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Maximal Lyapunov exponent in small atomic clusters
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We study small clusters of atomic argon, Ar7, Ar&3, and Ar55, in the temperature range vrhere
they undergo a transition from a solidlike phase to a liquidlike phase. The signature of the phase
transition is clearly seen as a dramatic increase in the largest I yapunov exponent as the cluster
"melts. "
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I. INTR.ODU CTION

Molecular dynamics (MD) simulations of small
Lennard-Jones clusters have given evidence for a transi-
tion &om solid phase to a liquid phase as the energy is in-
creased [1]. A variety of studies [2—4] have examined the
dynamical behavior as a function of the internal energy
or temperature, and observe that finite clusters of differ-
ent sizes exhibit dynamical coexistence of the solid and
liquid phases over a range of energy [5,6]. This leads to
distinct and unequal melting and freezing temperatures,
in contrast to the behavior of bulk matter, for which the
&eezing and melting temperatures coincide.

In this paper we study the dynamics of small clusters
of rare-gas atoms as a function of the average kinetic en-
ergy or temperature, and examine the variation of the
maximal Lyapunov exponent (MLE): the MLE increases
dramatically as the system makes a transition &om a
solidlike to a liquidlike phase, and this offers a character-
ization of the phase transition.

There has been considerable work on such dynami-
cal indicators, most notably by Berry and co-workers
[1,4,7—ll], who have looked in detail at a variety of quan-
tities, including [7,9] the Kolmogorov-Sinai (KS) entropy,
i.e. , the Sum of all the positive Lyapunov exponents. This
quantity increases monotonically and smoothly with tem-
perature or energy as the phase changes; however, de-
tailed information can be obtained regarding the under-
lying potential-energy surface [9]. Other work that has
looked for the connection between phase transitions and
the Lyapunov exponent is by Butera and Caravati [12],
who found a discontinuity in the slope of the MLE at the
temperature of the phase transition in a system of pla-
nar rotors. Related work by Posch and Hoover [13] has
examined the entire spectrum of exponents, and suggests
that the positive Lyapunov exponents are power-law dis-
tributed, with different scaling exponents in solid and
liquid phases.

Our observation is that the signature of the phase
change is most clearly seen in the largest Lyapunov expo-
nent alone. For realistic atomic and molecular systems,
this quantity is simpler to compute than the correspond-
ing KS entropy.

In studying clusters it is usual [2] to examine a caloric
curve as a function of the temperature. The caloric curve
exhibits low and high energy regions and the onset of
phase change is marked by a change in slope. A more
striking depiction of the change in phase as a function
of the temperature is provided by examination of the
rms bond length (or Lindemann index) b. This quan-
tity, when plotted against temperature, shows a relatively
sharp change at the phase transition. Our results show
that the MLE exhibits a variation analogous to b as the
temperature is varied.

In order to probe the microscopic origins of such be-
havior, we examine the classical density of states. The
sudden increase in the MLE should be correlated with
a change in entropy implying a sudden increase in the
accessible phase space. The increase in the density of
states as clusters melt has been demonstrated previously
[14] through finite-temperature Monte Carlo simulations
which act essentially as probes of the configurational den-
sity of states. A sharp, steplike increase in the density of
states in the solid-liquid coexistence regime arises &om a
bimodal potential-energy distribution. Thus at low tem-
perature (in the solid state) the potential-energy distri-
bution looks like a single Gaussian with a small width
the system is basically confined to the global potential
minimum, and the peak is sharp. With increasing tem-
perature, the cluster has access to more and more con6g-
urations; when the cluster gains access to a large num-
ber of high energy minima, the distribution broadens,
and furthermore, becomes bimodal —with one Gaussian
for the solidlike minima, and one for the liquidlike. We
have carried out constant temperature Monte Carlo sim-
ulations for Ar7 and Ar~3, and make comparison with
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existing data [14] for Ar&s. We present a detailed study
of the MLE over a range of energies and observe a direct
correlation between the energy range where the distribu-
tion of the density of states is bimodal and the abrupt
increase in the MLE.

This paper is organized as follows. In the next section
we brieQy give details of the systems studied and the
computational methods used in the molecular dynamics
and Monte Carlo simulations. In Sec. III, results are pre-
sented for the largest Lyapunov exponent as a function of
the internal energy. The classical configurational density
of states is estimated &om potential-energy distributions
at several temperatures and the above connections are
verified. Our conclusions are summarized in Sec. IV.

II. METHODOLOGY

A. Molecular dynamics

The interatomic potential between neutral rare-gas
atoms is taken to be the usual Lennard-Jones potential
of the form

(2.1)

where R; and R, are the position vectors of the ith
atom and the center of mass of the cluster, respectively,
and R is the cut off radius. The effect of the confin-
ing potential, in particular the choice of R, is significant
once cluster evaporation sets in [23]. However, in the co-
existence regime studied here, evaporation was verified
to be negligible by careful inspection of the density pro-
files generated from the simulations. A cut off value of
R, = 4' was used for both Arv and Ari3.

Results from the microcanonical MD simulations and
the canonical ensemble MC simulations are connected by
the total density of states function. The density of states
can be constructed &om constant temperature canoni-
cal ensemble simulations using the multiple histogram
method [14,24]. The total density of states is a convo-
lution of the kinetic and potential (or configurational)
density of states. For an N-atom cluster, the kinetic en-
ergy density of states at kinetic energy K is given by
U(K) = CKo s~s~ sl i where C is a constant for a
given particle mass and system volume [25]. While the
density of states was calculated, it was found that the
actual finite-temperature potential-energy distributions
were more useful &om our point of view, as discussed in
Sec. IIIB.

where r;~ is the distance between the atoms i and j, and
—6 is the minimum of the potential at a distance 2 ~ cr,

u being the unit of the length. The dynamics of the clus-
ter is studied using standard MD techniques [15]. The
classical equations of motion are integrated by the veloc-
ity Verlet algorithm; all the quantities are expressed in
scaled form, time, and distances by (ma /48m)i~2 and o. ,
respectively. We choose e and o appropriate to argon [16]:
m = 6.63382 x 10 26 kg is the Ar mass, o. = 0.3405 nm,
and e = 119.8 K. The time step used is 0.01 in reduced
units (3.125 fs) which ensures that the total energy is
conserved to within 0.01%.

In this paper we have studied clusters of sizes of 7,
13, and 55; these systems have been previously studied
[4,11,17—21] extensively from several points of view. Our
calculations were carried out for zero total linear and an-
gular xnomentum [4], and the clusters were equilibrated
for 3x10 MD steps. The average energy can be adjusted
as desired by a process of adiabatic heating (or cooling),
wherein the velocities are scaled by a factor slightly ex-
ceeding (or less than) 1, for a limited time interval at
a sufIiciently slow rate [2]. This is particularly useful in
probing the coexistence region, when the cluster wanders
erratically between solid and liquid configurations [22].

B. Monte Carlo simulations

Classical Monte Carlo simulations were carried out us-
ing the Metropolis algorithm as follows. Clusters were
restricted to a spherical cavity [3,14] using a confining
potential of the form

(2.2)

III. R,ESULTS

We first discuss the results &om molecular dynamics
simulations at constant energy. The average temperature
T of the system is given by

2E
(3N —6)k~ ' (3 1)

where N is the number of atoms, k~ ——1.381 x 10
erg/K is the Boltzmann constant, and E is the kinetic
energy, suitably averaged over the entire trajectory. The
root mean square bond length Quctuation is defined by

(3.2)

which is a sensitive quantity for detecting a change in
phase. In Eq. (3.2) above, ( ) implies an average over the
entire trajectory. Melting of the cluster is indicated by
the increase in b above 0.1, and occurs at different tem-
peratures for different clusters. In the transition regime,
owing to dynamical coexistence [7,22] these small clusters
Huctuate back and forth between solidlike and liquidlike
states, giving rise to Huctuations in the value of b. Fig-
ure 1 shows the kinetic energy of an Ari3 cluster as a
function of time for three different values of the total
energy. In Figs. 1(a) and 1(b) where the total energy
corresponds to the solid or the liquid state the system
clearly has a mean kinetic energy and hence a tempera-
ture. But in Fig. 1(c), where the total energy lies in the
transition region, the system wanders between high- and
low-kinetic energy configurations and it is only possible
to define an average temperature. Since the total energy
is held constant, the high kinetic energy (or the low po-
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FIG. 2. Variation of the largest Lyapunov exponent A, with
internal energy (units are ~ per atom) for clusters of difFerent
sizes. The dependence of the MI E on the temperature also
shows similar behavior.
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FIG. 1. Kinetic-energy Auctuations in a cluster of Ar] 3

in (a) the solid state, energy equal to —0.48, T = 2.78
K, A = 0.015; (b) hquid, energy equal to —0.35,
T = 37.8 K, 8 = 0.308; and (c) a state of dynamical co-
existence, energy equal to —0.46, b = 0.098. Units of energy
are 10 erg/atom.

is sharp. In the smaller cluster, however, there is only
a discontinuity in the slope as the energy increases (cf.
Butera and Caravati [12]). In even smaller clusters such
as Ar3, the MLE increases uniformly with temperature,
and there is no explicit signature of a phase transition.
It should be noted that Ar7 is the smallest cluster that
can be considered to show any evidence of a change in
"phase" with temperature [17]. A comparison with pre-
viously published results [4,6,21] for Ar~ clusters shows
that the behavior of the MLE with cluster energy (in mi-
crocanonical simulations) closely parallels the behavior
of the Lindemann index.

tential energy) corresponds to the solidlike state whereas
the low kinetic energy (or the high potential energy) cor-
responds to the liquidlike state.

A. Maximal Lyapunow ex.ponent

Local stability properties of trajectories are estimated
by computing the average rate of exponential divergence
of two nearby trajectories. For an N-atom cluster, since
the system is conservative and Hamiltonian, there can be
up to 3% —7 positive Lyapunov exponents [26], and we
calculate the largest of these, defined by

lirn lim —ln
1 d(T) (3.3)

Taboo

d(0)m0 T d 0

where d(0) is the initial distance between the two tra-
jectories and d(t) the separation at time t. For chaotic
dynamics, A ) 0.

We use the tangent space method [27] to calculate the
MLE &om the final portion of 3 x 10 MD step trajecto-
ries. As the total energy increases, the cluster goes from
fairly rigid to nonrigid configurations, and is hence able
to access a larger volume of the phase space. As a result,
larger nonlinearities become important and the motion
is globally chaotic. Thus the MLE, which is either zero
(or small) for energies below the transition temperature,
becomes significantly larger. Interestingly, this change
in MLE occurs at the same total energy when b = 0.1,
which is the usual Lindem. ann criterion for bulk melt-
ing. The variation of the Lyapunov exponent with en-
ergy is sho~n in Fig. 2. For the larger clusters, Ar13 and
Ar55, the change in the MLE at the melting transition

B. Finite-temperature simulations

The magnitude of the maximal Lyapunov exponent
may be correlated with the volume of phase space avail-
able to the system, which suggests that a significant
change in the energy density of states should occur at
approximately the energy at which the isoergic MD sim-
ulations show a sharp rise in the Lyapunov exponent.
As has also been noted earlier [14], a distinct, step-like
increase in the configurational density of states in the
cluster solid-liquid coexistence regime is rejected in the
bimodal character of potential-energy (PE) distributions
obtained from canonical Monte Carlo (MC) simulations
for the phase coexistence temperatures. In this section,
we accordingly examine the potential-energy distribu-
tions for Ar7, Ar13, and Ar55 and correlate them with
the energy at which the MLE shows a steep rise.

For Arrs, the caloric curve [21] is essentially flat be-
low T —35 K corresponding to constant average ki-
netic energy (K). Consequently one can assume the
kinetic-energy density of states in this region to remain
approximately constant and consider only the poten-
tial energy or configurational distribution of states. To
within reasonable accuracy, the total kinetic energy for
the 13-atom cluster is found to be 4.83', and the cor-
responding values of the energy of &eezing, Ey and the
energy of melting E to be —34.7e (—2.6e/atom) and
—29.2e (—2.2 e/atom), respectively. From Fig. 2, it
Inay be seen that this is exactly the region in which the
MLE for Ar13 shows a dramatic rise. The correspond-
ing range of potential energies that is pertinent for the
cluster coexistence region lies between —39.5e and —34~,
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which, again, is precisely the region in which the Monte
Carlo distribution shows a shouldering, i.e., evidence of
bimodality (see Fig. 3). The bimodality is particularly
marked at temperatures of 33.5 and 35.2 K.

The caloric curve for Ar7 does not show a distinct re-
gion of constant temperature but merely an inHection
point at a temperature of approximately 20 K and a to-
tal energy of approximately —13.2e. At this value of total
energy, corresponding to —1.9m jatom, the curve of MLE
versus total energy shows a knee. This value of total en-

ergy corresponds to a potential energy of —14.4e. This
is again the region in which the potential-energy distri-
butions at constant temperature (noticeably at 20.1 and
23.5) show a distinct broadening and shift, indicative of
an increase in the density of states curve. Although the
distributions themselves broaden, there is no evidence of
bimodality in the manner of Aris. (See Fig. 3.) This is
also in keeping with the fact that the MLE for Ar7 does
not show a sharp increase as the cluster melts, but only
has a "knee. "

We have not computed PE distributions for Ar55 since
results have been published for this system [14]: the total
density of states curve shows a region of positive curva-
ture (leading to a very pronounced bimodal character)
centered at approximately —240& (—4.4 e/atom). This
correlates very well (see Fig. 2) w'ith the energy at which
the MLE for Arss rises dramatically. (Note that the re-
sults in Ref. [14] are for the total energy density of states;
in the phase coexistence region, the kinetic energy will be
approximately constant and the bimodality will re8ect
changes in the configurational density of states. )
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FIG. 3. Potential-energy distributions at difFerent temper-

atures for the clusters, from classical Monte Carlo simulations.
For Ar7, the temperatures are, from left to right, T = 10, 13.4,
16.8 20.1, 23.5, 26.8, and 30.2 K, while for Ar&3, they are T
= 16.8, 20.1, 23.5, 26.8, 30.2, 33.5, 35.2, and 36.9 K. Similar
distributions for Ar55 have been published earlier by Labastie
and Whetten [14].

To summarize, the rise in the MLE is strongly corre-
lated with the bimodality and a sharp increase in the
configurational density of states for the cluster sizes ex-
amined in this work. Although the discussion above has
been in terms of the internal energy of the clusters, simi-
lar observations and conclusions hold if one considers the
behavior of the MLE as a function of the average kinetic
energy or temperature.

IV. C(3NCLUSIDN

In the present work we have focused on the variation
of the maximal Lyapunov exponent, which examines the
"chaoticity" of the system as a function of internal energy
or temperature in small atomic clusters.

The MLE is found to be positive at all energies, in-
dicating that motion at all temperatures is chaotic for
systems of this size and complexity. However, the strik-
ing feature is that there is a dramatic increase in the
Lyapunov exponent (paralleling the behavior of 8), in
the phase transition region, which indicates that the
MLE should prove to be an unambiguous characteristic
of phase transformations in clusters and larger systems,
when such a phase transition is accompanied by sufFi-
cient change in entropy. In fact, the derivative of the
MLE with temperature behaves very much like the spe-
cific heat at phase transition; this provides a direct con-
nection, in some sense, between the classical dynamics
and the thermodynamics.

It is not a priori obvious why the increase in inter-
nal energy or temperature must lead to an increase in
the Lyapunov exponent we have conjectured that this
abrupt increase in the MLE corresponds to an increase
in the available phase space and consequently in the lo-
cal rate of divergence of trajectories [27]. In the solid
phase, the cluster vibrates mainly around the global min-
imum and explores confined regions in the phase space.
The Lyapunov exponent does not increase significantly
as the energy (or temperature) is increased, until several
higher energy minima become accessible. This opening
up of phase space is rejected in the sharp rise in the
MLE. When the &equency of passage between these po-
tential wells increases, the cluster melts. With further
increase in energy the time spent in a particular well
becomes comparable to the time taken for the interwell
passage: the system is essentially in the liquid state, and
the value of the largest Lyapunov exponent is consider-
ably larger than it is in the solid or the coexistence phase
and changes gradually with temperature.

Support for this picture is obtained by examining the
potential-energy distributions generated &om canonical
ensemble Monte Carlo simulations. These provide a clear
indication (particularly in the case of larger clusters Aris
and Arss) of a bimodal distribution in the phase coexis-
tence region, indicative of a sharp rise in the density of
states.
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