap-
pears in this expression is really an integral.

We wish to expand these eigenstates in terms of the
eigenstates of the same medium but tuithout any interface
absorption, i.e., in terms of the p = 0 eigenstates. The
eigenvalues and eigenfunctions of the latter problem are
denoted by A, Pg(r) and they are solutions of

(2.5)AP~ + D„V' P~ = 0 inside the pore space,

(9'
= 0 at the pore-matrix interface. (2.6)

Using Green's theorem and the appropriate boundary
conditions at the pore-matrix interface, the overlap in-
tegral between a g function and a P function can be
transformed in two different ways: by using either (2.1)
and (2.2) or (2.5) and (2.6). These transformations lead,
respectively, to

dV Q*„g„=D~ dVV'P„* V'g„
vp

+P
BV

(2.7)

In Sec. II we describe the theory and discuss some prac-
tical aspects of its implementation. In Sec. III we
present results for the eigenstates, the bulk effective time-
dependent diffusion coefBcient, the nuclear spin relax-
ation rate, and the PFGSE amplitude in a number of
sample systems. In Sec. IV we present some conclusions
and suggestions for further work. In Appendix A we dis-
cuss some of the more technical aspects of the Fourier
expansion which afFect our results. In Appendix 8 we
present some results of a perturbation analysis applied
to the restricted diffusion problem. In Appendix C we
present some short time asymptotic expressions for D(t).
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A dVQqg„= D„dVVQq . V'Q„, (2 s)

(v- &)
v BV~

(2.9)

The expansion of @~ in terms of the P~

where OV„ is the pore-matrix interface, whose total area
is denoted by S„.These equations are combined to yield

@„q= ) A~"l(q)P (2.17)

now restricted to the pore volume or pore-matrix. inter-
face within a single unit cell, whose volume is denoted
by V . This result already appears in Ref. [15], where
it was used as the basis of a perturbation expansion for

Here we use the discrete nature of the eigenvalue
spectrum for a given value of q in order to get a discrete
matrix version of (2.10)—(2.12), namely,

&~ = ).Ai"'&~ (2.10)
(p,„q —A q)A~"l(q) = p) V „(q)Af"~(q), (2.iS)

( —A)A„" = ) VAf l, (2.11)

when substituted in (2.9), leads to an equation for the

expansion coefBcients A&"

(q)—:V
dS4*,( )4 ( ),

1

BV~A V~

(2.i9)

Vp = dSgqg,
8Vp

(2.12)

1
&p(r) =

p
(2.13)

therefore the matrix element Vpp is always equal to the
surface-to-volume ratio of the total pore space

Sp
Vpp ———".

Vp
(2.14)

Because the spectrum of p = 0 eigenstates is in general
continuous, the sum in (2.11) is usually an integral. Only
in the case of a periodic pore space does (2.11) become a
discrete matrix eigenvalue problem and thus numerically
much more tractable. In that case, all the eigenvalues
fall into quasicontinuous bands p ~, A ~ and the eigen-
functions have the Bloch-Floquet form

where we assumed that the Pg functions are normalized
just like the @~ functions [see (2.3)]. This is a matrix
eigenvalue problem where the matrix elements are deter-
mined by the eigenstates of the p = 0 difFusion problem.
Note that the A = 0 eigenfunction of the p = 0 diffusion
problem is a constant

where P q(r) are taken to be normalized as

1

Vp rl V
(2.20)

Note that this normalization divers &om the one previ-
ously assumed for both P~ and @~ in (2.3). With the
new normalization we get

1
4po(r) = ~,
Vpp(0) = —,Sp

Vp'

(2.21)

(2.22)

where P = V„/V is the porosity or fraction of the to-
tal volume V occupied by the pore space. The first of
these expressions is obviously difFerent from (2.13), but
the second one is exactly the same as the result obtained
previously for Vpp [see (2.14)]. The matrix V „(q) is
clearly Hermitian, therefore (2.18) can be solved using
standard numerical methods to obtain the eigenvalues

p & and the normalized, mutually orthogonal eigenvec-

tors A (q). These eigenvectors can be used in (2.17) to
calculate @„q(r),which then have the same orthogonality
and normalization properties (2.20) as the P q(r).

In terms of these eigenstates, G becomes

( ) q @~t 'y —
( )

q (2.15)
G(r, r', t) = —) e ~"~ g q(r)v)* (r')e'q' ' ', (2.23)

where n, m are band indices, q is a wave vector in the first
Brillouin zone of reciprocal space, and @ q(r), P q(r)
are periodic with the same kind of periodicity as that of
the pore space. As usual, the overlap integral between
two Bloch functions with difFerent q vectors vanishes and
(2.9) is replaced by

n, q

M(k, t) = —) e "" ']@„q(gg)~'] (2.24)

while M is given by the particularly concise expression

(~-q —~-q) dV & (r)&-q(r)
V„nV

where

g)—:— dV@„
1

v„nv.
(2.25)

= p dSQ* (r)@„(r), (2.16)
BV~RV

where both the volume and the surface integrations are

are the Fourier expansion coeScients of g q(r), g is a
vector of the reciprocal lattice appropriate to the nature
of the pore space periodicity, and g~ is the reciprocal
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lattice vector that is closest to k. For small k, i.e., those
that are inside the erst Brillouin zone, we have gg ——0
and q = k.

From numerical computations of M(k, t) at small k
we can deduce the bulk efFective, time-dependent, mi-
crogeometry restricted di6'usion coefBcient of the porous
medium D(t) using (1.6). For short times t, the values
thus obtained can be compared with the explicit asymp-
totic expressions for D(t) given in Ref. [14], as well as
with further expressions derived by us (see Appendix C).
At long times only the lowest band of eigenvalues p,o&
is important for calculating M(k, t), unless the weight

~go~(gi, ) ~2 happens to be very small. The bulk efFective
stationary difFusion coefBcient D is determined from the
small q behavior of go~. For microstructures with cubic
point symmetry we have (for lower point symmetries D,
is usually a second rank tensor instead of a scalar quan-
tity)

»~ = V«+ D.lql'+ &(lql'). (2.26)

The q = 0 eigenvalues provide a (discrete) spectrum
of relaxation rates for the total magnetization M(0, t)

M(o, t) = -) e-"-"~@„,(0)~', (2.27)

to each of which must be added the intrinsic relaxation
rate of nuclear magnetization in the pure pore Huid. Usu-
ally even goo, the lowest of the porous medium rates, is
considerably greater than the intrinsic rate. Therefore
when a spectrum of total relaxation rates is determined,
by an appropriate analysis of a free induction decay NMR
or a sequence of spin echo experiments on a fl.uid Riled
porous medium, the results are essentially the eigenvalues
p,„o weighted by ~g„o(0)~'.

In practice, the matrix elements V„(q) are evaluated
using the Fourier expansion coefficients of P ~(r)

V-(q) = 4) .).&.*„(g)K(g —g') 4-g(g') (2 28)
g g'

where

1
&-~(g) —=-

a Vzgv

1
K(g) =——

av„nv.

dVQ„~(r) e

dS (2.30)

The Fourier expansion coefBcients of the p = O eigenfunc-
tions P z(g), which are needed for evaluating V (q),
were calculated by solving a discrete matrix version of the
eigenvalue problem (2.5) and (2.6), as described in Ref.
[16]. A somewhat subtle but important technical point
is the factor 4 which appears in (2.28): It arises from
the fact that the Fourier series for 0&(r)g z(r) [8„(r) is
the characteristic or indicator function of the pore space,
equal to 1 inside that space and 0 elsewhere] at the pore-
matrix interface, where this function has a jump discon-
tinuity, really converges to 1/2 of the value of P ~(r) at
the interface —this is explained in greater detail in Ap-

pendix A. The values of K(g) in general depend upon
details of the microstructure and periodicity, but K(0)
has a general and simple value, namely,

Sp SpK(0) = —"= P—". (2.31)

We considered a set of samples where a simple cu-
bic array of identical spherical obstacles of radius B,
with lattice constant a, is embedded in a uniform Quid
medium with dift'usion coefficient D„. Samples with dif-
ferent sphere sizes were considered, including cases where
neighboring spheres overlap and cases where they are well
separated: Our approach is able to treat periodic samples
with both high and low porosities.

Two important microstructural parameters of this sys-
tem are the porosity g and the surface-to-volume ratio
Sz/Vz of the pore space. In terms of the sphere-radius-to-
unit-cell-edge ratio z—:B/a, these parameters are given
by

for0&x& 2
(non-overlapping obstacles)

1+——3~x +—x for —& x &—Sm 3 1 1
4 3 2

(overlapping obstacles),

(2.32)

aSp
Vp

4mx

1 —4 x'
3
2~z(3 —4z)

1+ ——37t-x2 + —'x3
4 3

for 0&x& 2

for —& x & —.1 1
2

(2.33)

When — & x & —the pore-matrix interface is com-
2

posed of the surface of a spherical obstacle out of which
six circular sections have been cut out due to overlaps
with neighboring obstacles. For those cases', K(g) was
evaluated by numerical integration of (2.30) over the in-

terface.
The g vectors also form a simple cubic lattice and are

given by
2~

g = —(n, ny, n, ),a
(2.35)

When z ) 1/~2, the overlapping spherical obstacles are
so large that the pore space becomes a set of isolated,
unconnected pockets. Such a collection of unconnected
pores was considered in Refs. [8,9]. Here we limit our
discussion to the case z & 1/~2, when all the pore space
is connected.

Because of the simple nature of the pore-matrix inter-
face in the nonoverlapping case, when z & 1/2 (i.e. , in a
single unit cell- it is just the total surface area of a sin-
gle spherical obstacle), a closed form expression is easily
obtained for K(g)

4~R2 sin(~ g ~
B) S„sin(

~ g ~
&)K g for z & —.

[g[Z V„/g/&
(2.34)
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n, n»n, are integers. In order to get a finite matrix
eigenvalue problem for A„~, P ~(g), we included g vectors
with integer components n, n„, n running from —N to
N. The total number of g vectors is thus (2N+1) s, which
translates into a (2N+ 1) x (2N+ 1)s matrix eigenvalue
problem for the p = 0 eigenstates. That problem must be
solved carefully, using the method of Ref. [16] in order to
avoid singularities which arise from the treatment of the
boundary condition at the pore-matrix interface. After
all of the p = 0 eigenstates are found [their total number
in this calculation is, of course, (2N+ 1) ], the eigenvec-
tors P z(g) are used to construct the V(q) matrix using
(2.28). That matrix is also of size (2N + 1) x (2N + 1)
and is used in (2.18), along with the p = 0 eigenvalues,
to construct the matrix for the p g 0 eigenvalue problem.
After that is solved, the eigenvectors A~ ) (q) are used to
calculate the Fourier coefficients g z(g) by

(2.36)

and those are then used, along with the eigenvalues p z,
to calculate G(r, r', t) and M(k, t) from (2.23) and (2.24).

It should be noted that because the eigenvalues of the
diffusion problem are only bounded (by 0) from below,
large eigenvalues can never be calculated with any pre-
cision by using a finite, truncated matrix representation.
However, if t is not too short, then only the low ly-
ing eigenstates are needed for an accurate calculation of
measurable quantities such as G(r, r', f), M(k, t), and
D(t). Furthermore, for sufficiently short times closed
form asymptotic evaluations of the Laplace transform
of G(r, r', t) lead to explicit expressions for all of the
above quantities in the case when (D„t) / S„/V„« 1
and p(t/D„)i/z is either very small or very large com-
pared to 1 (see Ref. [14] and Appendix C).

Finally, it should be noted that many of the p = 0
eigenstates are spurious and appear as a result of the in-
corporation of the boundary condition (2.6) into the dif-
ferential equation for the chemical potential [16]. They
did not cause much trouble because the Fourier coef-
ficients P u(g) associated with the low lying spurious
states are very small. Nevertheless, in some of the previ-
ous p = 0 calculations we found that it was necessary to
discard those spurious eigenstates which had eigenvalues
below the lowest band of true eigenvalues Aoz in order to
get accurate results near k values where M(k, t) had a
minimum [17]. The low lying spurious states that were
discarded were identified by the fact that their norm

and found that the low lying eigenstates clearly fall into
two groups. In one group this norm is close to 1, indicat-
ing the states to be true eigenstates. In the other group
the norm is very small, and those states were then dis-
carded if their eigenvalue was also below the lowest band
of true eigenstates.

III. RESULTS

Although all of our results can be expressed in terms
of dimensionless parameters, some of them are quoted
with physical dimensions. This is done in order to fa-
cilitate a comparison with real porous media such as
brine saturated porous rock. For this reason we used
D„= 2.5 x 10 s cmz/sec, which is the self-difFusion
coeKcient in water, and a unit cell edge a = 10 pm.
This results in a characteristic diBusion time scale of

—:a /D„= 40 msec. The dimensionless surface ab-
sorption parameter is pa/D„and therefore its magnitude
is determined not only by the intrinsic absorption rate
p, but also by a and D„. In sandstones one typically
finds that p is in the range 0.003—0.03 cm/sec, while the
mean pore diameter is in the range 15—150 pm [6]. Using
the extreme values of the mean pore size for a and the
extreme values quoted for p, we find that pa/D„= 0.2—
20. This range spans the transition region from weak
to strong surface absorption. In view of this observation,
we performed calculations for a variety of surface relaxiv-
ities which cover both weak and strong absorption, from
pa/D„= 0.1 up to pa/D„= 100.

In actual calculations we used values of N up to 5, in
which case the total number of eigenstates is (2N+ 1)
11 = 1331, because for N = 6 the number of eigenstates

TABLE I. Results for computed eigenvalues of a simple cu-
bic array of identical touching spheres w'ith porosity /=0. 4764
and an interface absorption strength of pa/D„=1, where

p ~/D„= A /a +B q + O(q ) and the size of the reciprocal
lattice varies from N=2 to 5. The values of A and B„are
calculated from the computed results for qa=(0.05,0,0) and
(0.1,0,0). Note that the coefficient Ao (i.e., the lowest eigen-
value at q=0) can be compared with the result of perturbation
theory 7 pS„/V~ (6.5944 in this case; see also Table IV). The
coefficient Bo should be equal to D, /D„The correspond. ing
value for p=0 is 0.722.

(2.37)

is very small, in contrast to the norm of the low lying
true eigenstates which is close to 1.

In view of this experience, although all of the p = 0
eigenstates were used in constructing the V(q) matrix,
including the spurious ones, we again monitored the norm
of the p P 0 eigenstates

(2.38)

Bo
0.689
0.687
0.683
0.682

Bg
-9.932
-9.572
-9.849
-9.843

Poq JM 1q
Ao Ax

2 6.4?4 39.96
3 6114 39 32
4 6.041 39.32
5 5.984 39.22

P2q
A2

47.70
47.26
47.05
46.95

B2
9.908
9.612
9.937
9.964

Paq
A3

74.84
74.75
74.98
75.07

B3
1.757
1.619
1.505
1.437

P4q
A4

97.98
100.93
102.16
102.78

B4
-1.549
-4.093
-3.413
-3.987

Psq
A5

107.45
107.55
107.40
107.31

B5
0.320
1.707
2.720
3.400

P6q
A6

141.17
145.49
148.05
149.62

B6
3.773
3.067
2.640
2.280
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TABLE II. Computed results of some selected elements of @ ~(g) for the three lowest eigenvalues
with non-negligible weights, denoted by go~, pz~, p2~, for a simple cubic array of identical touching
spheres with /=0. 476 and pa=(0. 1,0, 0) for the cases pa/D„=1 and pa/De=10 T.he g vectors
appearing in this table are denoted by a triplet of integers rr, , n„, n, , where g = —(n, rr, » n,,);
e.g. , gq~(000) is the same as vga~(O). The reciprocal lattice used varies in size from N = 2 up to
%=5.

Pop
pa/D„=1 pa/De 10—— pa/D„=l pa/D„=10 pa/De 1—— pa/De 10—

1@.,(000) '
0.4731
0.4735
0.4734
0.4734

14p~(000) I'
0.3663
0.3832
0.3900
0.3927

I&„(000)I'
0.67x 10
0.64 x 10
0.68 x 10
0.68 x 10

I&~~(000)I'
0.16x 10
0.29 x 10
0.19x 10
0.12x 10

(«o) I'
0.36 x 10
0.35 x 10
0.36 x 10
0.36 x 10

14„(000)I'
0.25 x 10
0.14x 10
0.15x 10
0.15x 10

I@o (loo)1'
0.05720
0.05731
0.05741
0.05748

IA~(100) I'
0.07814
0.07766
0.07714
0.07646

(loo)
I

0.1280
0.1283
0.1270
0.1268

Iq„(loo) I'
0.05673
0.02922
0.04498
0.06066

(loo)
I

0.2523
0.2508
0.2520
0.2522

„(loo)1'

0.2417
0.2766
0.2665
0.2539

lip~(»0) '
0.00333
0.00331
0.00327
0.00326

(2oo)
I

0.00375
0.00407
0.00405
0.00403

I&~~(»0) I'
0.01625
0.01523
0.01502
0.01484

I& .(200)l'
0.00173
0.00593
0.00783
0.00931

I@„(200)I'
0.01252
0.01226
0.01245
0.01248

1@. (»0)1'
0.02466
0.02164
0.02014
0.01840

(13 = 2197) becomes too large to evaluate without in-
voking special measures. We performed a number of tests
for convergence of our results in the various stages of cal-
culation. For the p = 0 eigenstate calculation those are
described in Refs. [16,17] along with all the other de-
tails. In addition to those, we tested several eigenvalues
p ~ for convergence with increasing N (see Table I for
a demonstration of such a test) and also the results for
the Fourier coefficients g ~(g), the eigenvectors A (g),
and the matrix elements V (g) (see Tables II and III).
We also tested the final results for D(t) and M(k, t) for
convergence with increasing N [see Fig. 1(a), where D(t)
is plotted at short times for different values of N].

We compared our numerical results for D(t) to the
approximate short time asymptotic expressions of Ref.
[14] [see Figs. 1(b) and 1(c)], which are valid when
pt « (D„t) / « a. Our conclusion from these com-
parisons is that for small or intermediate values of p,
namely, pa/D„& 1, the numerical evaluations of G, M,

and D(t) are accurate down to times t which are short
enough so that the short time asymptotics can also be
used there. Furthermore, it is always sufhcient to use
N = 4 when truncating the reciprocal lattice of g vec-
tors. For large values of p, namely, pa/D„) 1, there
is a range of intermediate times where both our calcu-
lations and the above mentioned short time asymptotics
are invalid [see Fig. 1(c)]. In that domain the numeri-
cal results are improved by increasing N up to 5. Pre-
sumably a further increase would improve their accuracy
even more, especially when pa/D„)) 1. Alternatively,
it seems that simple interpolation can be used to pro-
vide reliable results in the intermediate range of times
[see Fig. 1(c)]. In that domain, one can also try to use
an asymptotic short time approximation which is valid
when (D„t) / « pt In Ref. [14.] an approximation of
this type was obtained for a general microstructure only
when p = oo. In Appendix C, we extend this approach
to obtain. an asymptotic expression for D(t) in a porous

TABLE III. Results for computed eigenvector component Ap (cI) at qa=(0. 1,0,0) for pa/D„=1,(o)

10& and 100 for a simple cubic array of identical touching spheres with porosity /=0. 4764 and the
size of the reciprocal lattice varying between N=—2 and 5. Also shown are the results of the computed
matrix elements Upp(g), Uzz(g), and V22(g). Note that the numerically computed value of Vpp(g)
for %=5 is within I'%%uo of the exact value of Vpp(O) for this microgeometry, i.e., aS„/V~=6.5944.

Ap" (pa/D~ = I)
0.9967
0.9960
0.9969
0.9969

A~~ l(pa/De ——10)
0.8766
0.8960
0.9049
0.9081

A',"(pa/D„= 1OO)

0.6023
0.6928
0.7236
0.7400

«oo
6.9649
6.6455
6.6490
6.6419

aVj g

8.5946
8.2669
8.4196
8.4156

aV»
7.8542
7.8255
7.7191
7.6906
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medium with a general microstructure and large but 6-
nite values of p, in the regime where (Dzt) ~ && pt (& a
[see (C13)]. However, we were not able to include the ef-
fects of finite radii of curvature of the interface, even for

p = oo. The values resulting from (C13) are also shown
in Fig. 1(c) and they are evidently insufficient to bridge
the window of times where our computations, as well as
the small p approximations, fail.
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0.6—

(I) = 0.476
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efficient D~~t~~,~D vs time, in seconds, for a simple cubicFIG. 1. (a) Results for the bulk efFective time-dependent diffuston coefBcien ( )/
s heres &~~

——0.4764~, unit cell edge a = 10pm, Quid self-diffusion coefficient D„= 2.5 x10 cm
~ sec,

or tion coefficient a,~D = 1. The size of the reciproca a ice use or eand dimensionless interface absorption coe cien pa,
varies rom = o, if %=1 to 5 illustrating the convergence of the computatiutation. b Results ior mi, t~y ~ vs & or e sf Dj )y'D ~t f th same sample.

ime where t « D tj « a. eX &/'2
e are the short time asymptotic approximations of Ref. [14] for the small p regime, w p & ( „)

e term of order D t~ 8 V„, while the second-order asymptotics also contain terms
ro ortional to and to the inverse radii of curvature of the interface [see Eqs. (29) and (39 o e . . c arne as

namel a D = 10. In addition to the above mentioned asymptotic approximations of Ref.

[14], we also plot the asymptotic approximations for the large p regime, where D„t (( p a, as o

[ (C13)]. In this case the first-order asymptotics again contain only the term of order (D„t) S„V„rom
. V '

l mark the time interval where both our numericalsecond-order asymptotics use all the terms in that expression. Vertica arrows mar
computations and the small p asymptotic expressions from Ref. [14] are znvahd.
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In Fig. 2 we show the low lying bands of true (as
opposed to spurious) reduced (dimensionless) eigenval-
ues P, ~ = p ~r for q in the (100) direction, when
pa/D„= 1 and 10. This figure can be compared with
a similar one for the p = 0 case, which appears as Fig.
2 in Ref. [17]. Values of ~q~a are shown beyond the up-
per edge of the first Brillouin zone at iqia = vr in order
to emphasize the periodic nature of p z in the extended

zone scheme. Note that when pa/Dz is increased from
0 to 1 the detailed band structure changes only slightly,
apart from a general displacement upwards, but when
pa/D„= 10, many details of the band structure change
appreciably.

In Tables IV and V we list the values of ppz (i.e. , the
lowest band of true eigenvalues) for a small value of q,
so that they are approximately equal to poo, which we
found at the difFerent porosities and diferent values of
p that were considered. Note that calculating go& ex-
actly at g = O would be less accurate because, in this
more symmetric point of q space, there is greater degen-
eracy among difFerent eigenstates; see Ref. [17]. When
both pa/Dz ——0.1 and ilia = 0.1, we would expect that
go& ppo 7 pS„/V„. Table V shows that this expec-
tation is well satisfied for the three intermediate values
of P, but less so for the two extreme values. In the high
porosity case P = 0.700, we were able to determine the
reason for this by comparing our numerical evaluation of
Vpp(O) with an evaluation in which the exact values of

goo(g) [see Eq. (2.57) in Ref. [17]] were used in (2.28).
When the sums over reciprocal lattice vectors were sim-
ilarly restricted, the two calculations led to results that
were very close to each other, but the convergence with
increasing X was very slow. Consequently even the ex-
act calculation led to substantial deviations from the ex-
pected value unless N was assigned extremely large val-
ues. This may be connected to the fact that a Fourier
expansion was used to represent a discontinuous function
(see Appendix A). In the low porosity .case P = 0.104,
we were unable to determine the cause of the discrepancy
between P, ~ and w pS&/V„. We think it is due either to
slow convergence of the above mentioned sums in (2.28)
or to the fact that both Og and K(g) were calculated
by using two-dimensional numerical integration over the
interface, with the attendant inaccuracies.

Using the values of ppo (taken to be approximately
equal to Ppz of Table IV), we find that the additional spin
relaxation rates ppo ——ppo/T are in the range 1/60 —1/0. 8
msec . This is well within the range of relaxation rates

XJ

100

IX

50

0
0

I

10
I

15

I~oq

20

TABLE IV. Computed results at N=S for Ap (q) and
the lowest reduced eigenvalue pp~ = 7 ppz at qa=(0. 1,0,0),
as compared with the dimensionless parameters v pVoo and
7 pS„/V„at various interfacial absorption strengths for a siin-
ple cubic array of identical touching spheres with porosity
/=0. 4764. Note that the perturbation result Ppp

——w pVpp is
still within 10% of the exact answer when pa/D~=l and that
even when pa/D~=10, Ap (q) is only 10% away from the(o)

perturbation result Ap (q) = 1. Also shown are the values of(o)

the bulk effective stationary or long time difFusion coefFicient
D, /D„, obtained from the q term in pp~.

FIG. 2. Results for the seven lowest reduced true eigenval-
Ues /l~g = p~k7 as functions of ~k~a along the (100) direc-
tion in the one-dimensional extended zone scheme for a simple
cubic array of identical touching spheres (/=0. 4764) (a) for
pa/D~ = 1 and (b) for pa/D„= 10. The bands identified as
Og, 1q, etc. correspond to the eigenvalues poq, piq, etc. which
are exhibited in Tables I and II.

pa/D„Ap~ l(q)
0.1 1.0000
1 0.9969

10 0.9081
30 0.8097
100 0.7400

Poq
0.6642
5.9912

31.0305
43.9898
51.0244

~ phoo
0.6642
6.6419

66.4194
199.2582
664.1941

r~ pS„/Vi,
0.6594
6.5944

65.9444
197.8333
659.4443

D, /Dp
0.716
0.681
0.433
0.266
0.182
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TABLE V. Computed lowest eigenvalue Po~ (in dimensionless form) at qa=(0. 1,0,0) as compared
with r pS„/V„ for simple cubic arrays of nonverlapping, touching, and overlapping spheres with
difFerent porosities and different p. The reciprocal lattice size was N = 5.

pa/D

0.700
0.476
0.328
0.202
0.104

0.1
PPq
0.3365
0.6642
0.8528
1.1113
1.4817

r PSp/V~
0.3096
0.6594
0.8424
1.1198
1.5708

Poq
3.0647
5.9912
7.9099

10.4464
13.8959

r~ pSi, /V
3.0960
6.5944
8.4235

11.1978
15.7080

10
//pq r PS„/Vp

17.062 30.960
31.031 65.944
43.624 84.235
60.746 111.978
85.830 157.080

100
pp~ r~ pS„/Vr

28.401 309.60
51.024 659.44
73.170 842.35

106.851 1119.78
170.730 1570.80

observed in NMR experiments on protons in a variety of
brine saturated natural sandstones (see Ref. [6]).

In Table IV we also show the values of Ap, pVpp,
(p)

PS„/V„, and D, /D~ [D, is the bulk effective value or long
time limit of D(t)] for various values of pa/D„. This ta-
ble allows us to examine two different questions: (a) How
accurate is the numerical computation of the matrix ele-
ments V (q)'? (b) How accurate would a perturbation
treatment be which calculated everything to leading or-
der in pa/D„'? In order to answer the first question, we
note that column 4 of this table shows numerical results
for the particular matrix element Vop(q), while column
5 shows the exact resutt for the same quantity. The sec-
ond question can be answered by seeing how different

the numerically computed value of Ao ) (q) is Rom 1 and
how different the similarly computed value of p,pz

—p,po
is from the first-order perturbation theory value 7 pVpp

(see Appendix B). Evidently, even for the medium large
value of pa/D„= 1, perturbation theory is still a quite
good approximation.

In Fig. 3 we plot D(t)/D„ for difFerent porosities and
different values of p. Note that the value attained by
D(t) in the limit t ~ oo is just the bulk effective diffusion
coefBcient D, . For the p = 0 case, this quantity is related
to the so-called formation factor E through the relation
(see, e.g. , Ref. [13])

0.8-

0.6-

0.4-

0.2

0.0—
0.00

3.0

0.8 -,

ps/D, =0

I

0.04

Time (sec)

I

0.08

/=0. 700

/=0. 328

/=0. 202

/=0. 104

0.12

(b)

/D =0
D
Dp

(3.1)

0.6
/D

P

where oz and o, are the electrical conductivity of the pore
Quid and the bulk effective conductivity, respectively, and.
the matrix component is assumed to be a perfect insu-
lator. In contrast to this, when p g 0 the only way to
calculate D, is by using (2.26). In Table VI we show
D, /D„ for various values of P and p, including p = 0.
Also shown, for comparison with the p = 0 values of
D, /Dz, are the values of 1/PF, where F was evaluated
using the method of Ref. [18].

In Fig. 4 we show the low lying reduced eigenvalues

p z as functions of pa/D„. When pa/D„(( 1, these
eigenvalues exhibit the behavior predicted by perturba-
tion theory [see (Bl)]

0.4-

0.2

0.0
0.00

I

0.04

/D =5
P

D =10
P

=30
~a

pa/D, =100

I

0 ~ 08

Time (sec)

0.1 2

pnq —~nq Oc p. (3.2)

In particular, the lowest eigenvalue then satisfies [see

FIG. 3. Bulk effective time-dependent difFusion coeKcient
D(t)/D„plotted vs time t (a) for various porosities P and
pa/D„= 1 and 0 and (b) for touching spheres (P = 0.476)
and various values of pa/D„.
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TABLE VI. Results at N=%=5 for the bulk efFective stationary difFusion coeKcient D, /D for all
the values of and & consider d Rp & ed. Results at N =4 for nonzero p are also shown in parentheses to

e ccen ~ „or a

indicate the conver ence. As incrg . p eases, the convergence gets poorer. For lower porosities the
imprecise calculation of 8+ also leads to poor convergence as discussed in the text. The appearance
o ** ins ea o a numerical entry indicates that the difFerence between results at N=4 and 5 is
greater t an 30'p0 and therefore the values obtained are unreliable. The second column shows the
values for o, /(4'ia„) which were computed using the method of Ref. [18].

0.700
0.476
0.328
0.202
0.104

pa/Dp
~./(4~ )

0.865
0.722
0.583
0.467
0.315

0
0.865
0.722
0.582
0.466
0.315

0.1
0.864 (0.864)
0.716(0.719)
0.579(0.580)
0.461(0.463)
0.240(0.303)

D /Dp
1

0.850(0.851)
0.681(0.683)
0.534(0.556)
0.413(0.425)

10
0.686(0.685)
0.433(0.424)
0.256 (0.253)

100
0.495(0.481)
0.182(0.165)
0.050 (0.045)

10

10' -,.

10

10

10

10

10

10 7

10

10

10

1p-11

1p-12

10-13

1p-14

10

IO
'

-=.

10

10

10

10

10

10

10

10

10 1

10

1p-12

y = 0.476

pa/D, =10

10
]S )a

I

15

0.1 ms

0.3 ms

1.0 ms

3.0 ms

10 ms

30 ms

60 ms

(a)

100 ms

0.1 ms

0.3 ms

10 ms

3.0 ms

10 ms

20

of k is qualitatively similar at the difFerent porosities:
The normalized amplitude generally decreases with in-
creasing ~k~ in any fixed direction, but when t is large
enough there appear quasidiR'raction maxima whenever
k equals a reciprocal lattice vector. The general trend of
decay with increasing ~k~ is weaker the lower the pares-
ity P. This is in agreement with the finding that D(t)
decreases with decreasing P at any fixed value of t [see
Fig. 3(a)].

IV. DISCUSSION

We presented a method capable of making accurate de-
terminations of all aspects of self-diffusion in a periodic
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FIG. 6. PFGSE amplitude M(k, t) plotted vs ~k~a along
e ~ ~ direction at various times for a cubic array of touch-

ing spheres (P = 0.476) (a) for pa/D„= 1 and (b) for
pa/D„= 10.

FIG. 7. Plot of the ratio M(k, t)/M(O, t) for the saine
samples as in Fig. 6, along with results for p = 0. Evi-
dently, for pa/D„( 1, (3.4) is a good approximation, but
for pa/Dp = 10 it is not.
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nite overlap, we used a two-dimensional numerical inte-
gration procedure for computing the Fourier coefBcients
0s of the characteristic step function 0„(r) of the pore
space. Those coeKcients are used in the initial stage of
the calculations, when the p = 0 eigenstates are com-
puted. This numerical integration introduces computa-
tional errors which propagate to the p g 0 eigenstates
and may become prohibitively large when p is very large.
These errors can be avoided by using the infinite series
or one-dimensional integral expressions that were devel-
oped in Ref. [20] in order to evaluate 0g for an array
of overlapping spheres. When considering models with
a more complicated microstructure, it will probably be
computationally advantageous to assume that the pore-
matrix interface is composed of a Gnite set of intersecting
planes. This will reduce the computation of 0g to a set
of purely algebraic steps, since all the integrations will
then be elementary.

Of the other calculational methods that have been de-
veloped for studying self-diffusion in a porous medium,
only the random walker simulations are able to treat sys-
tems with low porosity at times which are not very short
[11,12,15]. The random walker method has the advantage
of being able to cope with disordered structures as well as
periodic ones, but it becomes increasingly more dificult
and time consuming, and therfore less accurate, as the
diffusion time increases. Our method, in contrast, be-
comes more accurate and easier to use as time increases,
especially when pa/D„) 1 and when pt is not small

compared to (Dzt) ~ . A comparative study of the same
set of periodic porous samples using the two methods is
described in the preceding paper [21].
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APPENDIX A: DERIVATION OF EQ. (2.28)

&-.(~)

=4).):—
BV„AV

= 4) .) .&*,(g) ~(g —g') &.~(g')

d~&*,(g)e "'&. (g')e*' '
(A4)

where

K(g —g') = — dS e
av„nv.

(A5)

This analysis is corroborated by the fact that the numer-
ical algorithm based upon (A4) yields the correct result
for Vpp, as given in (2.22) (see Table IV).

APPENDIX 8: SOME RESULTS FROM
PERTURBATION THEORY

For small values of p, when pa/D„« 1, lowest-order
perturbation theory can be used to calculate the p g 0
eigenstates from the p = 0 eigenstates. We do this ex-
plicitly for the case of a periodic porous medium, but the
same approach can be used even for nonperiodic struc-
tures. From (2.18) and (2.19) we thus get for p z(p), re-
calling the normalization (2.20) of P z(r) and that of the

eigenvectors A (g), and assuming that p, ~(0)—:A z is
a nondegenerate p = 0 eigenvalue,

the function 0„(r)g„z(r), which has a jump discontinu-
ity at the pore-matrix interface and vanishes inside the
matrix. The limit value of this function as r tends to
the interface from inside the pore space will be denoted
by P~f'zl(r) that is the value which should appear in the
integrand of (Al). However, the series (A2) converges to
P„~(r) for r inside the pore space, to 0 inside the matrix,
and to one-half of the value of P~f'zl(r) at the interface.
Therefore, if we want to use (A2) in (Al), we must com-
pensate for this eBect by multiplying each of the Fourier
series that are used by a factor 2, resulting in a total
factor of 4. This immediately leads to the result

I'-.(~) = — d~&* (r)&.~(r)
OVPA V

(Al)

In order to understand the origin of the factor 4 which
appears in (2.28), we must return to (2.19), namely,

&p-~:—p-~(p) —~-~(0)

~f-l(q) = P~-(')
A„q —A

I&.'"'(~) I'

pV (q) = 0 (
—), (Bl)

OI I, num (B2)

2

1 —o
I

'
I

. (H3)
~ ED. r )

This is processed by substituting the Fourier series ex-
pansion

(r) =).& (g) "' (A2)

and a similar expansion for P (r). A careful inspection

of the expression for the coefFicients P„~(g), namely [see
(2.29)],

4-~(g) = — dV&-~(r)e "
V~ v„nv.

(A3)

reveals that they are actually the Fourier coefFicients of

The following terms in the perturbation expansions of
b, p. z and A (g), n g m, are smaller than the leading
terms by a factor of order O(pa/D„) « 1. From these
results we can draw some useful conclusions. (a) For
small p the lowest eigenvalue happ(p), which vanishes for

p = 0, is given by [see (2.22)]

Sp
Ppp (P) PUpp (0):P—.

Vp

(b) For small p, the decay of magnetization depends only
on that eigenvalue: The total magnetization is given by
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[see (2.24)]

M(0, t) = —) e """1'„o(o)1',

and the weights in that expression [1@ o(0)1 ] can be cal-
culated from [see either (2.17) or (2.36)]

with a homogeneous fluid and bounded by a flat, (d —1)-
dimensional hyperplane x = 0, at which the bound-
ary condition (1.2) applies. The d-dimensional difFu-
sion propagator Gq(r, r', t) is then a product of one-
dimensional propagators, d —1 of which are free or infinite
medium propagators, such as

IO-~(g) 1' = ) .).&-'"'*(q)&,'"'(q)&-*,(g)&~~(g) G (g gf t)
I 1

e 4D+t

&4 D„t (Cl)

(B6)

Since goo (r)—:1/P ~—:const [see (2.21)] and since
P o(r), n g 0 is orthogonal to goo(r), we therefore get

while the remaining one Gi (z, x', t) includes the efFects of
the boundary. That propagator can be written in closed
form using the error function, but it is even simpler to
use its Laplace transform l:(Gi(z, x', t)) = Gi(x, z', s)

14-.(0)l' =
&

for ng0,
(B7) 2( D )1/2

)1 2

+ ( p) p —(s/D~) r (~++') (C2)(sD~)" + p

M(0, t) = e ""'—0
~ &D.) &' (B8) The total magnetization M(t)—:M(k = 0, t) is calcu-

lated as follows:

where

S~ (pa)
Boo = PV 1+ 01

p p
(B9)

This result is true for all times, including times that are
very short or very long, as long as pa/D~ is small. A
similar looking result for M(0, t) already appears in Ref.
[15], but its validity was only established there for times
t that are either very short or very long.

It is easy to show that (B8) and (B9) are also valid for
a nonperiodic porous medium: One merely has to repeat
the above considerations starting from the more general
expression for M(k, t) in terms of the Fourier transforms

Q„(k) of g„(r), namely,

M(k, t) = —) e "'1'„(k)1, (Blo)

g„(k)—: dVe '"'g„(r)
V v,

(811)

APPENDIX C: SHORT TIME ASYMPTOTICS
FOB. LAB.CE p

In Ref. [14] the short time asymptotic behavior of D(t)
was analyzed for the case pt (( (D„t)i~2 && a, which we
will call the small p regime [see Eqs. (29) and (39) of'

Ref. [14]]. Other cases studied there were (D„t) ~2 (& a,
p = oo, and the special case of an isolated spherical pore
in that same limit [see Eqs. (51) and (52) of Ref. [14]].
Here we study the case (D„t) ~ && pt && a when p is
large but finite, which we will call the large p regime.
We were not able to include the efFects of finite radii of
curvature of the interface.

We consider an infinite, d-dimensional half space ulled

M(t) = 1

1

Vp

)0

x)0
dd„

I )0
d r Gd(1', i',t)'

dx'G, (x, x', t)

dx'G, (x, x', s), (C3)

where 2 denotes the inverse Laplace transform and the
d —1 components of r' that are perpendicular to the x
axis have been integrated over explicitly. The integration
over x' is also quite straightforward, leading to

~ p
—( /'& )'"

d*'G (**' ) = ———
( D ),(, (c4)

V ~[(D)~ ]
(c5)

While this Laplace transform can be inverted to give
M(t) in terms of error functions, we prefer to first expand
around p = oo. We note in passing that if we expand
(C5) in powers of p, we easily get the same expansion
that was obtained in Ref. [14] for M(t). Expanding (C5)
in powers of 1/p and inverting, we get

"D1/2 D D3/2
l:(M(t)) = ———" " — " + " + . , (C6)

s V„s3/'2 sp si/'2 p2

In the subsequent d-dimensional integration over r the
first term of (C4) yields a boundary independent result
the same result that would be found in the absence of a
boundary while the second term yields a result that is
proportional to the surface-to-volume ratio S„/V„of the
half space, which is henceforth interpreted as the surface-
to-volume ratio of the actual physical pore space. We
thus get
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Z(2dM(t) D(t) t)

Dp D„(D„)+
p pz (rrt)

From (1.6), we easily get that

+ ~ ~ ~

2dD„S„Dp 3(d + 1)Dpp
s2 V s2 (sD ) 1~2 [(sD )

lr'2 + p]

(sD~)" —p (d —1)D.p
(sD )' (sD )' + p [(sD )' + p]

(C11)

I )P
d r'(r —r') Gq(r, r', t).

As before, this Laplace transform is best expanded for
either small or large p before inverting. The small p ex-
pansion leads to the same results as found in Ref. [14].
The large p expansion leads to

2d[M(t) D(t) —D„]t
In order to evaluate the integral over r', we again erst in-

tegrate over the d —1 components that are perpendicular
to the x axis to get

S„2(3d+1) (D„t) 'i''

"V„3d g rr )

I )p
d r'(r —r') Gg(r, r', t) Dp d+ 1 D„ i(Dp)[+

p d pz qrrt)
+ ~ ~ ~ (C12)

dx' [(x —x') + 2(d —1)D„t]G (x, x', t). (C9)

The Laplace transform of this result is

dx' (x —x') —2(d —1)D —Gg(x, x', s)88
1/2

2(sD~)'~z (sD„)'~z+ p

D„' (d + 1)D„2dD„'
x +((sD„)'l' s (sD„) & )

+

4Dpx (sD„)ii2 —p 2(d —1)D„p
s (sD„) + p s[(sD„)' + p]

(C10)

The f d r integration can now be applied to this result
to yield

Using (C7), we now get the following expression for
the time-dependent diffusion coeKcient D(t), defined by
(1.6):

D(t)
Dp

S„/V„2 f D„t
1+ 3d EV~ p

I' S„/V„l'
1 +

d pz l, rrt)

2 D„t 2(3d+1) D„'
+

3d 7r 3d 7T'p

for (D„t)'~ (( pt (( a. (C13)

The leading deviations from 1 on the right-hand side
of both (C7) and (C13), namely, the terms of order
(D„t) r zS„/V„which remain when p = oo, are identi-
cal to the results of Ref. [14]. It is also important to note
again that we have not included any corrections that arise
from microgeometrical details other than S„/V„, such as
the local radii of curvature of the interface.
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