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The onset of convection in binary Quid mixtures in a vertical cylinder is considered. Parameter
values and boundary conditions relevant to experiments on He- He and water-ethanol mixtures
with negative separation ratio are used. The azimuthal wave number of the first unstable mode is
calculated as a function of the separation ratio, as are the critical Rayleigh numbers and oscillation
frequencies. The eigenfunctions take the form of left-handed or right-handed rigidly rotating spirals.
Depending on the azimuthal wave number, the spirals may be spatially extended, filling the container,
or confined to its boundary. The results are compared with ongoing experiments.

PACS number(s): 47.20.Bp, 47.20.Ky, 47.27.Te, 03.40.Kf

I. INTRODUCTION

Flow visualization has proved to be invaluable in ex-
periments on binary fluid convection in both circular [1]
and annular containers [2]. If the annular container is
sufficiently narrow the resulting system is approximately
two dimensional and much of the observed behavior then
agrees with existing theory [3, 4]. Recent experiments in
a circular container show, however, that in truly three-
dimensional systems new behavior prevails. In particu-
lar, Lerman et al. [1] show that the initial phase of the
instability takes the form of waves that travel radially
outwards. These waves do not saturate at finite ampli-
tude and constitute a long-lived transient. The final state
is a complicated time-dependent state; no spatially local-
ized stationary three-dimensional patches of convection
have yet been found.

The present paper is concerned with the onset of insta-
bility in binary Quid mixtures with a negative separation
ratio in a vertical nonrotating cylinder. This system is
of interest to theorists for several reasons. First, the cir-
cular geometry of the container introduces the symmetry
O(2) into the dynamical equations. Since for sufficiently
negative separation ratios S the onset of instability is os-
cillatory, the resulting instability is a Hopf bifurcation
with O(2) symmetry. When this instability breaks the
circular symmetry of the container (i.e. , the azimuthal
wave number is nonzero) the multiplicity of the imag-
inary eigenvalue is doubled, and the instability evolves
either to a pattern of standing waves or into waves that
travel in either direction around the cylinder [5]. This
picture is known to describe fully the onset of convec-
tion in a narrow annulus. In a large aspect ratio cylinder
additional possibilities exist, since waves can also prop-
agate in the radial direction, in spite of the presence of
the walls of the cylinder. Indeed, it is well known that
traveling waves are present in rectangular containers of
sufficiently large aspect ratio [6]. This situation has been
studied theoretically by Dangelmayr et al. [7], who for-
mulated the problem as a translation invariant problem

perturbed by the presence of the sidewalls. The main ob-
servation that results is that in a rectangular container
the eigenfunctions must take the form of a "chevron"
pattern. This pattern has re8ection symmetry if identi-
cal boundary conditions apply at the sidewalls. In the
present case the radial divergence destroys such a reHec-
tion symmetry and the problem is properly formulated
on the interval 0 ( r ( I'. In a sufBciently large aspect
ratio cylinder the resulting problem has an approximate
symmetry O(2) x SO(2) where the SO(2) symmetry in the
radial direction is broken by the walls of the cylinder. It
follows that it is possible to find axisymmetric eigenfunc-
tions describing waves traveling in the radial direction,
as well as nonaxisymmetric eigenfunctions that travel in
addition in the azimuthal direction. Such eigenfunctions
naturally take the form of rotating spirals. These spirals
rotate rigidly, but owing to the walls at the top and bot-
tom of the cylinder they do so with a z-dependent phase,
i.e. , if we take a Axed r section of the spiral the spiral will
be bowed out, with its midlevel either leading or trailing.
Which occurs depends sensitively on the parameters of
the problem, much as in the two-dimensional problem [8].
Since the theory predicts that in the weakly nonlinear
regime both standing (SW) and traveling (TW) waves in
the azimuthal direction can be stable we present both SW
and TW eigenfunctions, even though at the linear level
no selection between different superpositions of clockwise
and counterclockwise traveling waves takes place. These
states can be either extended, filling the interior of the
container, or con6ned to its boundary. The latter pos-
sibility is unexpected since unlike the rotating problem
the present system does not support wall modes in the
dissipationless regime.

The paper is organized as follows. In Sec. II we for-
mulate the hydrodynamical equations and describe the
technique we use to solve them. In Sec. III we describe
the results of our computations. Section IV describes the
theoretical interpretation of these results. In Sec. V we
present results on convective states confined to a straight
wall in doubly diffusive convection and relate them to the
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Rayleigh number R and the corresponding Hopf &e-
quency cu, for fixed values of w, 0, S, and I'. Note that(m)

( 0 for modes that travel counterclockwise, while) 0 for clockwise modes. By minimizing R™over
m it is possible to identify the azimuthal wave number
of the mode that first sets in.

results of Sec. III. The final section contains a brief con-
clusion and comparison with existing experiments.

II. FORMULATION AND
METHOD OF SOLUTION

We consider Boussinesq binary fluid convection in a
right circular cylinder of height h, and radius I'h. The
nondimensional equations describing the onset of insta-
bility as the Rayleigh number R is increased are given by

III. RESULTS

In this section we present our results for two aspect
ratios, I' = 2.76, and I = 11.0. These choices are mo-
tivated by ongoing experiments of Lucas and co-workers
[12] on sHe- He mixtures at cryogenic temperatures and
by the experiments of Lerman et at. [1] on water-ethanol
mixtures. These experiments also motivate our choice
of the remaining parameters. In Fig. 1 we show (a) the

1—cra u = —7'p + B(0 + SZ)z +. V' u,2

BO=m+V' 0
Og E = m + 7.V' Z —~ t7 0,

(1b)
(1c)
(Id)V u=0.
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and 0 the Prandtl number. The quantities 8 and Z
denote, respectively, the temperature and concentration
perturbations relative to their conduction profiles, while
u = (u, v, to) is the velocity perturbation in cylindrical
coordinates (r, P, z). We consider two types of boundary
conditions,
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Both sets of boundary conditions describe a no-slip no-
flux boundary at r = I', with fixed temperature no-mass-
flux boundary conditions at the top and bottom, which
are stress-&ee in the former and no-slip in the latter.
In the following we refer to these for short as stress-
&ee and rigid. The rigid boundary conditions approxi-
mate well the experimental conditions. Note that due to
the no-mass-flux boundary conditions at top and bottom
the stress-free problem is, like the rigid problem, non-
separable. In the calculations reported below we solve
the former using a Galerkin method in the vertical, and
the latter using a Chebyshev collocation method. In both
cases the collocation method is used in the radial direc-
tion [9, 10]. The formulation of the eigenvalue problem is
completed by imposing an appropriate regularity condi-
tion at r = 0 [9].

For positive separation ratios (and hence steady state
instabilities) the above problem has been solved by
Hardin et aL [11]. We focus here on the overstable
case present for sufBciently negative separation ratios,
and therefore seek solutions of the form f(r, P, z, t)
F(r, z)e'( &+ ~), where P(r, z) depends on the chosen
value of m () 0). The (nonseparable) eigenvalue prob-
lem in (r, z) is solved for each m, and yields the critical
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FIG. 1. (a) R, (S) and (b) ~ (S) for I' = 2.76, ~ =

0.067, o. = 0.755, and stress-free boundary conditions.
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critical Rayleigh numbers R and (b) the correspond-

ing frequencies tu, as a function of the separation ratio
S for ~ = 0.067, 0. = 0.755, I' = 2.76 and the stress-free
boundary conditions (2). For all values of S the selected
mode has m = 1. Note that the frequencies exhibit dis-
continuities; these occur when an m = 1 mode is super-
seded by another m = 1 mode with a difFerent radial
(or vertical) structure. Figure 1 shows only the lowest
lying radial modes for each m at each value of S. The
m = 1 oscillations are present for S ( ScT & 0. Here
S~T = —1.0 x 10 is the value of S at which oscillations
are superseded by a steady state instability [13]. For com-
parison, Fig. 2 shows the corresponding results for the
rigid boundary conditions (3). As before, the mode that
is selected in the range —0.72 ( S ( S~~ = —2.3 x 10

is the m = 1 mode; m = 0 is preferred for S ( —0.72.
Figure 3 illustrates the sensitive dependence of the re-
sults on the assumed parameters: the figure shows the
results for rigid boundaries and ~ = 0.025, o. = 0.547.
This relatively modest change in the parameters (partic-
ularly in w) results in a significant decrease in the critical
Rayleigh numbers even though throughout most of the
range the selected wave number remains unchanged: the
transition from m = 1 to m = 0 now takes place when
S = —0.74.

In Fig. 4 we illustrate the eigenfunctions for the m = 1

mode at B = B, S = —0.288, corresponding to(1)

Fig. 2. Figure 4(a) shows the temperature eigenfunc-
tion ReO(r, z)e'( ~+ ) at z =

2 in the comoving frame
as a function of r and P using two different representa-
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FIG. 2. (a) R (S) and (b) cu~ ~(S) for I' = 2.76, 7. =
0.067, o = 0.755, and rigid boundary conditions.

FIG. 3. (a) R, (S) and (b) ur (S) for r = 2.76, 7

0.025, o = 0.547, and rigid boundary conditions.
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(a)

I =Z. 76, &=0.067, 0=0, 755
S=—0.288, m, = 1
R=Z514, a=9.7

T/J4

TJI'8

0

FIG. 4. (a) The temperature eigenfunction O(r, g, z = —) for an m = 1 TW mode at R = R, = 2514, for I' = 2.76,1 (1)

0.067, o. = 0.755, S = —0.288, and rigid boundary conditions. The precession frequency is ur, = 9.7. (b) The(~)

corresponding SW eigenfunction at t = 0, —,—,—,where T = 2vr jw, is the oscillation period. Note that the mode peaks
near both the center and the walls of the container.

tions. The eigenfunction peaks both near the wall and
near the center; the whole pattern rotates rigidly in the
clockwise direction. Owing to the reQection symmetry
in O(2) there is a corresponding solution with the op-
posite handedness that rotates in the counterclockwise
direction. Figure 4(b) shows the SW eigenfunction con-
structed IIrom these two eigenfunctions. The figure shows
contours of constant temperature at four equally spaced
times within half an oscillation period. Figure 5 shows
the corresponding results for I, = 7. Although this mode
is not the first to set in (B, = 3299) it illustrates an im-(7)

portant property of these modes. With increasing m the
spirals become less pronounced and more and more con-
fined to the wall, although they continue to rotate with
their arms trailing. Figure 5 is important because it re-

veals that modes that look like the wall modes recently
found in pure fiuid convection in a rotating cylinder [10,
14, 15] can appear even in a nonrotating cylinder.

A vertical section at fixed r shows that both the m = 1
and the m = 7 waves shown in Fig. 4 lead at midlevel
with the points near z = 0, 1 trailing behind. The re-
sulting curvature depends both on r and on the system
parameters. This is because the eigenfunction can be
written in the form

Re8(r, z) e' ~+ ' = ~8(r, z)
~
cos[rnP + (ut + C (rz)].

(4)

The phase C (r, z) difFers for the different fields 0, Z, u, v,
and m and it is these phase lags that are responsible for



BINARY FLUID CONVECTION IN A CYLINDER 343
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I'=Z. 76, ~=0.067, a =0.755
S=—0.288, m=7
R=3299, a=11.Z T//4
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0

FIG. 5. As for Fig. 4 but for m = 7, R = 3299, and ~
to the wall of the container.

, and ~, = 11.2. (a) TW; (b) SW. Note that th~ o e at t e mode is now confined

the propagation of the wave (cf. [16,17]). Similar behav-
ior is present a ready in the two-dimensional plane la er

t e top and bottom [8]. In contrast, a SW eigenfunction
can be written in the form

ReO(r, z)e' cos mP = ~O(r, z)
~

cos mP cos[wt + 4(r, z)].

Such a wave dove does not propagate in P, but typically does
in r.

t e azimuthal an
form (4) propagates i b thIn general a mode of the

ofari idl r
an radial directions and tak th f

gi y rotating spiral. This is illustrated in Fi . 6
a arger aspect ratio cylinder,

, with w = 0.008, 0 = 24.0 S = —0
ri id boundg oundary conditions. Figure 6(a) shows the z =—

o a es in the clockwise direction so that each point

in this lanep ne experiences a pattern of locally parallel
rolls drifting radially outward Th' t dr s. is time dependence
is shown more explicitly in Fig. 6(b), which shows the
corresponding SW eigenfunction (5) in the (r, t) plane,

outw

—I' ( r & I'. The figure reveals that the
ou wards towards the boundary, as expected from the
observation that it is a susuperposition of two spirals that~ 0 ~

rotate in opposite directions. In contrast, for stress-&ee
boundaries and 1 = 11.6 7 = 0.0076

e m = 0 mode that is preferred for S ( —0.07 with
m = 2 preferred for —0.07 ( S ( —0.04 d
—0.85 x

an again for
x 10 ( S ( S~z —0.82 x 10, with m = 4

preferred in between.

IV. THEORETICAL INTERPRETATION

In this sec
unstable modes

ection we try to understand thee origin o the
uns a e modes computed numerically in the preceding
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(a)

I =11.0, v=0. 008, a=24. 0
5'= —0.09, ~= 1
R=1916.8, a=6'. 16

FIG. 6. (a) Contour plot of
O(r, P, z = —) for an m = 1 TW
mode with rigid boundary con-
ditions in a larger aspect ratio
container, I' = 11.0, v = 0.008,
o. = 24.0, and S = —0.09.
Here R, = 1916.8 and w,(i) (~)

6.16. (b) The corresponding
SW mode in the (z, t) plane,
where z = r/I'. The wave trav-
els outwards from the center of
the container at x = 0.

section. In particular we are interested in elucidating
the origin of the modes that look like the wall modes
described earlier for convection in a pure Huid but in a
rotating cylinder. We begin by showing that the dissi-
pationless problem has no neutrally stable wall modes.
Consequently the computed wall modes must be pro-
duced as a result of dissipation and thermal forcing. We
then discuss this process, following [18, 19], using a sim-
pli6ed model consisting of a Quid-6lled semi-infinite do-
main bounded by a straight boundary, and use this model
to identify semianalytically modes of the type shown in
Fig. 5.

A. The dissipationless problem

We begin by considering the dissipationless system.
We suppose that there are two competing contributions
to the density stratification, arising Rom, say, thermal
and solutal stratification. These affect the density in
opposite ways, but in the absence of dissipation no dif-
fusive instabilities can take place. Consequently, the

dynamics of the system are described by the overall
density distribution which we take to be statically sta-
ble (density decreasing upwards). The overall density
stratification is measured by the Brunt-Vaisala frequency

(—~ —) ~ assumed to be positive. The natu-
p dz

ral time scale for the neutrally stable oscillations is then
N with velocities expressed in units of hN, where 6 is
the height of the cylinder. The nondimensional equations
take the form

8, = —V' + (Ne —NZ)
t+ = ~~

t9t~ = ~)
V' u=0,

(6a)

(6b)
(Gc)

(6d)

where NT2, = —gn &,', Ng = gP &
', and To and—So are

the (linear) temperature and concentration profiles in the
basic state. Both To and So are assumed to decrease with
height so that N& ) 0, Ns ) 0. We look for inGnitesi-
mal oscillations with dimensionless frequency w/N. The
frequency u is an eigenvalue of the problem
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02m)

z2

specified by the boundary conditions u . n = 0 on the
boundaries of the cylinder. Here N2 = N&2 —N& and n is
the outward normal to the surface. These boundary con-
ditions correspond to stress-&ee fixed temperature and
concentration boundary conditions at the top and bot-
tom, with stress-&ee no-flux boundary conditions on the
sides. These boundary conditions are the only ones com-
patible with the absence of dissipation. The resulting
eigenvalue problem is separable, and we seek solutions
of the form zu(r, P, z) = W(r)e' ~sinnvrz, where W(r)
satisfies

1 d de
p dp Gp

m2
n vr W = 0, n & 0, (8)r

W(r) = J (nr), (io)

where

2= A 7l (d

/f2 ~2

and o;g (k = 1, 2, ...) are the roots of J' (nr) = 0 and
are real. Consequently, for each pair (m, n) there is a
discrete unbounded sequence of eigenf'requencies ]ui~ (

. Since ur appears only as a square both positive
and negative &equencies are allowed. The corresponding
eigenfunctions are of class I in the terminology of Fried-
lander and Sieginann [20] and are oscillatory in r. There
are no class II eigenmodes of the form I (]n~r). Such
modes correspond to wall modes and are only present in
stratified systems in the presence of rotation [20]. Their
absence implies that no true wall modes will be present
in the system under study.

B. The limit of weak dissipation

We can easily determine the effect of small dissipation
on the modes identified above. We write the equations
in the dimensionless form

B&u= —V'p+ (Nz, e —NSK)z+ oEV' u, (12a)

Oge=m+EQ 0,
OqZ = m+ ~EV Z,

V' u=0,

(12b)
(12c)
(12d)

where E' = ~&, is the dimensionless measure of the irn-

portance of thermal diffusion, and time is measured in
units of N, as before. We look for solutions of the
form e', with the growth rate 8 satisfying the eigenvalue
problem

(s —crEV' ) (s —EV' ) (s —7.EV' )V' iu

1
[Nz, (s —~EV' ) —Ns(s —EV' ))V'~au, (13)

w(o) = o, w'(r) = o.

For m = 0 the first condition is replaced by W'(0) = 0.
It follows that

where V& denotes the horizontal Laplacian. As bound-
ary conditions we continue to use the boundary condi-
tions employed in the dissipationless case. While not
essential, this choice does provide a considerable simplifi-
cation in that diffusive boundary layers are avoided. The
boundary conditions are thus

t9—u~ ——m=0=K=Oonz=0 1,
|9Z

(i4a)

BtU
u ~ n=

t9p

00 t9Z =Oonr=I',
OP t9T

(14b)

with regularity conditions imposed at r = 0. Note that
these boundary conditions are independent of E.

The resulting eigenvalue problem is easily solved in
powers of E. Let

N .Cdp
QJ —Qlp —zE—'w] + ' 8 —'L —+ E8] + '

Ea)p N

where 4 = 1 + o. + ~. It follows that mq

Wi(r)e' ~ sin nmz. The solvability condition for the ra-
dial dependence yields an expression for the dirnension-
less growth rate Sq. This can be simplified using the
relations

((uo —N )V duo ——N n vr duo,

(Mo —N )%~duo = ~on vr tuo2 2 2 2 2 2

obtained from the 0(E ) problem.

f r J2 (nr)dr from both sides one obtains
Canceling

2 2

si ——
~ 2 (1+sr)Nr (o+w)Ns ~

N —~o & 0.
2 ¹

—~20

(18)

It follows that neutrally stable oscillations occur when

N& reaches the value

&+~
&r. =— &s (Xs1+ cr

Consequently, instability sets in at a lower value of the
destabilizing temperature gradient than in the dissipa-
tionless problem. This is the hallmark of all doubly dif-
fusive systems. Note that there is no %p-independent
term in N&~, . This term is O(Ez) and so is absent in the
limit E (& 1. Consequently there is no mode selection
in this limit. These results are thus in complete agree-
ment with those for an unbounded layer [21]. This is
because our choice of boundary conditions eliminated all
surface terms &om the solvability condition and allowed
the cancellation of the integrals.

It is easy to check that a similar analysis of Eqs. (1)
leads to the same conclusion. In particular, one finds

Then at O(E ) one recovers the solution to the dissipa-
tionless problem, with ufo and ceo satisfying (10) and (11),
respectively. At O(E ) one obtains

[
—~oV' + N V'~]n)i ——(Ns —~N~)&g& duo

—~pe% mp
2 4

+si(3(uoV duo —N V'~ufo), (16)
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that the unstable modes are all of class I and hence fill
the body of the container. The perturbation technique is
thus not able to identify modes of the type exhibited in
Fig. 5.

V. WALL MODES DUE TO
A STRAIGHT BOUNDARY

In this section we consider a simplified form of the lin-
ear eigenvalue problem in a cylinder. Specifically we con-
sider oscillations in a semi-infinite domain (—oo & x &
0, 0 & z & 1j with a no-slip boundary placed at x = 0
and &ee-slip boundaries at z = 0, 1. For comparison
with Sec. IV we consider doubly difFusive convection with
boundary conditions on the temperature and concentra-
tion that are no fIux at the sidewall and fixed temperature
and concentration at z = 0, 1. These boundary condi-
tions are chosen to render the resulting eigenvalue prob-
lem separable. Moreover, with these boundary conditions
the doubly difFusive problem can be mapped. by a lin-
ear transformation onto the corresponding Soret-driven
problem [22]. Consequently, if there are wall-confined

solutions to the doubly difFusive problem, such solutions
also exist for the Soret problem. For these modes all fields
are assumed to vanish exponentially as x + —oo. Since
we now consider dissipation that can be large enough
that E = O(1) we employ instead the thermal diffusion
time in the vertical as the unit of time. The problem is
then described by the nondimensional equations

—Bzu = —7'p + (RT8 —RsZ)z + V' u,
1 2

(2Oa)

OgO =~+ V 0
t9)Z = m+ 7.V' Z,

V'. u=0,

(2ob)

(20c)

(2od)

where RT and Rs are the usual thermal and solutal
Rayleigh numbers. We look for solutions of the form
f(x, z)e'i "+ l, where m is now a continous wave num-
ber (m f 0). With the boundary conditions chosen the
problem is separable in z and hence

(u, v, w, 0, Z, p) = (U(x) cos 7rz, V(x) cos zrz, W(x) sin zrz, 8(x) sin 7rz, Z(x) sin zrz, P(x) cos zrz),

where
I

It follows that

—U = DP+ —(D —zr —m )U,0

—V = —imP+ (D —zr —m )V,
ZCd 2 2 2

0

—W =zrP+ RT8 —RsE+ (D —zr —m )W,0

(21a)

(2lb)
i D —zr —m ——[(D —m )U + 7r DW] = 0

0

(22a)

zw8 = W+ (D —7r —m, )0
i~2 = W + 7(D —zr —m.

)Z,

DU+ ~R' = —imV.

(21c)
(21d)
(21e)

(21f)

~
D —~ —m ——[(D —m )V+ im~W] = 0,2 2 2 2 2

l 0

(22b)

where

(D —zr —m ) D —zr —m ——(D —zr —m —ie) l D —zr —m ——W2 2 2 2 2 2 2 2 2 ZCd

cr )
—RT D —zr —m ——(D —m )W+ (D —zr —m —ie)(D —m )W = 0,

2 2 2 2 2 2 2 2 2 2

7

subject to the boundary conditions quartic

U=V=R =DO=DE=Oonx=0 (24)

and the requirement that the solutions vanish exponen-
tially as x ~ —oo.

To find such solutions we suppose that W(x) = e"
with Re% ) 0. It follows that

W(x) = ) A,.e"'
j=l

(25)

where A =
q~ + m + m and the q~ are the roots of the

'L& . Z& 'LC0

q q ——(q —i~) q —— —RT q ——(q+ zr )
r l r I r

(q —i(u)(q+ zr ) = 0. (26)

The corresponding expressions for the remaining fields
are readily found &om Eqs. (21):

(27a)
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4

V(z) = —imm ) A~ 2
e"& + As pe",

j=l 2

(27b)
where

ZCO

p =m +m + —, p) 0.
CT

(28)

A~DO(z) = —) A, 2 ', . e"~*,
A2 —m2 —7t.2 —iu)2=1 2

4

DZ(z) = ——) A,
1 A~

2 P2 m2 +2j—1 g 7

(27c)

(27d)

The five unknowns A1, A2, A3, A4, and A5 are determined
by the five boundary conditions imposed at x = 0. A
nontrivial solution exists if and only if a certain 5 x 5
determinant vanishes. This requirement yields a complex
equation for the critical Rayleigh number Rz (m) and the
corresponding frequency ~(m) of the oscillations.

This determinant takes the form

det
'1

A~~ —m~
A

A —m —7I'

l
1

A1
A~1 —m~ —~2 —i cu/v

A2
Aq —m

1
Aq —m~

A2
A —m

Ag
A —m —m' —i u/7-2

A3
A3 —m'1
A3 —m

A3
A —m —7r

A3
A —m —m —i,u/w3

1 0 )
A4 m2

A —m~'1
A4 0

A —m —7I —ice

A4 —m —7I —f47/T'

=0, (29)

and reduces to that for the onset of steady convection
when w = 0; it can also be used to compute the growth
rates for supercritical values of RT by replacing i~ by
s+iu, where s is the growth rate. Minimization of RT (m)
with respect to m determines RT and u, as well as m .
If the overstable critical Rayleigh number R& is less
than the stationary Rayleigh number RT convection is
overstable; otherwise it is steady.

The results of solving Eq. (29) are shown in Fig. 7,
which shows the vertical velocity eigenfunction as a func-
tion of z at fixed y, z, and t for m = 1, 2 and (a) w =
0.067, o = 0.755, Rs ——750, and (b) w = 0.316, o = 1.0,
Rg ——1000. The corresponding critical Rayleigh num-

bers and frequencies are (a) R&, ——2023.10, u, = 5.23,(1) (1)

R~, ——1338.44, io, = 10.09, and (b) RT, ——3049.49,

444. R( ) —2ppg. 1g, ~ = 9.74. Observe that
in both cases the eigenfunction is confined to the vicinity
of the wall (z = 0) and decays exponentially away from
the wall (z ~ —oo). We will call such confined solutions
wall modes, by analogy with the rotating Benard prob-
lem. In contrast to the rotating problem, however, the
wall modes in the present problem exist only for a lim-

ited range of m, m & m & m+. As m approaches m+
&om inside this interval the decay length of the eigen-
function diverges, i.e. , Eq. (26) has an eigenvalue A with
ReA = 0. In Fig. 8(a) we show m+ as a function of Rs
for ~ = 0.067, o. = 0.755. Figures 8(b) and 8(c) show

the corresponding RT and u for m ( m ( m+ when

Rg ——750 and 4000. Observe that m+ first increases with

Rg before decreasing again. However, R~ and cu at this
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FIG. 7. Vertical velocity eigenfunction near the wall (z = 0) for wall modes with m = 1, 2 and (a) 7 = 0.067, rr = 0.755,
Rs = 750, (b) r = 0.316, o = 1.0, Rs ——1000.
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FIG. 8. (a) The upper bounds m,+ for the existence of wall modes as a function of Rs for 7 = 0.067, a. = 0.755, and for
T = 0.025, Ir = 0.547. (b) RT', and (c) u, as functions of m, m, ( m ( m, , for T = 0.067, o = 0.755, and Rs =750 and 4000.
BT reaches a minimum at m, =2.34 and 2.86, respectively.

cutofF value of m continue to increase monotonically with
Rs (not shown). As m decreases towards m the critical
Rayleigh number for a wall mode increases dramatically
[Fig. 8(b)]; a much weaker increase in RT, takes place
as m —+ m+. For Rg = 750 the minimum value of Rz,
occurs at m = m;„= 2.34 and is RT, ——1320.80. The
corresponding &equency is u = 11.7. In contrast, for
Rg ——4000, m;„= 2.86 and RT~ ——3058.26, u = 30.1.

Although the above solutions cannot be directly com-
pared with those presented in Fig. 5 on account of the
diferent boundary conditions at the top and bottom and
the finite aspect ratio of the system, they do provide
a confirmation that wall modes can be present even in

nonrotating systems provided only that the initial bifur-
cation is a Hopf bifurcation that breaks the azimuthal
symmetry of the system. While we have not found pa-
rameter values for which such modes are the ones that
first become unstable, it is clear that such a possibility
must be allowed for in stability problems of this type.
In particular, we expect that with rigid walls at top and
bottom the critical Rayleigh number for the body modes
will be raised more than that for the wall modes. Conse-
quently, such wall modes are most likely to be observed
precisely under the conditions prevailing in experiments.
In this connection we note that the parameter values
listed above for Fig. 7 correspond to the following values
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I'=11.0, 7 =0.008, cr=Z4. 0
S=—0.09, m, =20
R= 1938, +=6.5

FIG. 9. An m = 20 wall mode in a I' = 11.0 container
with v = 0.008, o. = 24.0, S = —0.09, and rigid boundaries.
For this mode R, = 1932 and cu = 6.5. Note that R,
is only slightly larger than R; cf. Fig. 6.

in the equivalent Soret problem [22]: (a) Ri = 1972.85,
S = —0.3547 (m = 1), R, = 1288.19, S = —0.5432

(m = 2); (b) R, = 2733.49, S = —0.2502 (m = 1),
R = 1693.19, S = —0.4040 (m = 2). Note in par-(2)

ticular that the minimum Rayleigh number wall mode
corresponds approximately to an azimuthal wave num-
ber I'm;„ in a cylinder of (large) aspect ratio I'. For
the parameter values used this gives m 26 for the
I' = ll cell used by Lerman et al. [1] with R, = 1270.55,
S = —0.5507. Such modes would therefore appear en-
tirely diHerent from the body modes described so far.
They would have high azimuthal wave number and be
confined closely to the vicinity of the wall (see Fig. 9), in
contrast to the body modes (see Fig. 6).

VI. DISCUSSXON

In this paper we have presented sample results charac-
terizing the onset of the oscillatory instability in binary
Quids with a negative separation ratio con6ned to a ver-
tical cylinder. We have found eigenfunctions in the form
of clockwise or counterclockwise rotating spirals. As in

the corresponding pure Quid problem in a rotating cylin-
der, the modes can be of two types, either spatially ex-
tended body modes or wa}l modes confined to the outer
wall of the cylinder. For the parameter values exam-
ined a body mode is always the first mode that becomes
unstable. In general, the mode structure of the present
problem is unquestionably of comparable complexity to
that found for a pure fluid in a rotating cylinder [10,23].
Although we have chosen here not to dwell on this com-
plexity, we emphasize that there is in general a number of
families of both wall and body modes which change their
dominance as parameters are varied, much as in the ro-
tating problem. In particular, our calculations indicate
the presence for m ) m+ of other families of wall modes,
although with higher Rayleigh numbers. The results pre-
sented here have focused on the dominant family for the
assumed parameter values, with the higher lying modes
omitted.

Experiments on binary Quid convection in a vertical
cylinder have been reported by a number of authors.
These include experiments of Lee et al. [24] and Gao and
Behringer [25] using normal He-4He mixtures (see also
Refs. [26] and [27]) and by Rosenberger et aL [28] using
gaseous Xe-He, Xe-Ar, and SiC14-H2 mixtures with pos-
itive separation ratios. The calculations of the present
paper were motivated by ongoing experiments on mix-
tures with negative separation ratios, and in particular
those of Lucas and co-workers [12] on He- He mixtures
in a rotating cylinder, and by Lerman et al. [1] on water-
ethanol mixtures in a nonrotating cylinder. These in turn
motivated our choice of' parameters. It should be noted
that several of the cryogenic experiments in which di-
rect Qow visualization was impossible failed to report the
presence of oscillations for the separation ratios for which
theory predicts the onset of convection via a Hopf bifur-
cation [24, 25, 27]. We believe that this is because the
instability evolves into azimuthally propagating waves of
Axed form which transport a constant amount of heat,
i.e. , produce a time-independent Nusselt number (cf. [3,
16]). As a result we cannot compare the theoretically pre-
dicted f'requencies cu with data; for these experiments
the comparison is thus limited to the critical Rayleigh
numbers. The measured Rayleigh number cannot usu-

ally be used to deduce the azimuthal wave number of the
instability because for moderate to large aspect ratios
the curves of R, (S) fall very close to one another. On(m)

the other hand, predictions of the onset azimuthal wave
number have been tested for pure Quids in a rotating
cylinder [10] and found to agree well with the experi-
ments for which visualization was possible [15]. Thus we
believe that the theory predicts reliably not only critical
Rayleigh numbers and frequencies at onset, but also the
azimuthal wave number of the instability.

Lerman et aL [1] investigated water-ethanol mixtures
with I = 11.6 and S = —0.09, —0.10, —0.14, and —0.16.
In each case the onset state appeared to consist of grow-
ing waves propagating in the radial direction. In subse-
quent experiments, with I' = 11.0, z = 0.008, and cr = 24
the initial instability is to an m = 1 mode that propa-
gates predominantly in the radial direction. These obser-
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vations can be compared with the results shown in Fig. 6
which show an m = 1 eigenfunction for the experimental
parameter values. The eigenfunction takes the form of
a spiral (either left handed or right handed) consisting
of outward propagating nodes together with azimuthal
drift. For this mode B = 1916.8, w = 6.16, and the(x) (x)

eigenfunction is strictly periodic, with period 2vr/cu,
For rn = 3 (not shown) the results are similar. Here

B = 1917.2, u = 6.14. Other m values, including(3) (3)

m = 0 and m = 2, have larger critical Rayleigh num-
bers; all the critical Rayleigh numbers are close to one
another, however, because of the large aspect ratio. Con-
sequently it comes as no surprise that in the experiment
an m = 1 mode can be contaminated by an m = 3 mode,
as observed [29].

An immediate consequence of the general theory of the
Hopf bifurcation with O(2) symmetry is the presence of
Gnite amplitude spiral wave solutions to the full nonlinear
equations describing binary fluid convection in a circular
container. This solution bifurcates from the conduction
solution at the Hopf bifurcation together with a standing
wave state composed of an equal amplitude superposition
of left-handed and right-handed spirals. The theory in-

dicates that at most one of these branches can be stable.
Spiral wave states are of course well known in reaction-
difFusion systems, but have only recently been observed
in fully three-dimensional systems like convection [30]. In
the present system the experiments of Lerman et al. [1]
indicate that the resulting steadily precessing nonlinear
spiral is in fact unstable to modulational instabilities. We
surmise that this is the case because the spirals in fact
bifurcate subcritically by analogy with the correspond-
ing situation in two dimensions. The possibility remains
that when the two-dimensional traveling waves bifurcate
supercritically (for values of S near the codimension-2
value [31]) the corresponding spirals will also bifurcate
supercritically, and hence could be stable.
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