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Computer simulation study of the permeability of a porous sediment model
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A computer simulation model is used to study the permeability of fluid flow through porous media
generated by the random distribution of the sediments in a two-dimensional lattice. Fluid particles are
confined to pore space with the sediments forming the rigid barriers at the pore boundaries. An interac-
tion between the fluid particles and the pore substrate is introduced to incorporate the additional drag in
the pore space. The pressure gradient causes a bias to drive the fluid and the Metropolis algorithm is
used to hop the fluid particles. The permeability of this system is studied as a function of the global pres-
sure, the concentration of the fluid particles, and the porosity. The permeability shows a nonmonotonic
dependence on the fluid concentration and on the driving bias. The fluid particles exhibit unusual trans-
port behavior as the ramification of the porous media is enhanced and the bias is increased.

PACS number(s): 47.55.Mh, 64.75.+g, 83.70.Hq, 91.50.Jc

Studying fiuid fiow through porous media [I—6] has at-
tracted considerable interest in marine geosciences for a
long time with varied applications such as oil explora-
tion, sedimentation processes, spreading of hazardous
waste on the sea Aoor, etc. Distribution of the sediments
determines the physical and chemical properties such as
the viscoelastic nature of the sediment network, phy-
sisorption, and deposition of various species on the pore
boundaries formed by sediments. A variety of hetero-
geneous substrates emerge due to various sedimentation
processes involving streams, ocean currents, waves, wind,
gravity, etc. [7]. The structure of the porous matrix de-
pends not only on the type of sediments (i.e., particles
with various shapes and size distributions) and their in-
teractions, but also on these sediment processes. Further-
more, many of the parameters of these sediment process-
es (i.e., pressure gradient, fiow velocity field, etc.) vary
with time. Thus, the structural analysis of pores [8,9] it-
self constitutes a large area of investigation. Taking into
account the ramification of the pores, however, poses one
of the major difficulties in understanding the Quid Aow
through the heterogeneous sediments [9]. Analytical
methods are severely limited due to their intractability in
handling the nature of nonlinearities in inhomogeneities
in such systems. Computer simulations [2,6] on the other
hand may be useful in taking into account some of the
nonlinearities, although they are limited to idealized
model systems. We present here a computer simulation
model to study Quid Aow through a porous system.

We consider a two-dimensional discrete lattice. Mono-
disperse sediments (i.e., the sediment particles of uniform
shape and size comparable to lattice constant) are then
distributed randomly in the lattice with no more than one
particle per lattice site. Furthermore, the sediments
remain immobile throughout the simulation. The empty
sites constitute the pores, which are defied as the clusters
of nearest neighbor empty sites. Thus, the random distri-
bution of sediments generates a rigid porous media in

which the size of the pores depends on the concentration
(i.e., the volume fraction) of the sediments [9]. The
volume fraction of the pore space p, (i.e., the porosity) is
defined as the ratio of the number of pore sites to the to-
tal number of lattice sites; the volume fraction of the sedi-
ments is 1 —p, . The larger the p„ the larger the probabil-
ity of forming large pores. At smaller p„not only do we
obtain smaller pores but the pores become isolated if we
reduce p, below a certain value —the percolation thresh-
old p„of the pores [8]. The size and shape of the pores
and related geometrical quantities depends on the per-
colation mechanism [9]. We will restrict ourselves here
to the rigid pores formed by random distribution of the
monodisperse sediments.

Fluid particles are the placed in pore space of the host
matrix; a pore site cannot be occupied by more than one
fluid particle. Avoiding the multiple occupancy of a pore
site by the Quid particles takes into account the hard™core
interactions among the particles. In fact, we consider a
short range (nearest neighbor) repulsive interaction
among the particles as described below. The amount of
Auid in the pores is governed by the concentration p of
the Quid particles, which is the fraction of the pore sites
occupied by Quid particles. Unlike sediment particles,
Quid particles are mobile. A Auid particle may hop to a
neighboring pore site; however, it cannot cross the sedi-
ment sites. In other words, the sediment sites act as an
infinite barrier for the transport of Auid particles. Since
we are interested in a global Auid Aow, we will restrict
ourselves to a high pore volume fraction (i.e. , p, above

p„) in order to obtain infinite connected channels of
pores (i.e., the channels across the sample).

In addition to stochastic diffusion of fiuid particles (see
below), we also implement a global bias produced by the
pressure gradient as follows. We set up a bias probability
8 with 0.25&8 (0.5, such that each Quid particle at-
tempts to choose a neighboring hopping site along the
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+x direction with the probability B, and a neighboring
site along the —x direction with probability 0.5 —B.
There is no bias along the y direction in which each Quid
particle attempts to choose a hopping site in the +y and
the —y directions with equal probability (0.25). The bias
drives the particles pushing along the x direction, but the
hopping is eventually governed by the energetics of the
system as we will soon see.

The sediment barriers and the driving bias compete
with each other in the transport of the Quid particles.
Apart from the geometrical barriers of the sediments
causing retardation of the Quid Qow, the presence of oth-
er elements such as air, waste, or foreign species other
than the Quid particles may also add to drag. The effect
of viscosity due to the latter is effectively considered via
incorporating an attractive interaction between the parti-
cles and the empty pore sites. We assign a unit positive
charge density (pz =1) to each fluid particle and a nega-
tive charge density (p, ) to each substrate (i.e., empty)
pore site, with zero density to sediment sites. The in-
teraction energy is described by

cal quantities for different values of biased fields, pore
volume fraction p„and the concentration of Quid parti-
cles.

Most of the simulations were performed on a 100X 100
lattice, although we have used different size lattices to
check for severe finite size effects. As many as 100 in-
dependent samples were used for a fixed bias, pore
volume fraction, and the concentration of the Quid parti-
cles. The pressure gradient. is applied along the x direc-
tion; therefore, a net Qux of Quid particles along the
direction of pressure (+x) is expected. The Aux entering
the sample at the first column must be equal to the Qux
exiting at the opposite end in order to satisfy the conser-
vation of mass (continuity equation for the Quid Sow).
Figure 1 shows a typical variation of the mass transfer
versus time (along the +x direction) for various concen-
tration of Quid at the bias B =0.30. A linear increase of
the Qux with time is reached in a rather short time partic-
ularly at small Quid concentrations, which shows that our
system is in the steady sate. From the rate of mass Qow
(i.e., the mass current) along the pressure gradient, one
can estimate the permeability

j=o.XVP, (2)

where p; is the charge density at site i and p is that at
site j; the summation is restricted to nearest neighbor
sites. Note that p; =1 for the Quid particles and p; =p,
for the substrate density. The effect of viscosity within
the pores can be varied by varying the interaction energy
by varying p, : We consider here two values p, = —1 and
—2

We use a combination of direct and importance sam-
pling techniques [10j: the direct sampling to select the
direction of the move with the biased probability B and
the Metropolis algorithm of the Monte Carlo method to
move the Quid particles as follows. We select a particle
say at site i and one at its neighboring site j according to
the bias probability B. If site j is an empty pore site, then
we evaluate the energy E, of the particle at site i and en-

ergy E2 of the particle in a configuration in which the
particle (i) and the pore site (j) have exchanged their po-
sitions. The change in energy AE =E2 —E& is then eval-
uated. If AE is less than or equal to zero, then we move
the particle finally from site i to site j. However, if AE is
greater than zero, then we move the particle with a
Boltzmann distribution exp( —b,Elks T), where k~ is the
Boltzmann constant and T is the temperature. T is re-
garded as an effective temperature due to agitation of the
system: We keep T constant with k&T=1 throughout
the simulation. An attempt to move each Quid particle
once is defined as one Monte Carlo Step time. We per-
form the simulation for a sufficiently large number of
time steps to achieve a steady state. Periodic boundary
conditions are imposed to move the particles across the
edges. During the simulation, we keep track of various
physical quantities such as rms displacement of each Quid
particle and that of their center of mass, Qux of the parti-
cles, energy, etc. These simulations are repeated, starting
from new initial configurations, for a number of indepen-
dent runs to gain a r-liable estimate of the various physi-
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FKz. 1. Flow (mass) flux vs time with the porosity p, =0.70,
bias B =0.3, p =0.2 (+), 0.3 (asterisk), 0.4 (X), 0.5 (square),
0.6 (triangle), 0.7 (diamond), and 0.8 (solid line) with p, = —1.
100X 100 lattice was used with ten independent samples.

where j is the current density and VP is the pressure gra-
dient, which is proportional to B here; o. is defined as an
effective permeability. In our study, we use the last ten
data points (in Fig. 1) to evaluate cr in the steady state.
We have studied in detail the variation of the permeabili-
ty, power-law dependence of the rms displacement of
each Quid particle, and that of their center of mass with
time, and energy with the pore volume fraction (p, ), con-
centration of the Quid particles, and the strength of the
pressure bias. In order to show our worst finite size
effects, we present a Quid Qux versus time plot in Fig. 2
for various porosities in the regime where the pores are
highly ramified (with the fraction of the pore sites close
to percolation threshold) for 100X100 and 200X200
samples. The system has reached the steady state for all
the data sets. Apart from a larger Qux with the larger lat-
tice, the qualitative features remain unchanged by in-
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FIG. 2. Fluid Aux vs time at the bias B =0.3 and Quid con-

centration p =0.5 for various porosity p, =0.591 (+), 0.593
(lower most solid line), 0.595 {triangle), 0.597 (square), 0.599
(X), 0.600 (asterisk), 0.700 (diamond), and 0.800 (the upper
most solid line) for 100X 100 sample. The upper most discon-
nected data sets were generated with the sample size 200X200
with the porosity p, =0.592 (asterisk), 0.595 (triangle), and 0.598
(square) ~ Ten independent samples were used with both sam-
ples.

creasing the lattice size. Since the current density
j =(slope)/L in Fig. 2, a large slope with a larger lattice
is not unexpected.

The charge density of the empty sites is fixed for all
concentrations of fluid particles. The variation of permea-
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FICx. 3. Permeability vs Quid concentration at bias B =0.3
and porosity p, =0.6 (+), 0.7 (asterisk), and B =0.4, and
p, =0.6 (triangle) and 0.7 {square) with the same statistics as in
Fig. 1 with 10 samples (a) and 100 samples (b).

TABLE I. Variation of permeability with the porosity for
sample size L =100 and 200 at the bias B =0.3 and Quid con-
centration p =0.50.

Porosity

0.591
0.592
0.593
0.595
0.595
0.597
0.598
0.599
0.600
0.700
0.800

Permeability

0.7891
0.8455
0.7514
0.7688
0.8013
0.8130
0.8808
0.8710
0.9002
1.1648
1.2890

Size (L)

100
200
100
200
100
100
200
100
100
100
100

bility with the concentration at various bias and porosi-
ties is shown in Fig. 3 for p, = —1. We immediately note
that the permeability depends nonmonotonically on the
concentration of the fluid at a fixed value of the bias and
the porosity (p, ). On increasing the Quid concentration
from low to high values (i.e., p =0.20—0.8), the rise in
permeability in the low concentration regime is followed
by a decline in the high concentration regime. Despite
the large fluctuations in data points at low porosity
(p, =0.60) in Fig. 3(a), the variations in the data points at
the higher porosity (p, =0.70) clearly show a nonmono-
tonic behavior even with ten independent runs. The
curves are smoothed out with 100 samples as shown in
Fig. 3(b). These curves exhibit a conclusive nonmonoton-
ic dependence at all porosity including p, =0.60. Note
that the statistical error in the data points is reduced con-
siderably on increasing the number of samples [compare
Fig. 3(a) and 3(b)]; the error bar in the data points is com-
parable to the size of the symbols in the data with the 100
samples. At a fixed pressure bias, we observe a higher
permeability at larger porosity, i.e., at the bias B =0.3;
the permeability is higher at p, =0.70 than that at
p, =0.6, as expected.

One may ask what is the relevance of the concentration
dependence of the permeability? We would like to ad-
dress this question qualitatively as follows. The hopping
of fluid particles depends strongly on their concentration
especially in the dense regime. Thus, the variation in
concentration may be used to change the quality of the
fluid. For example, the mixture of contaminants such as
sewer in water may reduce the How (and the permeability)
considerably due to its higher viscosity. The concentra-
tion of the fIuid particle in conjunction with the fluid sub-
strate interaction can be used to consider the effect of
both the quality of the fluid and the viscosity of the medi-
um.

In Table I, we present data for the permeability for
various porosities at bias B =0.3 and fluid concentration
p =0.5 for the two sample sizes I. = 100 and 200. We see
that the data for the permeability with different size sam-
ples were in accordance with no severe finite size effect
within the range of fluctuations. The pores are highly
ramified around the porosity p, =0.592 (near percolation
threshold of the pore sites); therefore, large fluctuations
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are expected in the evaluation of the permeability in this
region, especially with a small number of independent
samples (ten). The larger permeability at p, =0.591 rath-
er than that at p, =0.593, as an example, is purely due to
statistical fiuctuations, which can be reduced by increas-
ing the number of samples as we saw above. At higher
porosity, the data becomes less

fluctuating

as the
ramifications in the pore structure are reduced.

The change in permeability, however, seems to depend
on the pressure gradient: The higher the gradient, the
larger the change in permeability on varying the porosity
(Fig. 3). Note a large decrease in permeability at p, =0.6
when we increase the bias from 0.3 to 0.4. (The site per-
colation threshold [8] for the pore sites is about
p„=0.592 and the porosity must be greater than this for
the global fiuid flow. ) The porous media is very ramified
at such a low porosity and even a small pressure bias
reduces the permeability. The permeability is zero at p,
below@„when the pores are isolated. At a fixed porosity
(p, =0.7) and fiuid concentration p =0.3, the permeabili-
ty first increases on increasing the pressure gradient (B
above 0.25) but begins to decline on increasing B beyond
a certain characteristic value (B, about 0.275) (see Fig.
4). Above this characteristic value, the bias begins to
compete with the sediment barrier. The characteristic
value of the bias seems to depend on the Quid concentra-
tion as well as on the porosity; the smaller the porosity,
the lower the characteristic value of the bias. Although
we observe a maxima in permeability at the characteristic
value 8, about 0.30 at the Auid concentration p =0.60,
this trend is not as clear at all concentrations (i.e.,
p =0.4, 0.5, 0.8). Thus, we see that permeability depends
strongly on the porosity and pressure gradient. While the
permeability decreases continuously on decreasing the
porosity, the interplay between the sediment barriers and
the bias leads to a nonmonotonic dependence of the per-
meability on the pressure gradient.

On increasing the drag, i.e., the interaction between
the substrate (empty pore sites) and the fiuid particles, we
find that permeability drops abruptly (see Fig. 5). How-
ever, the nature of its dependence on the Quid concentra-
tion does not change significantly on increasing the drag.

We know that permeability is a cooperative quantity
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FIG. 5. Permeability vs Quid concentration at porosity
p, =0.7 and bias 8 =0.4 with the substrate interaction density

p, = —1 (triangle) and —2 (square). Same statistics as Fig. 1.
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FIG. 6. RMS displacement of each Quid particle (R„) vs
time at porosity p, =0.7 and bias 8 =0.4 for various Quid con-
centrations p =0.2 (+), 0.3 (asterisk), 0.4 (square), 0.5 (dia-
mond), 0.6 (triangle), 0.7 ( X ), and 0.8 (solid line). Same statis-
tics as Fig. 1.
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FIG. 4. Permeability vs Quid concentration at porosity
p, =0.7 for various bias, 8 =0.260 ( + ), 0.275, (asterisk), 0.300
(triangle), 0.350 (square), 0.400( X ). Same statistics as Fig. 1.

FIG. 7. Power-law exponent k„ for the variation of the rms
displacement of Quid particle (R„) with time at bias 8 =0.3
and porosity p, =0.6 (asterisk), 0.7 (+), and bias 8 =0.4,
p, =0.6 (square), and 0.7 (triangle). All of these data sets are
taken with the substrate density p, = —1 except the one at
p, =0.7 and 8 =0.4 shown by crosses, which was taken with
pz= —2. Same statistics as Fig. 1.
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that emerges from the transport properties of the indivi-
dual fluid particles in the heterogeneous porous media. It
may, therefore, be useful to see how the individual parti-
cles (i.e., the tracers) behave by analyzing their rms dis-
placements R„, which is the average rms displacement
traversed by each particle. Figure 6 shows a typical plot
of R„versus time (t) for various p and p, on a log-log
scale. Such a good linear dependence of R„on t, particu-
larly in the long time (asymptotic) regime suggests a
power-law behavior, i.e., R„-t " where k„ is an ex-
ponent. We have studied such power laws in detail; the
variation of the power-law exponent k„with the Quid
concentration is presented in Fig. 7 for various values of
the pressure gradient and porosity.

We know that a diffusing particle shows a driftlike
motion (i.e., k„=1) in the presence of a global bias in a
homogeneous space. Even in a highly porous media with
p, =0.70, here the value of k„never approached 1. In
fact, it lies between 0.80 and 0.95 for the bias B =0.30
and 0.40 with the substrate intensity p, = —1 and —2.
At low porosity (and high ramification), p, =0.60, on the
other hand, the value of the exponent k„drops down
significantly; some data points are even below 0.5. A
lower value of k„ implies slower motion of the individual
particles. Note further, that k„has lower values at the
higher bias at p, =0.60. Increasing the bias reduces the
mobility at such a high ramified porous media due to
competition between the bias and the barriers. This re-
sults in a decline of the permeability on increasing the
bias as we have seen above. We should point out that the
power-law exponent k„ is nonuniversal as it depends on
the porosity and the bias.

In summary, we have presented a computer simulation
model to study the Quid Qow through a porous media.
The porous media is created by the random distribution

of sediments as in site percolation, and the Quid is
modeled by discrete particles, which are restricted to
pores. The effective viscosity within the pore is con-
sidered via an interaction between the fluid particles and
the pore substrate. An external pressure gradient is ap-
plied to drive the Quid across this porous media and the
permeability is evaluated. The effect of porosity, concen-
tration of fluid, driving bias, and viscosity is studied. We
find that permeability depends nonmonotonically on the
concentration of the Quid. For some fluid concentration
at a fixed porosity, the permeability increases on increas-
ing the bias until a certain characteristic value (8, ) above
which it decreases; the characteristic bias seems to de-
pend strongly on the porosity with higher B, at the
higher porosity. It also depends on the concentration p;
however, this dependence is not clear at this stage. Thus,
for a model porous media we can predict how the per-
meability depends on the pressure gradient, porosity, and
drag. One may consider a more realistic model for the
porous media generated by the network of sediments of
certain shape and size distributions with elastic proper-
ties, multicomponent fluid, effect of transient bias includ-
ing shock, and various type of drags in this model. We
plan to consider some of these aspects in our continued
effort.
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